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A theory is developed for the statistical mechanics of a system of interacting particles
contained by an external potential instead of by a box. Most attention is paid to the special
case of particles in a three-dimensional harmonic oscillator potential V(r) =P iran /I, ,
where the parameter L is a length of macroscopic dimensions which is ultimately allowed
to increase indefinitely while keeping the density of particles at the origin finite. As an

application of the formalism, an expression is obtained for the surface tension between a
liquid and its vapor in equilibrium.

j.. INTRODUCTION

In the grand canonical approach to statistical
mechanics, the pressure P(P, ii) of a system of
identical particles at temperature 1/kP and chemi-
cal potential p, is given by

&(P, ii)

lim (»(i) 'in Z Tr exp(- (»»i +()»Ãl), (i)
V-~ N

where HN is the Hamiltonian for N particles and
Tr~ denotes the trace over all N-particle states
of appropriate symmetry. The volume V is nor-
mally taken to be that inside a cubical box with
sides of length L = V'I, though in the limit of in-
definitely large volume the exact shape should be
irrelevant for physically sensible systems. The
boundary conditions imposed on wave functions at
the walls should also be irrelevant. For mathe-
matical convenience one normally takes periodic
boundary conditions, though if the walls be rigid
and impenetrable the wave functions should strict-
ly be required to vanish there.

While a containing box is usually necessary
physically to stop the molecules flying apart, it
can be a nuisance mathematically. This is espe-
cially soif me make a change of variables. For
example, it is sometimes useful to replace the
momentum variables p„p„p„... by the trans-
formed set'

P '=2 '"(P, -p.)p~ 1 2

P.'=6 '"(P, +Ps —2P.),

Ps = 12 P~+ Ps + Ps — P4)» ~ ~ ~ ~

The corresponding orthogonal transformation of
the position coordinates r„r„r„... is, how-
ever, less fruitful because of the awkward domain

over which the transformed position coordinates
r, ', r, ', r, ', ... range as a consequence of the rz
being restricted to lie, say, within a cubical box.
In contrast the p~ and pg' extend over all real val-
ues. If we could only take the same infinite do-
main for our space coordinates, we would have at
our disposal a much wider class of useful trans-
formations.

In nature there are several examples of systems
of particles which do not need a box to hold them
together. To name two, stars contain themselves
by gravitational attraction while nuclei are bound
together by strong internucleon forces. In the
shell model of the nucleus, each nucleon is taken
to move independently in a common potential field
representing the average effect of all interactions
with other nucleons. This common potential has
been taken by Mayer' and by Hazel, Jensen, and
Suess' to be a central harmonic oscillator well
modifed by a spin-orbit term, and it is this well
rather than a box which prevents the particles
flying off to infinity.

Blatt' has suggested that instead of using a box
in statistical mechanics one could contain the par-
ticles by an external central harmonic oscillator
well. We develop this idea in the present paper
and consider each particle to be acted upon by an
external force field, paying most attention to the
special case of particles contained by a central
harmonic oscillator potential V(r) = P 'sr'/Is.
The parameter L will ultimately be taken indef-
initely large with the number of particles simul-
taneously approaching infinity in such a way as to
keep the density of particles at the origin finite.
This parameter will therefore play, in the pres-
ent theory, a role similar to that of the side length
of the cubical box in the conventional approach,
though all positio~ coordinates mill here range be-
tween a ~.

In Sec. 4 an expression is obtained for the ~r-
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face tension at the interface of a liquid and its
vapor in equilibrium. The external force field
plays an essential role in the der ivation of. this
expression in effecting a spatial separation of the
two phases.

2 SYSTEMS IN A CENTRAL HARMONIC OSCILLATOR
POTENTIAL

2.1 Introduction

I et us consider a system of identical particles
(in general interacting) described by an N-particle
Hamiltonian H~ to be immersed in an external
three-dimensional harmonic oscillator potential
V(x) = P 'ml'/I' acting on all particles, where I.
is a length of macroscopic dimensions. The total
Hamiltonian in an N-particle state is then

N

i=I Z

In analogy with (I) let us define

Q(P, v)

= lim (L'))) ')n Z Tr exp( —))H '+))pN)) . )3)
N N

We stress that in evaluating (3) we allow the car-
tesian components of our position vectors to as-
sume all values between +~. Thus the Hilbert
space appropriate for the description of, say, N
spinless bosons is the set of all wave functions
)j)(rl, r2, . ~ . , rA) square integrable over the do-
main of all real values of all 3N Cartesian co-
ordinates.

The ma, in results of this section are the rela-
tions between Q(P, p, ) defined by (3) and P(P, il) de-
fined by (I):

Q(p, il) = P"'fP(p, p. —-m')d'r, (4)

P(p, p.)=,p '~'fQ(p, il —vr')d'r

282
=-—,p "'f Q(p, il —mr')dl. .

The simple inverse expressions (5) and (6) enable
us to bypass the conventional cubical box. Having
obtained an approximation to Q(P, p. ), say by vari-
ational evaluation of (3), we can then estimate the
pressure P(P, tl) from (5) or (6), thus avoiding the
use of (I).

2.2 Proof of (4)

We consider the parameter L so large that it is
possible to divide spa.ce up into volumes 6V which
each contain a macroscopic number of particles,
but such that V(r) = P 'wl 2/f ' varies insignificantly
over the 5V. We can then regard the material in

a typical region 6 V, centered around position r,
as being in local thermodynamic equilibrium at an
effective chemical potential p, (r) = il —P 'mH/L'
(c.f. equilibrium in a gravitational field ). Thus
the region 5V contributes an amount —P(P, il
—P 'llew'/I. ')6V to the grand potentia, l

Il= —P ln(Z~Tr~exp(- pH + ptl+)}

yielding on integration over all 5 V

n=- fP(p, il p -'l~2/-L, 2)d3r

= —I.'P'~' fP(P, p, —mr')d'r

on replacing the variable of integration by r/
(P'~'L, ). Inserting this expression into the defini-
tion (3) immediately yields (4).

2.3 Proof of (5) and (6)

If P(P, il) possesses an expansion of form
g„an(p) exp(ptln), then the relations (5) and (6) fol-
low quite trivially. A more general proof is as
follows:

P
'"fQ-(P, il —m'2)d' r

= fP(p, u —m', ' —mr, ') d'r, d'r,

=l6 'f, f,"P(P, i -,'-, '),','d,d,
=n'f, P(p, tl —nR')R'dR

2f =„P(P, t)(il- t)'dt,
on taking new variables 8, 0 defined by x, = A cos8,
z, =A sin8, integrating over 8, then finally writing
t= p —mA2. Whence on differentiating three times
with respect to il, we obtain (5). The alternative
form (6) follows from (5) by partial integration.

2.4 Behavior of Q(P,p) at a Firstrder Phase
Transition

Suppose P(p, p, ) is continuous in il, but the num-
ber density )o(P, il) = BP(p, il)/ail has a number of
finite discontinuities at isolated points p, = p, z.
Such a situation prevails at a solid-liquid or liquid-
gas transition. The proofs of Secs. 2.2 and 2.3
are still valid in this case. It is interesting to
enquire into the continuity of Q(P, p, ) and. its deriv-
atives at the points p, z of discontinuity of the den-
sity.

In the Appendix we prove the following: Q(p, u, ),
sQ(p, il)/stl, O'Q(p, il)/ail' are continuous every-
where, and O'Q(p, il)/ail' everywhere except at il

As p, il ' frolll below, 8 Q(p, p, )/Bp. a fl
nits limit. As il - ili from above, O'Q(p, p, )/&p. '
becomes singular like

&P P'"[7l(il u..)] '", —

where +pi=p(p, ili+o) p(p, pi —o) is the jump in-
density as p, passes through the value p.i.
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3. OTHER POTENTIALS

3.1 General Three-Dimensional Wells

H '=H + P
' Q u)(F./L)
2=1

We now define Q(P, p) by (3) but use (7) for H~'
in place of (2). The arguments leading to (4) now

yield in the general case

q(p, p, )= fI'(p, (u —p 'u)(F))d'F . (8)

The inverse relations to (8) for some particular
well shapes are

(i) u (r ) = 2v'&'r,

&(P p)=p '&'Q(-p v)/sp' . (9. i)
(ii) u)(F) = (4v/3)r',

I'(P, V)=p 'aq(p, p)lap; (9 2)

(iii) u)(F)=(4mnl~ /3), n=1, 2, 3, ...3 1/n

I'(P l )=P "(slap)"Q(p p) .

(iv) u (r) = (4v'/9)~',

&(p, p) = p '~'(a/a p) fq(p, p —4aV'/9)d'r . (9.4)

(9.3)

We can readily generalize the results of Sec. 2
to the case of particles contained in a slowly vary-
ing external well of arbitrary shape. Suppose a
particle at position r has a potential energy in this
well of P 'u(-)F/L), where the function u) is arbi-
tx ary except for the normalizing condition
f exp[ —u)(r)]d'r =1, and L is a parameter which
is ultimately to be taken indefinitely large. The
total N-particle Hamiltonian is now

N
with H '=H~+P '2 u)(z. /L) .

i =- I 2

Then arguments similar to those leading to (4)
yield

q(p, p) = f I'(p, p —p 'u-)(z)) da . (12)

The inverse relations to (12) for some particular
potentials are

(i) u)(a) = 2I el

I'(P, p) =P 'aq-(p, p)/sp;
(ii) u)(z)=a, s&0

(i3. i)

@&0 (13.2)

I'(p, p)= p 'aq(p, p, )/ap,

(iii) u)(a) =no' (1

&(p, p)= p '"(s/ap, ) f q(p, p, —m')dz;

(iv) u(a)=(2n) Ia}), n=1, 2, 3, ...1/n

I'(P, p) = P "(sl&p)" Q(P, p) . (13.4)

3.3 Prescribed Density

In the previous sections we have specified the
external potential p 'u)(F/L), or equivalently, the
local chemical potential p (r ) = (u —P 'm(r/L). An
alternative approach is to prescribe the local num-
ber density of particles. The mathemati. cal prob-
lem in this case is to minimize the free energy

E = Tr U(P-' lnU+ H)

over the set of positive definite Hermitian density
matrices U for which

Similar expressions can. be found for any poten-
tial u)(F) which varies as a rational power of x, the
relations being established by methods similar to
those of Sec. 2.3.

3.2 One-Dimensional Vfells

In this subsection we consider a compromise
between containing our system in a cubical box
and containing it in a three-dimensional potential
well. %'e suppose the system to be restricted by
a square box of side length I, in the X and F di-
rections with periodic boundary conditions at the
walls, but allow the Z coordinates to range be-
tween *, the particles being restrained from
escaping by an external potential P 'u)(a/L). In
place of (3) we now define

Q(p, u)= lim L ' lim (Li'p) '
J ~0 I ~ (oo

1

x&n[Q Tr&exp(-()&& +()w&)))()0)'

TrU=1, Tr[Uy (F)y(F)]=p(F/L) .
Here P t(F)((t)(F) is the number density operator in

the formalism of second quantisation, and p(r/L)
is an arbitrary given function which is everywhere
positive and whose integral over all space con-
verges. For sufficiently large I p(F/L) will be a
slowly varying function of pos1tlon yielding for
the total free energy

F = ff(P, p(r/I, )d'r

= L' ff (p, p(F))d'F,
where f(P, p) is the free energy per unit volume of
the system at density p in the absence of external
fields. The total number of particles is

A'= Jp(r/L)d'r =L'fp(F)d'~ .
The optimum density matrix U is then

U=expP[Q- H+ fp(F)g (F)[j)(F)d F]

where p, (r) =[sf(p, p)/ap]
( / )
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is the local value of the chemical potential and Q
is the tota, l grand potential given by

fl = f[f(p, p( /L)) p-( )p(./L)]d'
= L' f[(I p—slsp)f (P, p)1

To see how the above formalism could be used
to calculate the free energy density f(P, p), let us
consider the special case

p(r/L, ) = p, exp( —m2 2/L2) .
The total number of particles is then N= ppI. .
Defining P(P, p, ) =limE/L' as L-~, we have

F(P, p, ) = ff (P, p,e )d r

with the inverse relation

f(P, p, )= ' f&(P, p.e
"

)d r .
po

By choosing a suitable trial density matrix U,
one could obta. in a va, riational estimate of P(P, p, )
and hence an estimate of the free energy density
f(P, p, ) at density p,. However in what follows we
shall not refer to this prescribed density method
a,gain, since it appea, rs less useful than the ex-
ternal potential approach used elsewhere in this
paper.

4. SURFACE TENSION AT A LIQUID-VAPOR INTERFACE

4.1 Introduction

We shall make no pretense of mathematical rig-
or in this section, but shall adopt intuitive and
plausibile arguments in the hope that the expres-
sions so obtained can ultimately be justified by
more powerful mathematical techniques.

Suppose we have a system which can undergo a
gas to liquid phase transition. There will then ex-
ist a certain value of the chemical potential p, ,(P),
a, function of P defined for P greater than some
critical value Pc, such that the density SP(P, P)/
Bp, is discontinuous at p = p, (p) though the pres-
sure P(P, p) be continuous. As we pass through
p, ,(P), the density will jump from that of the gas
for p & p,,(P) to a higher value in the liquid phase
for p & p,,(P).

Now we know from observation that when we
have a gas to liquid condensation in the earth' s
gravitationa. l field, the denser liquid phase collects
at the bottom of the vessel with the lower-density
vapor above it. There is a continual interchange
of particles between the two phases, but neverthe-
less a mell defined surface of separation exists
and contributes an energy proportional to its area.
This surface energy is to good approximation in-
pendent of the local value of the acceleration due
to gravity. However if gravity were not present
to separate the phases the situation would be more
complicated. In the absence of gravity the liquid

would presumably collect into a number of nearly
spherical drops executing Brownian motion about
the vessel. What would happen when a drop ap-
proached a wall would depend critically on the
forces acting between the walls and the molecules
in the drop. A real drop in a real box would prob-
ably stick to the walls and assume a helmet shape,
while a drop in a cubical box subject to periodic
boundary conditions would merely disappear out
one wall and reappear at another 1

To remove such uncertainties let us immerse
our system not in a box but in an external force
field, which will play a role similar to that of the
earth's gravity and lead to physical separation of
the liquid and its vapor, the denser liquid phase
collecting near the minimum of the well. %'e con-
sider two particular potentials, firstly a three-
dimensional harmonic oscillator, and secondly a
constant one-dimensional "gravitational" field.

4.2 Gas-Liquid Transition in a Three-Dimensional
Harmonic Oscillator Well

I et us consider the grand potential

0= —p-'in[+ Tr exp( —PH '+ ppN)], (l4)

with the Hamiltonian H~' appropriate to the po-
tential well V(2) =P 'm2"/L', i.e. , (2). If p
& p, ,(p) then the local chemical potential p, (2') = p,
—P 'm'/L2 is everywhere less than //, o(P) and the
system is entirely gaseous. However if p & p, (P)
then p, (2) & p, (P) for all r inside a sphere of radius

L m-1/2P —1/2[p p (P)] 1/2

Thus there will be a sphere of liquid with this ra-
dius surrounded by gas. If the surface tension is
n(P) (a function of the temperature) then the sur-
face of separation should contribute an energy
term'

4mft'n(p) =4P[p —p, ,(p)] n(p)L'

to the grand potential A. Hence when L, is large
we expect the dominant terms in the grand poten-
tial to be

0=—Q(p, I/. )L2

+4P[p p.(p)] &(p -p, (p))n(p)-L' (»)
where Q(p, p) is given by (4) and 8 is the step func-
tion. ' Thus if we can evaluate the grand potential
(14) correct to order L2, we can immediately pick
out the surface tension n(P) from (15). If the sys-
tem admits other first-order phase transitions,
such as liquid-solid, then as p is increased we
would expect additional surface terms to appear
as each new interface is formed. Of course if we
were to find I2 terms which were not of the pre-
dicted dependence on p, , i.e. ,

[l —p.(p)]e(p p.(p)), —
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then this would be a sign that the intuitive argu-
ments leading to (15) were inadequate.

4.3 Gas-Liquid Transition in a Constant "Gravitational" Field

Particles are then restricted to the domain 0 & z
& ~, wherein they experience a constant force in
the negative Z direction. In this case we expect
a liquid-vapor surface of area L,' at a value of z
given by p —P 'z/I = p.,(P), provided p & p, ,(P).
Whence the relation corresponding to (14) and (15)
is

lim (I, 'p) 'in(Z Tr exp( —pHN'+ ppN)
L, N

=- q(P, t )f +e(t t 0(P)—) ~(» (16)

with HN' now given by (11) and Q(p, tj, ) by (12).

4.4 Discussion

The arguments leading to (15) and (16) are not
rigorous mathematical deductions of the form of
Q, but are rather plausible arguments based on
our knowledge of the behavior of actual gas-liquid
condensations in terrestrial laboratories subject
to gravity. One could ask the question whether
surface terms could arise in the grand potential
0 from sources other than the liquid-vapor inter-
face energy. Might the fact that the local chemi-
cal potential is not constant but varies over dis-
tances of order L contribute extra terms propor-
tional to L'?

One piece of reassuring evidence in this regard
comes from evaluating the grand potential (14) for
a noninteracting Fermi-Dirac or Bose- Einstein
gas contained in a three-dimensional harmonic
oscillator. The result for a gas of molecules of
mass M and spin s is

(2s+1), " dz, 3 ~'z0=-
4 2+ ~ ~ ~

I

Z —PP6X P 0 e al Il

where A. = (2mPtf'/M)'~' and the upper and lower
signs refer to the Fermi-Dirac and Bose-Einstein
cases, respectively. There are no surface like
contributions, which is consistent with the ab-
sence of first-order phase transitions for these
systems. Indeed the leading correction term is
a linear one, even for the Bose-Einstein case
with p, =0.

We consider here a system of the type discussed
in Sec. 3.2, contained in the X and Y direction by
a square box with sides L, and in the Z direction
by a potential

P-'co(z/I) =P 'z/L, z &0

z&0

Nevertheless we cannot have full confidence in
(15) or (16) until it can be proved that the grand
potential 0 is indeed of this form. Since such a
proof would first have to show that a phase tran-
sition actually occurred for the assumed Hamil-
tonian, it seems beyond present mathematical
techniques.

5. SUMMARY

The main point of this payer is to show how the
conventional cubical box of statistical mechanics
can be replaced by an external force field such as
a central harmonic oscillator well. The motiva-
tion is primarily to enable one to work with space
coordinates which extend over all values between
+~ instead of over the inside of a finite box. For-
mulas (5), (6), (9), and (13) allow one to convert
statistical quantities calculated in some particular
external force fields back to the more convention-
al thermodynamical variables, in particular, to
the pressure as a function of temperature and
chemical potential.

Finally, in Sec. 4 the formulas (15) and (16) are
derived relating the liquid-vapor surface tension
to the coefficient of a surface contribution in the
grand potential calculated in external force fields.

Note added in Proof. Professor R. B. Dingle
has kindly drawn the author' s attention to the
partial replacement of the containing box by a
two-dimensional oscillator potential by C. W.
Darwin [Proc. Cambridge PhiL Soc. 2V, 86
(1930)] in his calculation of the diamagnetism of
an electron gas.
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APPENDIX. BEHAVIOR OF Q(P,p)
AT A FIRSTARDER PHASE TRANSITION

We prove here the results quoted in Sec. 2.4
concerning the continuity of Q(P, p) and its deriva
tives with respect to p, at a first-order phase
transition. For simplicity we suppose there is on-
ly one point p, = p, where the density p(P, p, )
= BP(P, p)/ap has a finite discontinuity, the proof
for more than one such point being an obvious
generalization. We shall assume that a'P(P, p, ) & p,

m

is continuous except at p, = JU, „and bounded as p,
—p, , from above or below.

On carrying out the angular integrations in (4),
we obtain

g(P, p)=4&p'" f, P(p, p —mr')r'dr,
whence

(p, p) =4mp'~' J, p(p, p, —mr')r'dr
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=2P'"f P(p, p, —wr')dr,

by partial integration. Differentiating again

, (p, i") 2=P'i'f, p(p, g —m')dr .

Clearly Q(P, p) and its first two derivatives are
continuous everywhere. A further differentiation
is more troublesome because p(P, p. —m') is dis-
continuous at

h=~ '~'(p —p, )'~'= r„-ii p, & p,

Hence we must consider the two eases p, & p, sep-
arately. If p, & p „

, (P, p) = 2P 'i' f (P—, i" —nr')dr,

which approaches a finite limit as p, -p, If p, & p, ,
we must divide the range of integration into two
regions x~~x,. In this case

82
@(P p, )=2P'" lim (f ' dk+ f dr)

8jl 0 &, +~e-0
xp(p, p, —pr')

83
@(p p, )=2P's' lim (f ' dk+ f dh)

&, +&e-0
x—p

(p, i" —mr')+ happ'"Im(p, —p, ,)]-'"

where ~p=p(p, p. , +0) —p(p, p, —0).

Hence as p, - p, , from above

(P, p) -2P'" f, dh (—p, i", —m')

+ ~pp'"[m(p, —p. ,)] -'~'

The first term is merely the finite left derivative

I:~'Q(p, ~)/8~'] „ 1

while the second term becomes singular in the
limit.
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