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Thermal Stabilization of the Modified Ordinary Wave
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Thermal stabilization of the modified ordinary (MO) wave propagating across an external
magnetic field in a two-stream electron plasma is studied. It is found that temperature (1)
increases the threshold of the relative streaming velocity below which the wave is stable, (2)
imposes an upper limit on the spectrum of unstable wave numbers, and (3) reduces the growth
rate. Discussion is given on the physical mechanism of the instability.

INTRODUCTION

In recent papers, 'i' a study is made of the per-
pendicular propagation of electromagnetic waves
in a two-stream electron plasma (infinite ion mass)
of zero temperature immersed in a constant and
uniform magnetic field which is aligned with the
direction of streaming. It is shown that the pres-
ence of relative streaming renders the linearly-
polarized mode dependent on the magnetic field.
For this reason, it is referred to as the modified
ordinary (MO) wave. This mode is found to be un-
stable if the ratio of plasma frequency to gyro-
frequency exceeds one half the ratio of light veloc-
ity to relative streaming velocity. It follows that
when this condition is satisfied, the cold-plasma
theory predicts that there is in the system an
electromagnetic instability in addition to the
familiar electrostatic two- stream (TS) instability.
It is well known that in a warm plasma, thermal
motion has a stabilizing effect on the TS instabil-
ity. ' The question naturally arises as to whether
this is also true for the MO instability and if so,
what is the nature of the thermal stabilization.
We wish to investigate this aspect in the present
paper.

x axis. Consider first the case of no magnetic
field and zero temperature. This has been dis-
cussed by Momota, 4 and we reiterate it here for
completeness. Suppose there is a perturbed
magnetic field Bz =B sink@ as shown. This gives
rise to a Lorentz force acting on the streams.
The streams with directions corresponding to a
current along the +y axis are pushed toward

= B Sin kx

PHYSICAL MECHANISM

A rigorous calculation of the MO wave in a
warm plasma would involve the solution of the
Vlasov equation and Maxwell's equations. In the
presence of a magnetic field, this procedure is
complicated. It is our contention that the thermal
effect can be studied using the fluid equations,
with a pressure term added to the momentum
equation. The reason for this lies in the physi-
cal mechanism of the MO instability, which we
now discuss.

The system under consideration is shown in
Fig. 1. The external magnetic field B, and the
stream velocities are along the y axis, and we
study waves with propagation vector k along the

FIG. 1. Illustrating the physical mechanism of the
instability. The Lorentz force due to a perturbed mag-
netic field &z and streaming has the effect of pushing
the streams with a plus current toward position (2), and
those with a minus current toward positions (1) and (3).
The resultant bunching of the currents enhances the
initial magnetic perturbation. The presence of an ex-
ternal magnetic field Bo along the y axis tends to inhibit
this bunching process while thermal motion tends to
diffuse away the bunched currents. Both effects are
stabilizing.
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position (2). Those corresponding to a current
along the —y axis are assembled at positions (l)
and (3). The resultant bunching of the currents
has the effect of strengthening the initial mag-
netic-field perturbation, and hence, an instability
results.

Consider now the effect of an external magnetic
field 8,. It tends to inhibit the motion of charged
particles across the field lines or inhibit the
bunching process described above. The effect is
thus stabilizing. This is borne out by the re-
quirement for stability given in I for a system
composed of two counterstreaming electron
plasmas:

electron plasma frequency light velocity
electron gyrofrequency streaming velocity

The above criterion shows that the instability is
suppressed if the magnetic field is strong enough.

Let us now consider the effect of temperature.
Temperature introduces random thermal motion
of the charged particles, which tends to diffuse
away the bunched currents so that the effect is
again stabilizing. The important point to note
is that diffusion is a macroscopic phenomenon
and can be studied using the Quid equations, It
is not a resonance effect, and using the Vlasov
equation would enhance the complexity of the
problem rather unnecessarily.

In the next section, we first study the case of
no external magnetic field, using the fluid equa-
tions. The results are compared with those of
Momota, ' who has studied the nonmagnetized
plasma using the Vlasov equation. It will be seen
that the two approaches yield the same essential
results, showing the correctness of the above
physical argument. In the last section, we study
the thermal stabilization of the MO wave in a
magnetized plasma. This has not been investigat-
ed by Momota.

NONMAGNETIZED PLASMA

V/e use the equation of continuity, Maxwell's
equations, and the momentum equation with a
pressure term as our basic equations. %e look
for solutions of the form expi(art+kx) since we
are concerned with perpendicular propagation.
In the absence of an external magnetic field and
neglecting collisions, the set of equations be-
comes:

q. q. i'�.i'. =—E+ u.e xB- v . e2 j-
j m. m. jy Tj ¹ x

n. + A¹v. =0j jx
QP ~ 4mi(d—kx(kxE) =—2E —

2 Q q. (Nv. +u.n.e )c c . j jj jjy
(3)

where ~~ is electron plasma frequency and vT is
electron thermal velocity. The above can be
written as

(d~- 4P(kacn+kav 2+(d I)+k4v 2c2
T P T

+k'(o '(v '-u')=0 .T (5)

Equation (5) has a negative root for &o', corre-
sponding to an instability, if

k4v lc +k v 2(v 2 —u) &0T P T (5)

This can be expressed in two alternative forms:

or

u)v (l+k2c'/(u ')'I'
T p

k(((o /cvT)(u'- v ')'I' . (s)

Equation (7) gives the minimum streaming veloc-
ity to excite a given wave number k, and (S) gives
the maximum unstable wave number for R given
streaming velocity. It is seen that if v&=0, the
system is unstable for any value of u and for 0

The effect of temperature is to impose
an upper bound on the spectrum of unstable wave
slumbers. It also reduces the growth rate, as
can be seen from Eq. (5)~ Moreover, the mini-
mum velocity required to trigger the electromag-
netic instability is the thermal velocity. Since
this is also the threshold for the electrostatic
two-stream instability, ' the two unstable modes
tend to coexist together. As pointed out in I,
however, the coherent radiation emitted by the
electromagnetic mode is polarized while that
caused by the TS instability is unpolarized.

The results of this section are arrived at by
using the fluid equations. It is interesting to
compare them with those based on the Vlasov

where qj and mj are the charge and mass of the
particles which constitute the stream classified
by the index j. The quantity vZ~ = (KT&/m P' is
the thermal velocity. The number density ¹&
and the velocity uj of the particles in the un-
perturbed stream are assumed to be constant
with respect to space and time. The number
density n, velocity vjp electric field E& and mag-
netic field 8 are smaIl perturbations. ez and e&
are unit vectors along the x and y axis, respec-
tively. c is the velocity of light. Gaussian units
are used.

As in I, we consider two identical counter-
streaming electron plasmas (infinite ion mass),
each with density N/2, moving with equal and
opposite velocities + u and —g, respectively.
For this system, standard manipulations of Eqs.
(l)-(3) yields the following dispersion relation
for the linearly polarized mode with electric vec-
tor in the y axis:

(u'- ar '- k'c'-k'u'v '/(uP- k'v ') =0, (4)
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equation, as obtained by Momota. ' The instability
criterion given by Eq. (8) is the same as that
given by Eq. (51) in Momota's paper. Thus the
macroscopic and the microscopic approaches
lead to the same conclusion. This is not sur-
prising in view of the physical picture described
in the previous section. In the next section, we
turn to the magnetized plasma, which is not
studied by Momota.

2

Q C2 g2 C2Q2

MAGNETIZED PLASMA
(MODIFIED ORDINARY WAVE)

we have the following approximate expressions:

With an external magnetic field B, in the direc-
tion of the y axis, the following equation replaces
(1):

q. q.
4&v. =—E+ (~.e xB+8 v. xe )j m. mc j y 0 j yj

(d (1P —V ) —c fi

+ c vT

M 0
2= P

(u '(u'- v ') —c'0'
p T

co A
p

(g '(u' —v ')- c'0' '
p T

(18)

—v&. ikn. e /¹
Tj jx j

Equations (9), (2), and (3) yield the following
dispersion relation for the MO wave in a warm
plasma".

k(0 I
CO —QP —O'c + 2 2 2=02 2 2 2 p

p ~ —(d+ V

where 0 is the electron gyrofrequency. Equa-
tion (10) can be written as

It is clear from (15) that the range of unstable
wave numbers is

&k&k

Moreover, from the requirement that k' be real,
the minimum value of the streaming velocity re-
quired to excite the MO instability is obtained
by setting the square bracket in (16) to zero.
This yields

u . =e +cA/(u
min T

At this value of u, we have

(d —C,e +C2=0

where C — +v +k c +k v

C =k'c'g '+k'(c'0'-u'&u '
2 T p

+4) U )+(d 0
p T

(ii)
(12)

In the limit of the vanishing temperature,
2 ~ op

+

k 2- 02/(u2 —c2f12/(u ')

(21)

or alternatively:

+(0 0 &0
p

(14)

2 2
c202 2 k2c2 2

Q &vT +- --
g +~~+ (d

(15)

At the instability- stability boundary, C, = 0. This
is a quadratic equation in k', of which there are
two solutions A+ .

The instability criterion for the MO wave is given

by Ca&0:

k4c25 2+ k2(c2g2 —Q2(d '+ co 2v ')
T p P T

which was the result obtained in I. Comparing
(28) with (18), we see that (k )T 0& (k )T &0.
In the limit of vanishing magnetic field, we re-
cover the result of the previous section with k

given by Eq. (8) and k =0.
It is seen from the above that the stabilizing

effect of the magnetic field is to introduce a
lower limit, while temperature imposes an up-
per bound on the spectrum of unstable wave
numbers. The growth rate, of course, is re-
duced by both, as is evident from their contribu-
tions to the positive terms in C2. If C, »4C2,
the growth rate e~ is approximately

40
P u' c'0'

[k2(+2& 2
& 2& 2 c2f12)

p T p
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Figure 2 illustrates the thermal stabilization
of the MO instability. The point marked Y is the
intersection of the two lines k+ and k . Its co-
ordinates are

(v +cQ/(u, (~ &/cv )'") .p' p

In the limits of zero temperature or zero mag-
netic field, this point becomes (cI{II/&u&, ~), and

(vz, 0), respectively. The dependence of the
growth rate on temperature and wave number is
illustrated in Fig. 3.

FIG. 2. Stability boundaries of the MO instability in

a warm plasma. The region bounded by the curves k+
and 0 [Eq. (16)] are unstable. The broken curve is
the minimum unstable wave number for the case of cold
plasma [Eq. (23)].
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FIG. 3. Illustrating the dependence of the growth rate
urz on temperature and wave number. (k +)& 0 and+ T&0
(k ) are given by Eqs. (16) and (23), respectively.

Scientific Visitor, Advanced Study Program, on leave
from Catholic University of America, Washington, D. C. ,
20017.

K. F. Lee, Phys. Rev. Letters 21, 1439 (1968).
Phys. Rev. 181, 477 (1969). Hereafter referred to

as I.
J. D. Jackson, J. Nucl. Energy C1, 186 (1960).

H. Momota, Progr. Theoret. Phys. (Kyoto) 35, 380

(1966) .


