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Relaxation-fluctuation theory is developed for the single-particle distribution function of a
classical fluid. Fictitious potentials coupling to arbitrary functions of the internal variables
are used to extract equilibrium correlation functions from kinetic equations. In particular
the autocorrelation function in the microscopic quantity related to the single-particle dis-
tribution is studied. Two procedures are developed for the calculation of this function. To
lowest order they both result in the same approximate equation of motion. The first pro-
cedure assumes a linear functional dependence on the density of the collision term in the

exact equal, ion of motion. The second uses a set of variational eigenfunctions of the Liou-
ville operator which were introduced by Zwanzig. The resulting equation of motion is an

"effective field" equation which had been proposed phenomenologically by one of the authors

in an earlier paper.

I. INTRODUCTION

The relation between linearized relaxation and
equilibrium correlation functions has long been
understood. ' In several earlier papers this re-
lation has been exploited to calculate the density
autocorrelation function from kinetic equations. ' 4

In this paper the approach is generalized through
the use of fictitious external potentials coupled to
arbitrary functions of the internal variables. Most
of the calculations are done for correlations of
the quantity

N
D(r, p) = Z 5(r-r.)n(p-p. ),

j=1

but the method is clearly seen to be more gen-
erally applicable.

In Sec. II we consider the linearized relaxation
of the single-particle distribution [i.e. , the
average of D(r, p) in the time-dependent ensemble]
due to the presence of a fictitious potential cou-
pling to that quantity. This is shown to be the

autocorrelation function of the fluctuation of
D(r, p) from its equilibrium value. This result
is expected since it is a special case of linear
response theory. ' By deriving it explicitly, how-
ever, we see more clearly how it may be used to
calculate the correlation function

f(r, p, t(r', p') —=(D(r, p, t)D(r', p', 0))

from a given approximate kinetic equation with a
well-defined initial condition.

The quantity f(r, p, t [r ', p') defined above is a
natural momentum-dependent generalization of
the van Hove density autocorrelation function
G(r —r', t). In terms of f, all correlation func-
tions of single-particle quantities are given by
simple integral formulas such as

I

( j(r, t)j(r', 0)) = m-2 j d'pd'p'pp'f(r, p, t]r', p')

for the current-current correlation function.
Beginning in Sec. III we consider approximate

calculations of f(r, p, t ) r ', p ') appropriate to the
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high-frequency regime observed in inelastic neu-
tron-scattering experiments. We begin by writing
an exact equation of motion for f. To illustrate
the formalism we introduce a density ansatz for
the collision term in the equation of motion in
search of a description wherein high-frequency
longitudinal oscillations play a dominant role.
Since such a mode would dominate the short-
time behavior of the system, the coupling con-
stant is fixed by comparison with the short-time
expansion of the collision term. The resulting
equation is the modified Vlasov equation proposed
by Nelkin and Ranganathan, ' and derived earlier by
the present authors' in a closely related way.

In Sec. IV we start again from the exact equa-
tion of motion, but make use of approximate eigen-
functions of the Liouville operator. The functions
we use were introduced by Zwanzig' as trial func-
tions of the form

sf /sf = —iLf (2. 2)

88 8 88 8
where iL—= Z — ' — ', (2. 3)

8p. 8r. 8r. 8p.j
and f~(X, tl P) depends on the 6N-dimensiona1
phase-point X, the time t, and is functionally
dependent on Q through the initial condition

( )
exp[- P(H+ W)]

J dXexp[ P(H-+ W)]

where W= Jgd'rd'PP(r, p)D(r, p),
N

and D(r, p)= Z 5(r —r.)6(p-p. ).
j=1

(2.4)

(2. 5)

(2. 6)

state. The N-particle distribution function for an
ensemble of such systems is the solution of the
Liouville equation

in a variational principle. These functions are
constructed here in a slightly modified form so
that D(r, p) may be expanded in terms of them.
With the dynamical approximation that these are
in fact eigenfunctions of the Liouville operator
with eigenvalue determined by Zwanzig's varia-
tional expression, we recover the same modified
Vlasov equation derived in Sec. III. For the ini-
tial value problem of interest, the explicit ap-
pearance of the eigenfunctions and eigenvalues
is eliminated, and the final approximate equation
of motion is easily solved in closed form.

We conclude the paper with a brief discussion
of the physical reasons for the identity of the
results in Secs. III and IV, and some indication
of how the methods presented here might be
used to obtain more accurate approximate de-
scriptions of atomic motions in dense classical
fluids.

II. CORRELATION FUNCTIONS AND

LINEARIZED RELAXATION

We consider an N-particle classical system in
a volume 0 with the translationally invariant in-
ternal Hamiltonian

(2. 1)

For t &0 the system is in a spacially inhomo-
geneous equilibrium state in the presence of a
momentum- and space-dependent external po-
tential P(r, p). At t=0 this fictitious external
potential is switched off, and the system is
allowed to relax to a spatially uniform equilibrium

Since we are only interested in the linearized
relaxation of the system, it is convenient to de-
fine a functional derivative associated with a func-
tion A. which gives the value of A. to first order in

Thus if

(2. 7)

then

A( ~ ~ ~ i&) =A( "it=0)
—P JJ d'r d3p A( ~ ~

( r, p )y(r, p )

(2. 6)

plus corrections of higher order in P.
Since this functional derivative operation com-

mutes with time differentiation and with the Liou-
ville operator, f& also obeys the Liouville equa-
tion (2. 2). The value of f& at f = 0 may be found
by expanding (2. 4) in PW and picking out the ker-
nel of the term of first order in Q. Thus

y~(x, t=Olr, p)= g e D(r, p) —
~ f~(p) .

(2. 9)
In (2. 9), Z is the canonical partition function for
the system with Hamiltonian H, and fM (p ) is a
unit normalized Maxwell distribution of momen-
tum. The I iouville equation for f& may be
formally solved in terms of this initial condition
and the time evolution operator exp(-iLt) to give

f&(X, t)r, p)=e f (X, i=0(r, p). (2. 10)

The related-single particle function may be
written as
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f,(r, p, t lr', p')

= fdXD(r, p )f (X, t l r ', p ') . (2. ii)

Its initial value may be explicitly determined
using (2. 9) ~ The single-particle distribution
function f, so defined is normalized so that its
integral over r and p is equal to N. Putting (2. 9)
and (2 ~ 10) into (2. 11) yields

f(x, t lx') is (N f~ (p)/0) times the conditional
probability that there is a particle at x at time
t if there was a particle at x' at time zero. In
analogy to G(r, t), f(x, tlx') can be separated into
"self" and "distinct" parts, and similar probability
interpretations may be given.

By generalizing to include momentum depen-
dence, we are able to calculate any correlation
function of single-particle variables from a
knowledge of f. Thus consider two quantities

f (r, p, tlr', p )

(2. 12)

N
A = Z a(r. ,p. )

2=1

Then (A(t)a(0))

N
and B= Z b (r. , p. ) .

f,(r, p, tlr', p')=(5D(r, p, t)5D(r', p', 0)), (2. 13)

where 5D(r, p, t) =e 5D(r, p), (2. i4)

and the property

(xz;a) = —((r,x)a) (2. iS)

has been used.
Equation (2 ~ 13) states that the relaxation of the

one-particle distribution function, linearized with
respect to an external potential coupled to the one-
particle distribution function, is given by the auto-
correlation function of the fluctuations in this
quantity in the equilibrium ensemble. This is,
of course, a special case of the Kubo result' re-
lating equilibrium correlation functions and linear
relaxation of an externally imposed disturbance.

The function f, is a momentum-dependent gen-
eralization of the van Hove correlation function
G(r, t), and can be given an analogous probabi-
listic interpretation. For this purpose it is more
convenient to work with a function f defined by

f(x, tlx') =(D(r, p, t)D(r', p', 0)) . (2. is)

Noting that N 'D(r, p, t) is the probability density
for finding a particle at x = (r, p ) at time t for a
member system of the thermodynamic ensemble,
it is seen that f(x, t l x') is N' times the joint
probability density for finding a particle at x at
time t and one at x' at time zero. Since the
probability of finding a particle at x is

N '(D(r, p)) =f (p)/n.

where ( ~ ~ ~ ) represents a canonical ensemble aver-
age for an equilibrium system with Hamiltonian
H and temperature (kP) '. By adding and sub-
tracting factors (N/0) f~(P), (2. 12) may be writ-
ten in terms of the fluctuation 5D of D from its
equilibrium average (N/0) fM(p ). Thus

= ffd'xd'x'a(x)b(x')f(x, tlx'). (2. 17)

In particular the van Hove correlation function is
given by

G(r —r', t) =
N (p(r, t) p(r', 0))

=N Od'pd'p'f(r, p, tlr', p'). (2. iS)

Several general properties of f(r, p, tlr', p')
can be deduced from the invariance properties
of the system. Translational invariance implies
that f depends on r and r' only through the vector
displacement r —r'. Also by use of (2. 16) one
can show that

f(r, p, —tlr', p') =f(r', p', tlr, p). (2. 19)

If the momenta of all the particles are reversed
at the initial instant, the canonical average should
not change. Hence

f(r, -p, —tlr', -p')=f(r, p, tlr', p') ~ (2. 20)

Combining (2 ~ 19) and (2 ~ 20) yields

f(r', —p', tlr, —p)=f(r, p, tlr', p'). (2. 21)

&D(,p, t)Q(0)),

These equations also hold separately for the self-
part fe and the distinct part fd. In particular Eq.
(2 ~ 21) when applied to the self-part expresses the
fact that the probability for a particle to go from
r ' to r in a time t equals the probability of the
flight-from r to r ' in a time t if the directions of
the initial and final momenta are reversed.

In concluding this section we note that the method
of fictitious potentials is clearly not limited to
potentials which couple only to single-particle
quantities. Thus one may deduce from a given
kinetic equation any correlation function of the
form



P. ORTOLE VA AND M. NE LKIN 181

where Q is any function of the internal variables.
Thus an approximate kinetic equation not only
allows the calculation of transport coefficients
involving single-particle quantities, but also the

off diagonal transport coefficients such as those

which occur when both particle and heat currents

are present.

III. KINETIC EQUATIONS

From its definition in Eq. (2. 16), the equation of motion for f may be directly computed to be

+ ——f(r, p, t)F', p') = 0 ([iL,D(r, p)]e D(r', p')),
Br

where
BU' B

1 Br. Bp.

is the interaction part of the Liouville operator.
We find it more convenient to work with the Fourier-Laplace transform of f defined by

F(k p s)p')—= 0 f e d (r —r') f e f(r p t[r', p')dt

=n '(D(—k, p)(s+iL) 'D(k, p')), (3.1)

where
N

D(k, p) = Z e ~6(p-p. ).
j'=1

(3.2)

The equation of motion for I' is

sF(k, p, s) p') =f(k, p, t =0(p')+i([LD(- k, p )] (s+iL) 'D(k, p')) .

Separating L into its kinetic and potential parts (3.3) becomes

(s —im 'k p)F(k, p, s ]p') =f(k, p, t =Olp')+A(k, p, s)p'), (3.4)

where A(k, p, e(p')= —D ' Z. .
' '

) (e+ih) 'D(k, P'))
Br. Bp.

(3.5)

In Eqs. (3.3) and (3.4)

(3.6)

Integrating by parts the explicit appearance of U(rl, r2, .. ., r@) may be eliminated from Eq. (3.5) to give

N
k(k el ')= — Z ' . D(k ') ).Pn . B~. B- s+el.j1 j Pj

(3.7)

To illustrate the use of this formalism we consider a simple collective approximation. The best known
such approximation is the linearized Vlasov equation which is the classical limit of the random phase
approximation. This is not a sensible approximation, however, for short-range forces. Its natural
generalization to the case of short-range forces is to approximate A(k, p, s) p') as a linear functional of
the excess density.

A(k, p, s)p') =K(k, p, sip') fd'P "F(k,p", sip') . (3.8)

In order to use the ansatz (3.8) we must evaluate K, which can be done approximately by comparing term
by term the expansions in powers of s ' of Eqs. (3.7) and (3.8). The lowest-order term in the expansion
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of E is given by

sf '(p) (Sk-1)
E,=ik'

k
(3.9)

The calculation is similar to that of de Gennes' for the moments of S(k, a&), and will not be presented here.
If we combine the ansatz (3. 8) with the lowest-order approximation (3.9) for X, and substitute into Eq.

(3.4), we obtain

~
~

~

sf (y) (S--1)
s- E(k', p, sip') =f(k, p, t =Oly')+ ik ~

S fd'p "F(k,p", sly') .
rn

k
(3. 10)

This is just the linearized Vlasov equation with the Fourier transform of the intermolecular potential re-
placed by

—P 'c(k) = —P
' [(S —I)/S-] 0/N

k k

If one integrates out the dependence on p' in Eq. (3. 10), one obtains the equation used by Nelkin and
Ranganathan' for the calculation of S(k, &u) in liquids. They obtained this equation phenomenologically
by modifying the linearized Vlasov equation to give the correct short-time behavior of the desired cor-
relation function. In the discussion given here we see that the essential feature of this approximation is
the assumption of a linear functional dependence on the density as stated in Eq. (3.8).

In an earlier derivation' we obtained the integral of Eq. (3. 10) over p' by working with the functional
derivative of the one-particle distribution function with respect to a momentum independent external po-
tential. This gives the same result for S(k, v), but it does not allow the calculation of other one particle
quantities such as the transverse current-current correlation function. In the present derivation we see
readily that Eq. (3. 10) leads to the ideal-gas result for the transverse current-current correlation func-
tion, a result in rather poor agreement with Rahman's molecular dynamics calculations of this quantity. '

It is possible to calculate more terms in the high-frequency expansion of the kernel K, retaining the func-
tional ansatz of Eq. (3.8). Because of the importance of the transverse modes in dense fluids, it seems
clear that improvements on the theory should rather be made by improving the functional ansatz. This is
discussed briefly at the end of the paper.

IV. EIGENFUNCTIONS OF THE LIOUVILLE OPERATOR

Classical correlation functions of the form (A(t)B(0)) may be expressed in a form suitable for calcula-
tion with approximate sets of eigenfunctions of the Liouville operator. In particular we will consider
E(k, p, s lp').

The most convenient starting point is the second line of Eq. (3. 1) which gives an exact formal exyression
for the Fourier-Laplace transform of f. It is convenient to view this expression as a matrix element of
the resolvent operator (s+iL) ' between two elements in a space of functions of 6N variables. An inner
product of two functions in this space is defined by

(4. 1)

where ( ) is a thermodynamic average which we have taken over a classical canonical ensemble. If sets
of orthonormal basis functions are known, one may write out the usual expansion theorems. In the prob-
lems considered here, however, such a set of functions is not known. A more limited expansion theorem
for a subspace spanned by some set of functions is sufficient for the present calculation. Thus for any
function i g) in a subspace spanned by the set of functions ln) (not necessarily orthogonal)

ly) =1 a(n)ln),

where J denotes a sum and/or integral over the range of the labeling index n.
For the calculation of f(r, p, tl r ', p'), we work in the subspace Vs of all functions of the form

N
e= Z g(r. ,p.).

2=1
(4. 3)
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Zwanzig has constructed a set of approximate eigenfunctions of the Liouville operator of the form (4. 3).
(We refer to this paper as Zl. ) The functions determined in Zl may be slightly modified to have the
desired completeness property over the subspace Vs. Our first step is to construct this set of functions
spanning Vz. It should be emphasized that this is a mathematical construction which is entirely indepen-
dent of any dynamical approximations. Once this set has been constructed it will be applied to the equa-
tion of motion for F(k, p, s~p'). An approximate equation of motion is obtained in closed form under the
approximation that the basis functions we have constructed are eigenfunctions of the Liouville operator.
They will be solutions of the approximate eigenvalue equation given in Z1. An important simplification of
the results in Z1 is obtained in that the explicit appearance of the eigenvalues and eigenfunctions is elim-
inated.

If functions of the form (4. 3) are chosen to make

X-=(@(L]0)/(4[ C) (4.4)

an extremum, then for translationally invariant systems
~~ik r0- -(r,p)=y- -(v)e

u, k ' u, k
(4. 5)

where the function y- - is taken as a function of the velocity v =p/m for convenience, and u and k labeluqk
the eigenfunctions. Letting p. and v be the components of u and v, respectively, in the direction of k, it
is shown in Z1 that yu k satisfies

k ~ [v- u] y- „-(v)=k ~ u[S--1] fd'v'y (v')y- -(v'), (4. 6)

when y k is chosen to make Eq. (4. 4) an extremum. The approximate eigenvalue Xu- k has been written
X =u ~ k, for convenience. Q~(v') in Eq. (4. 6) is a unit normalized Maxwellian distribution of velocities,
and Sk is the usual structure factor. In Zl Eq. (4. 6) was shown to have solutions for all real numbers y,

by expressing y in terms of the usual van Kampen-Case eigenfunctions of the Vlasov equation. ' The trans-
verse velocity components play no role in this development. For our purposes, however, it is necessary
to include the dependence on the transverse components in order that we have a set of functions which
spans V~.

The solution of Eq. (4. 6) may be studied by a slight extension of the results of van Kampen and Case.
Since the equation is homogeneous in yu k the arbitrary normalization may be chosen such that the inte-
gral on the right-hand side of Eq. (4. 6) xs one. The solution is then seen to be p, (Sk —l)(v —p) 'plus an
arbitrary function of the velocity v times 5(p, —v). In order to treat the velocity components in a symmet-
ric way and to construct a set of functions in which D(k, p) may be expanded, we have chosen the arbitrary
function to be proportional to a 5 function of the transverse velocities. %ith this choice, application of the
normalization condition gives the solution in the following form

(4. 7)

where e (p, ) = 1+p(S —1)Pf [y (v)/(p, —v)] dv,

8 (V)=P(S- —I)y~(P), & (u)=y (PI)e (P )s (P) (4. 6)

P denotes a Cauchy principal value, and p, , and p., are the transverse components of u. The eigenfunction
~ u, k ) thus has an eigenvalue Xu k =k ' u which is infinitely degenerate in the transverse components of the
labeling vector u. In the Appendix these functions are shown to be complete on the single-particle sub-
space V~.

Because of the completeness of the [u, k) on Vs, one may write

1D(k, p)) = fd uK)(p, u)iu —k ) . (4. 9)

We are now in a position to obtain an approximate kinetic equation for F. The equation of motion (3.3)
for F(k, p, sip') can be written in the form

sF(k, p, sip') =f(k, p, t =Olp') —fd'uA '(D(k, p ) l-iL/(s+iL) (u, —k ) K)(p', u) (4. 10)
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If we now make the approximation that the tu, k ) are eigenfunctions, i. e. ,

Liu, k ) =X-
k iu, k ),

we have

k (D(k, y ) ) u, - k)
sF(k, y, s(p') = f(k, p, f =0)p') —i J

u —k

Also in this approximation E may be written

E(k, y, s]y')= fd'uA '(D(k, p)(u, -k) &(p', u)(s+ix- „-) '. (4. 12)

The appearance of the eigenvalues in (4. 12) will now be eliminated by first computing Xu k
x (D(k, y ) )u, -k ) by using the eigenvalue equation for yu k and then regrouping terms to be simple opera
tions on E. The result will be a closed equation in I".

By a straightforward calculation

(D(k, p)(u, —k) = Nf (p)[y (p/m)+(S —1) Jd'v "g (v")y (v")] .

Using the eigenvalue equation (4. 6) for yu k yields

(D(k, y ) [ u, —k) = —N(k ~ p/m) f~ (p)y- k (p/m) .

If this is yut into (4. 12) it is seen that to this approximation this gives the free yar-ticle streaming term
(ik ~ p/m)E if yu k were replaced by the term in brackets in (4. 14). Making this replacement and sub-
tracting a compensating term yields

em ~~
cf Q

I

for the second term on the right-hand side of Eg. (4. 12). Using (4. 13) to calculate fd'p E(k, p, s]y'),
the second term in (4. 16) is seen to be

—(ik ~ p/m) f (p )(S-- 1)S ' fd'p "E(k,p", s iy') .

Collecting terms, one has

(s-ik ~ y/m)E(k, p, s)p') = f(k, p, 0)y')- (ik ~ y/m) f (p)[(S--1)/S- j fd'p"F(k, y",s]y') (4. 1V)

which is a closed equation for F. It is easily solved and there is no explicit appearance of the eigenItunc-
tions. [The interchange of the order of integrations in getting to (4. 12) and (4. 1V) has not been verified
explicitly since the exact form of S (p, u ) is not known. ]

The work of this section has been exact up to and including Eg. (4. 10). An expansion scheme with (4. 1V)
as the zeroth approximation may be derived from this equation if L is replaced by (L —X„k)+X„
and considering (L —X„k)as a perturbation. A deeper analysis of the meaning of such an expansion
is, however, necessary.

The above derivation demonstrates the important role of the continuous nature of the eigenvalue spectrum
in leading to an expression for E which has phase mixing (or Landau damping). [Note that (4. 1V) is the
same form as the linearized Vlasov equation. j A discrete spectrum would have led to an expression for
I' in terms of a sum of simple poles located at each eigenvalue. Thus although improved eigenfunctions
have been calculated by Nossal and Zwanzig'~" (denoted NZ), the discrete nature of their spectrum does
not lead to interesting structure in F. An improved theory of this type should combine the more relevant
dynamical content of the eigenfunctions in NZ with the phase mixing due to particle motion that we have
included here.

REMARKS

Section II has provided a formal method for
calculating certain correlation functions. This

method is most readily applied when we have a
valid kinetic equation such as the appropriately
linearized Boltzmann equation for rare gases or
the Vlasov equation for plasmas. For a liquid
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there is of course no generally valid kinetic equa-
tion.

In Secs. III and IV we have derived a modified
Vlasov equation as an approximate kinetic equa-
tion for the high-frequency motions in simple
liquids. The same equation was derived by two
apparently unrelated methods. The first method
assumed that the collision term in the exact equa-
tion of motion could be taken proportional to the
local excess density. The second method assumed
that certain sums of single-particle functions could
be taken as eigenfunctions of the Liouville opera-
tor. For the problem studied, both methods are
closely connected to short-time expansions, and
both methods emphasize the importance of high-
frequency density oscillations. That they should
give similar results is thus not surprising, but
that the results are identical is not well under-

. stood.
The calculation presented here did not account

for the transverse motions in any realistic way
nor did it include the dynamical information
available in the fourth frequency moment of &(k, &o).

These features are contained in the improved
variational eigenfunctions of NZ, but this calcu-
lation does not allow for the important phase
mixing associated with the continuous nature of
the eigenvalue spectrum.

Clearly the next level of improvement would be
to construct eigenfunctions which include the dy-
namical information in NZ and the continuous
spectrum caused by selecting functions from
larger regions of function space as in Zl. In NZ
high-frequency eigenfunctions were constructed
which were linear combinations of the density,
the three components of the particle current and
the time derivatives of the latter. The seeming-
ly most natural generalization of this which in-
cludes more freedom in function space would be

0 =4, +iI.4, .

4, and 4', are sums of single-particle functions
whose form is to be determined by the variational
principle. Such functions are presently being
considered.

The identity of the results of Secs. III and IV
also suggests that the eigenfunctions of NZ may
be used as a guide for making an improved ansatz
on the collision term. The functionspace formal-
ism of Sec. IV is presently being applied to ex-
pand the collision term as a sum over the high-
frequency modes studied in NZ. This is a natural
generalization of the density ansatz of Sec. III.

A,PPENMX

If the set of functions 4u k is to be complete
on V+, it must be shown that for any

N
Q= + Q(v. )e

j=l

there must exist a function q(u) such that

Q(v) = J d'u q(u)y k (v) .
u, k (A. 1)

Multiplying by $~(vl)p~(v2) and integrating over
v, and v, (the transverse components of v) yields

Q(v) = PM '(v)el(v)q(v)

where

Q(v)= fdv dv~g (v )y (v )Q(v)

q(p) =

fdic,

dp, q(u). ,

If q(p, ) exists then q(u) may always be calculated
from (A. 2). Thus one must show that q(p, ) al-
ways exists for a given Q(v). But this statement
of the question through (A. 3) is exactly that for
the purely longitudinal eigenfunctions set forth
in Zl. Since there are in one-to-one correspon-
dence with the complete set of van Kampen-Case
functions, as shown in Z1, q always exists (for
reasonably well behaved Q). Hence the set
eu- k is comPlete on V, .
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Using the expression (4. 8) for y- k this becomesu,

Q(v) = y~(v) el(v)q(v)

+(8» -1)Pfd'up, q(u)(v- p, ) '. (A. 2)
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Effect of Boundary Conditions on the Stability of a Nonuniform Plasma in a Magnetic Field
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The propagation of high-frequency electrostatic waves is considered in a plasma in which

there is a zero-order temperature gradient perpendicular to the uniform magnetic field. The

frequency range is such that the ions do not respond to the perturbed fields (this condition is
satisfied if n/pg «k i d resulting in &o» a&cg, co» to&g, where a&cg and cong are the ion-cyclotron
and ion-plasma frequencies and n, p, k, and d are the scale length of the temperature gradi-
ent, the ion Larmor radius, the perpendicular component of the wave vector, and the electron
Debye length, respectively). For co «~~~, pe«d «X& and a specific form of the temperature
gradient the differential equation for y is reduced to an elementary form where ~, co~~ are
the wave-and electron-cyclotron frequencies and X and p the wavelength perpendicular to
the uniform magnetic field and the electron Larmor radius, respectively. y is the electro-
static potential. For A, «0.'the exact solution is very close to the local solution of Mikhail-

ovskii and Pashitskii which neglects the effects of the boundaries. However for A& -n the

plasma is unstable to shorter axial wavelengths than predicted by the local theory. It is shown

that the instability is due to the interaction of a positive energy wave with a negative energy
wave. When the phase velocities of the two waves are different the plasma is stable. However,

when the nonuniform plasma is adjacent to a cold resistive plasma, instability may again re-
sult. This is analogous to the resistive wall amplifier of Birdsall, Brewer and Haeff.
The relevance of these results to the stability of low frequency waves in a nonuniform plasma
is pointed out.

1. INTRODUCTION

There is a class of plasma instabilities which
occur only in a nonuniform plasma in a magnetic
field. These instabilities are usually referred
to as drift instabilities and are of great impor-
tance for research on thermonuclear fusion. If
such instabilities are confined to the interior of
the plasma due to the unstable wave growing to
nonlinear proportions faster than it can propagate
a scale length in the direction of the nonuniformi-
ty' then the effect of the boundaries will be unim-
portant. The condition for this to be the case is
that the wavelength transverse to the magnetic
field be much less than the scale length of the
nonuniformity. ' %'aves in a cylindrical plasma,
of low azimuthal mode number, do not satisfy

this condition and Chen' has shown that the
growth rates obtained from a nonlocal solution
(i.e. , solution of boundary-value problem) are
markedly different from the growth rates obtained
from the local solution.

In this paper we consider a high-frequency
drift instability discovered by Mikhailovskii and
Pashitskii' in which only the electrons respond to
the wave fields. Whereas Mikhailovskii and
Pashitskii made use of the local approximation'
we obtain the nonlocal dispersion relation taking
into account the effect of the boundaries.

In Sec. 2 we derive the dispersion relation for
semi-infinite slab geometry and obtain a general-
ization of Ref. 3. The instability is shown to re-
sult from an interaction between a positive ener-
gy wave and a negative energy wave. In Sec. 3


