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There are novel correlation effects in excited states and configurations unlike those in closed
shells. A theory for general nonclosed shells, and a method for calculation, are developed by
separating the correlations into three m.athematically and physically distinct types: (1) "in-
ternal, " (2) "polarization plus semi-internal, " and (2) "all-external" correlations. The first
two of these are unique to open shells and strongly dependent on number of electrons, sym.—

metry, and Z. They are however shown to be calculable by a finite configuration interaction
method, and their energy contributions and wave functions are computed using a fully auto-
matic program for 113 states of 1s22sn2p~(n=0, 1, 2; m = 0, 1, . . . , 6) configurations for Z=5
through 11. Both effects are found to be important in magnitude. The detailed wave functions
obtained, which include those of positive and negative ions and of highly excited states con-
taining inner 2s holes, are useful for obtaining atomic properties such as transition proba-
bilities. The remaining all-external correlation energy is found to be, as predicted by the
present theory, just like the correlation in closed shells, i.e. , mainly made up of transfer-
able pair correlations (evaluated in Paper II) and approximately transferable through Z in a
given isoelectronic sequence.

I. INTRODUCTION

It was shown some time ago by one of us'~' that
the N-electron correlation problem for closed-
shell atoms and molecules can by and large be re-
duced to N(N 1)/2 separate varia-tional pair-
correlation calculations. This was done first by

using perturbation theory in closed form and with
operator techniques taking the Hartree-Fock (HF)
wave function as unperturbed. ' In a later series
of papers, ' ' titled "Many Electron Theory of
Atoms and Molecules" (MET), giving a nonpertur-
bative treatment, the actual pair correlations
were shown to be approximately decoupled by ex-
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amining three and more electron correlations
and the effects of correlation on orbitals. In the
absence of vacant HF orbitals degenerate or
nearly degenerate with occupied ones, the pairs
were also quite insensitive to the number of elec-
trons N, symmetry state, and to a lesser extent
Z'. For example, the 1s-1s pair correlation
could approximately be transferred from one ion
to another or between symmetry states of a given
ion. Pairs possessing this transferability proper-
ty were called "dynamical. "

The theory was extended to single-determinantal
ground states of nonclosed-shell atoms by McKoy
and Sinanoglu. ' Their treatment of the first row
revealed certain nontransferable pair correlations.
For example, the 2s-2s correlation energy, e(2s'),
in ground states of 1s 2s22pn(n=0, 1, . . . , 6), does
not only increase with Z for an isoelectronic
sequence' but also, for a given Z, falls off linear-
ly in magnitude with the number of 2P electrons
with parallel spin (e. g. , from 3.2 eV in Ne+' to
0. 27 eV in neutral Ne). ' Thus two types of pair
correlations, dynamical (transferable) and non-
dynamical (nontransferable) were distinguished.

Further, and novel, correlation effects arise
in general nonclosed shells, and in excited states
and configurations. These cases were initially
studied by perturbation theory. ' The present non-
perturbative theory was first outlined by Sinano-
glu" and-preliminary calculations were carried
out by Skutnik. "~" The general nonclosed-shell
theory separates the total correlation into three
physically and mathematically distinct types.
Two of these, (1) the "internal" and (2) the "semi-
internal" correlations, are unique to nonclosed
shells and are not dynamical. They are specific
to each Z, N, and symmetry state. The third
type, (3) the "all-external" correlations, con-
sists of dynamical pairs quite similar to those in
closed shells. In the present paper the specific
internal and semi-internal effects are calculated
for 113 species arising from ls22sn2p~(n =0,1,2;
m =0, 1, ... , 6) configurations of B, C, N, 0, F,
Ne, and Na atoms and their ions. The all-external
effect is then evaluated for each species by sub-
tracting the specific effects from the total "ex-.
perimental" correlation energy. The new semi-
internal correlation energy effect as well as the
internal are found to be of important magnitudes.
The all-external correlation energy is seen to be
approximately Z —transferable as predicted by
MET. In subsequent papers of this series, the
detailed wave functions obtained will be used to
calculate atomic transition probabilities. The
all-external correlation energies will be decom-
posed into a set of pair correlations applicable
to excited as well as ground configurations. The
combinations of these results will be used. to
predict transition energies, electron affinities,
and negative-ion excited states. Detailed com-

parison with experiment, where available, will
also be given.

H. CORRELATION IN CLOSED AND
OPEN SHELLS

A. Closed Shells

The exact closed-shell wave function is written
as

@=4g+X,

where Q, and y, are, respectively, the HF and
correlation functions. Q is made of an anti-
symmetrized product of N spin orbitals k:

Q, = 8(123 k N) (2)

and the following orthogonality and normalization
conventions hold

(P, l y) =0; (Q, ) Q, ) =1, hence (Q, l+) = l. (3)

X is analyzed into 1,2, 3, ... , N particle correla-
tion parts by the "method of successive partial
orthogonalizations. "" The detailed form of y
one gets from this analysis is

N N N
x= ~ 9,.).~ K,.'j)' ~ (~,'j, 3

z . . zj . . ) zjl

+ ~ ~ ~ +(p' (4)

p;j, (U&j, ... ,$U12. . .~) are 1,2, ... , N elec-
tron correlation parts:

Q. .

ij ~ ~ ~ n (n I)"' (ij ~ ~ n)
V'. . )=,, (12" X) ..

where the symbolic division by (ij "n) indicates
the absence of these orbitals from the HF product
(12 ~ N). The n-electron correlation functions
have the following orthogonality and antisymme-
try properties:

(u.'. i a)-
zj' ~ ~ 8 xi

= f~ '* (x. ,.x. , .. , x)k(x.)d. x.=o,
(6)

(The x. above refer to space and spin coordinates. )z
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The exact nonrelativistic energy is"

'=(P l&lg )+(~& I Ix)= +,(7)

where

=(P lg ); =(~ ).

All equations given up to this point are exact.
But they only amount to a re-expression of the
Schrodinger equation. However, further analysis
by MET yields the following simplifications'-':

(a) Owing to the properties of the HF orbital,
short range of the "fluctuation potential"' and

AI
antisymmetry, only pair correlations, u", are
important. One- and odd-particle correlations
are small, and ev'en-electron correlations are
to a good approximation given by a sum of "un-
linked products" of uij, e.g. ,

u.'. =u. . = —,'8 [u. .u +u. u. +u. u. j.(9)ill ijpl 4 ij kl ik jl il jk

C4 is the four-electron antisymmetrizer. The
prime on u indicates inclusion of "linked clusters. "
(Note that "linked" and "unlinked" are terms
used here as defined and used in MET.' They
have entirely different meanings than the similar
words used in diagrammatic perturbation theory. )

(b) For the shme reasons, pair correlations
are decoupled and approximately transferable. The
correlation function now becomes

FIG. 1. Pair correlations in closed shells. A pair
of electrons, originally in orbitals i and j in the HF
sea A, correlate and go to a pair correlation function

uij outside the sea (in 8).

B. Nonclosed She11s

In nonclosed shells, some of the orbitals in A
are unoccupied. The vacancies in the HF sea
cause novel correlation effects which do not exist
in closed shells. These are illustrated in Fig.
2(a)-2(c). In 2(a), electrons ink and k'correlate
but shift to unoccupied orbitals in A and remain
in the sea. In 2(b), one electron shifts within the
sea to an unoccupied orbital 1, while the other
goes out to a one-electron correlation function f.
Finally in 2(c) a pair excitation analogous to those
in closed shells occurs, and electrons in A and k'
endup in a pair-correlation function u~~ I . These
three effects are, respectively, the "internal, "
the "semi-internal, " and the "all-external" cor-
relations. The decoupling and transferability

A

N u. ~

y=y'=e (123 ~ N) 2"' Z
,.). (~~)

A

N N u. .u~l

2.~. ~ (;*,'uf)
i&j k&l
i,joe,l

N N N

+()g2Z Z Z
i&j k &/ m&n
i,jtk, ltd, n

and the energy is again given by"

But the u~ are now separately calculable.
A graphical exposition of these ideas is given

in Fig. 1. The shaded circle A represents the
filled HF sea, "and the outside region 8 is X.
Electrons originally in orbitals i and j correlate
and make virtual transitions to a pair-correlation
function uij outside" the HF sea.

FIG. 2. The three kinds of correlation in nonclosed
shell systems. For first-row atoms all ls, 2s, 2p
spin orbitals (occupied and vacant) constitute the Hart-
ree-Fock sea (RHF), denoted by A. (a) An "internal"
correlation effect. Electrons shift from occupied to
vacant Hartree-Fock orbitals. (b) A "semi-internal"
correlation effect. An electron shifts within the partly
filled RHF sea, while the other goes to a function in B.
(c) An "all-external" pair correlation. Both electrons
are ejected out of the HP sea into a pair correlation
OppI in B similar to those in the closed shell MET.



181 A TOMIC 8TRUC TUBE INC LUDING E LE C TRO N CORRELATION . I

properties still hold for the all-external pairs.
But the internal and semi-internal correlations
involve vacant orbitals lying close to the occupied
ones and are quite sensitive to N, symmetry, and
z.

For general nonclosed-shell states there are
several self-consistent-field (SCF) procedures.
Among these both the multiconfigurational or
generalized restricted HF (GRHF)" "or Roo-
thaan's single configurational restricted HF
(RHF)" '4 are suitable starting points. ' However,
RHF calculations are more easily available in
literature, and for this reason they are preferred
in the present calculation. The correspondence
between RHF and GRHF starting points are
straightforward both in formalism and calculation.

If the HF sea has M orbitals and the species un-
der consideration has N electrons,

(
Mf

N)(m-N)t '

RHF RHF (14)

The difference between the two sides of this
equation amounts to the effect of internal correla-
tion pint on QRHF orbitals and is quite smalP as
our calculations show (Table 1).

The detailed wave function with GRHF in the
unlinked cluster approximation is'

The internal correlation function Xint of Eq. (14)
contains all virtual transitions that shift the elec-
trons within the HF sea. This part is included in
QGRHF and made self-consistent with the basic
configuration while RHF treats it as a correlation
effect. Thus

~RHF".t
GRHF (1 y&y ( y ))'I'

int int

different antisymmetrized products (Slater de-
terminants) are possible. The GRHF wave func-
tion is in general a linear combination of these
determinants:

GRHF K K'E&1

=a(k (x )k(x ) k (x )),

GRHF d K K KK&1

N fy
y' =8 (kk k ) Z

a&1 a

N M
+ Z Z

g&Q $o 1

(16)

where lk;) is a set of N orbitals out of M, andx;
represents space and spin coordinates of parti-
cle i. Many of the C~ may be zero because of
symmetry.

While QGRHF contains determinants of all
possible configurations within the sea, pRHF is
restricted to the single main configuration. For the
ground configuration of N= 6, for example, PRHF
contains only determinants of 1s'2s'2P' type while

QGRHF has 1s'2p', ls2s2p', 2s'2p', and 2p ' as well
(others are forbidden by parity). The wavefunc-
tion with correlation for GRHF is

GRHF

with

'" &~GRHF ~ ~GRHF) = ' '

while for RHF

RHF int ext

N

ugly

+ 2 'I' Z
k k

+ (unlinked clusters)
a&b ah

There is a correlation function g& for every GRHF
determinant 4~. Each g~ contains:

(a) Single-electron excitations gk arising from
orbital average polarizations or spin and symme-
try yolarizations. Single excitations which have
the same symmetry as the orbital they replace
are similar to single excitations in closed shells
and are expected to be small. ' They do not appear
in the first-order perturbation wave function. "
Spin and symmetry polarizations are unique to
open shells and are due to the nonspherical
character of open-shell HF potential.

(b) Two-electron transitions where electrons
originally in 4 and k' correlate and one goes to
spin orbital l, which is in the HF sea but not in
h~, while the other ends up in a one-electron cor-
relation function fkkI l outside the sea. This is
the semi-internal correlation effect, unique to
open shells and corresponds to the yrocess of
Fig. 2 (b); kk ' - ifkk ~' 1

(c) Virtual pair excitations ukkI from orbitals
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TABLE I. Comparison of internal correlation energies E t (in eV). Here PC gives the present calculation [these
values are from separate internal CI (see text, Sec. IIIC, also cf. Table III]; MS gives the values of McKoy and

Sinanoglu (Ref. 7); and TCSCF gives the values from the two-configurational SCF (Ref. 20).

Species PC MC TCSCF PC MC TCSCF PC MC TCSCF

1s 2s2P P
3P

ls 2s 2P D
1$

1 2 2P P
ls 2s 2P S

—1.101 —1.069 —1.110
—0.468 —0.457 —0.472
—0.452
—1.594
-0.602 —1.155

—1.443

—1.153
—1.457

. —1.529 —1.477 —1.543
—0.682 —0.656 —0.686
—0.679
—2.540

—0.863
-3.282
—1.510
—1.991

—1.520
—2.006

—1.923 —1.882 —1.941
—0.864 —0.832 —0.869

and the antisymmetry of ukk I still holds (Eq. 6).
(Unlinked clusters) contain products of a, b, and
c type correlations. Unlinked clusters with more
than one fp or fkk I+ are neglected. '~"

To make the transition to RHF we write Eq. (16)
as

e,„„,X,
'= & C (~ .X')

E&1

+ Z C (& +)(' ).
E&z

(18)

Determinants 1 to z belong to the basic configura-
tion, and v+1 to (g) to the rest Now .if we re-
strict self-consistency to the first z determinants
and neglect the correlations coming from non-
basic configurations, Eq. (18) becomes

k and k' of bk [Fig. 2(c)]. This process is similar
to pair correlations in closed shells.

All these correlation functions are one-electron
orthogonal to HF sea orbitals:

&f I &-.=&fk .II'&-. =&.
kk

I'&-. =o ( )

K
N

"F =
SCE~ 1 a&1 ( a)

N
+ g

a&b l)1
l k, u,c' d'

The energy is"

E=&eRHFIXleRHF& &4RHFIRIX t

'&~RHF "F '&@RHF ~U '

K f

Z C 8(kk ~ ~ k )g) 1
A

Qk Qk
2 '~'

&
+ unlinked clusters

(2od)

i. e. , E=E + E. +E + E (21)

RHF int E U ' (2Oa)

where )(. = Z CE h~,int E E ' (2ob)

Restriction of self-consistency to the basic con-
figuration is equivalent to the approximation of
Eq. (15). The XE. arising from nonbasic configura-
tions are corrections to the internal correlation
and are expected to be small. Rearranging the last
summation we get

respectively. The internal, )(tnt and Eint [Fig.
2(a)], the polarization plus semi-internal, )(F and

EF Fig. 2(b)], and the all-external, X~ and E~
[Fig. 2(c)], correlations are the three distinct
correlation effects in nonclosed shells. The first
two are specific, nontransferable effects unique
to open shells. However, they can be calculated
by a finite configuration interaction (CI). The
all-external effect is similar to correlations in
closed shells and gives a slowly convergent CI.
But it is mainly made of transferable pair correla-
tions and can be treated by semiempirical "pair-
aufbau" techniques' (Paper II).
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III. CALCULATION OF THE SPECIFIC
CORRELATION EFFECTS

Equations (19)-(21)with the anonymous parentage
approximation'~" provide the basis for our calcula-
tions. Both Xint and y~ are calculated by CI. An
automatic CI program" for IBM 7040/7094 DCS
was prepared and used to calculate pint& +jnty X&y
and E+ for 113 species of B, C, N, 0, F, Ne, and
Na arising from ls22sn2Pm (n=0, 1, 2; m =0, 1,
. . . , 6) configurations.

In a CI calculation, one usually finds the correct
symmetry combination for each configuration and
then constructs the energy matrix B. Although
this procedure results in a smaller CI matrix, the
group theory algebra for finding correct combina-
tions is time consuming. We constructed H di-
rectly from single determinants except for the

QRH& which is left as a fixed symmetry combina-
tion. When the set of determinants used is closed
under L' and S' the two procedures are equivalent
and the matrices are related by a unitary trans-
formation. The time lost in diagonalizing the
larger matrix in the computer is compensated in
bypassing the algebra. Closing the set under L'
and 8' introduces triple or higher virtual excita-
tions and closed-shell-type single excitations
which do not mix directly with Po. " We did not
include these in most of our calculations though
they could be included quite easily. Our wave
functions in general are therefore not rigorous
eigenfunctions of L' and S'. However, a set of
test runs was carried out to check for the energy
error introduced by these omissions. The dif-
ference with the exact L' and S' eigenfunctions
and with the more approximate ones was always
less than 0.005 eV.

some of these studies with two configurational
SCF calculations.

In the present calculation vacant 2s and 2P orbit-
als of 1s22s22P" (n ~ 1) configurations were taken
to have the same radial part as their occupied
counterparts. For 1s'2P' we used the 2s orbital
of is'2s' after orthogonalizing it to 1s of 1s'2P'.
Vacant 2P orbitals were again assigned the radial
part of the occupied ones. According to our argu-
ments above, 1s22s2p configurations have no
appreciable Xint.

Some-of our results are compared with those of
Refs. 7 and 20 in Table I. Our calculations con-
firm the previous conclusions of (a) Linderberg
and Shull' that Ejnt increases in magnitude with
&, .and (b) of McKoy and Sinanoglu' that for single
determinantal ground states of first-row atoms it
decreases in magnitude with the number of 2P elec-
trons with parallel spin. Two configurational
SCF calculations of Ref. 20 should be a good ap~
proximation to GRHF. The close agreement of
the direct CI values of Ref. 7 and ours with those
of Ref. 20 is an indication of the accuracy of the
approximation in Eq. (15). Our extensive results
are reported in Tables IV-VII „Eint values of
Table I are results of CI between P&H& and in-
ternal-type virtual transitions g t only. Eint
values of Tables IV-VII, on the other hand, are
extracted" from CI between Q&H& and Xint+ XF
and are therefore slightly different (see Sec. III C).
Since the calculations of Refs. 7 and 20 involve
only yjnt type configurations, it is more reason-
able to compare them with our pRHF —Xint CI
rather than /RHEA

—(Xint+ XF).

B. Polarization and Semi-Internal
Correlation

A. Internal Correlation

X contains at most ( ) —v determinants [Eq. (20)].N
Many of these, however, have C&=0 due to symme-
try. Because of the large energy gap, virtual
transitions between E and L shells do not make
appreciable contributions to &jnt Configurations
arising from single-electron shifts between s and

P orbitals are forbidden by parity. Therefore in
the first row the only important contribution to X. t
comes from 2s' —2p' mixing (i. e. , Is22s22pn
—1s 2P +2 CI); hence the internal pair excita-
tions of Fig. 2(a). These considerations restrict
pint to at most three determinants for the fir st
row. The internal correlation was calculated and
studied systematically by McKoy and Sinanoglu'
as the "nondynamical part of 2s-2s pair correla-
tions" for ground configurations of first-row
atoms. Especially, the dependence on the number
of electrons and the magnitudes in relation to the
remaining dynamical 2s-2s correlations were
studied. Clementi and Veillard" have repeated

The XF yields a finite CI (in the sense below)
because it is restricted to processes where only
one electron is allowed to leave the HF sea. To
see this consider X~ in its CI expansion:

XF =&.c. F
Z Z

(22a)

and

= (Q I&I X ) = Z. c. (Q IXI &. ), (22b)

where &g are determinants containing fk and

gyk ~ type virtual excitations. Let F signify a,

general XF-type excitation, fk or fkk i . Consider
any term (PRHF i%I &f ) in the sum in (22b).
general it will contain one-electron integrals of
the type (k Ihf IF) and two-electron integrals
(kk' (glk "F), where hf are the one-electron
terms in the Hamiltonian and the k are HF sea
orbitals. For the first row the k can be of s or
p symmetry Hence (kihflF) .=0 if F has d or
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higher symmetries. The bra in (kk'igik "E) can
at most have P Sp-s, P, d components. The ket
I kE) cannot contain any of these if E has g or
higher symmetries; if k is an s orbital then s8g
-g, if it is P thenP8g-f, g, k and none of these
symmetries are present in (kk' i. Hence a b; E
can mix" with pRHF only if E is s, p, d, or f.
The CI for X~ is therefore finite in the angular
functions. The radial functions multiplying these
can be well approximated by one radial term each,
though if expanded in some radial basis set they
would still be infinitely many.

The automatic program" was used to calculate
yE and EE. All E type p-rocesses mixing" di-
rectly with pRHF were included. The determi-
nants so selected are the dominant ones. The
resulting full matrix is diagonalized. Assign-
ment of radial part to virtual 2s and 2P orbitals
for 1s22s22P+ and is'2P' are the same as in pint.
Virtual 2s and 2P orbitals of 1s22s2P" were as-
signed the same radial parts as occupied ones.

Of course the symmetry arguments given above
do not restrict the radial part of I" as mentioned
above which has to be varied to minimize the ener-
gy. These radial functions were approximated by
single Slater-type orbitals [STO;x" I exp(- o.r)]
of 3s, 3P, 3d, and 4f types. The energy has a
very flat minimum with respect to variations of
STO exponents. A variation of 0.1 (2-20%) around
the optimum value usually affects the energy by less
than 0.003 eV and always less than 0.01 eV. For
this reason u3d was varied in steps of 0.1 and

n3s =o.3p =n3d, and (a4y/o. 3d) =0.6 was assumed.
This ratio corresponds to maximum radial overlap

between r'e xp(- n3dx) and r' exp(- n4yt)3's and
3P orbitals were kept radially orthogonal to RHF
orbitals of the same symmetries.

Table II shows contributions of different kinds of
y&-type processes to E~ for two examples. " In
Is 2s22p" configurations f2~2P I. 2P iI-type excita-
tions make the largest contribution. The greater
part of the large 2s-2P interorbital correlation
first noted by McKoy and Sinanoglu' is due to this
semi-internal effect. In Is22s2P~ and Is 2P",
f2P2P I. 2s-type contributions are as large or larger

than f2s2P. 2P I. Contributions of single excitations
f~ are always smaller than those of semi-internal
processes. Extensive results of our E~ calcula-
tions are reported in Tables IV-VII. E& is seen
to be of an important magnitude, comparable with
and often larger than the internal correlation en-
ergy.

C. Additivity of the Three Types of
Correlation Energy

For cases where both pint and Xg were non-
negligible, three separate CI calculations, one
for 4RHF Xint o»y, on«» ARHF XE only
and one for pRHF (y;nt+ yE) were carried out.
The energy difference

CI RHF int E j

-"Ci"RHF-";.t) "Ci(~RHF-&E)j
(23)

TABLE II. Energy contributions (in eV) of polarization and semi-internal correlations. Indices of f signify the sum
of certain types of correlations, e.g. ,

A A A A Af =f +f, f =f +f +'"
2s 2sz 2sp' 2s2s„2p 2s+2sp, 2p+ z 2s2sp, 2p P

The sum of the energy contributions is rigorously equal to E~ (Ref. 15 of text); apparent discrepancies are due to
roundoff error.

A

fij; l

f2s2s; 2p

f2s2p; 2s
A

f2s2p; 2p
Af2p2p 2s
A

f2P2P;2p
h pf2$
A p
f2P

—0.002 —0.002

—0.973 —1.170

—0.037

—0,019

—0.004

—1~ 036

—0.030

—0.023

—0.003

—1.227

1s 2s 2P (D)
Z=8 Z= 11

—0.001

—0.599

—0.490

—0.027

—0.001

—0.001

—1.119

—0.000

—0.661

—0.448

—0.021

0.000

—0.001

—1.132

1s22s2p2 (2D

Z=6 Z=8 Z=8

—0.911

—0.012

—0.871

—0.015

—0.001

—0.925

—0.001

—0.887

1s 2p (D)
Z=7
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TABLE III. Decoupling of Eint and E~ (in eV). The values of Zjnt s) p E~{s), and E; t(s +Z~(s) are from separate
CI {i,e. , from QRHF Xint and fit)RHF XE seParately; see text). The values of E' t t ~ E~(t), and E nt t +E~(t)
are from total CI [i.e. , QRHF ()(int+ g~) altogether; see text].

Species

1s'2s'2P{'P)

7
8

9
10
11

E,.nt(s)

—0.827
—1.101
—1.323
-1.529
-1.728
—1.923
-2.117

E (t)

—0.802
—1.088
—1.313
—1.522
~ 1e723
—1.920
—2.115

EZ(s)

—0.613
—0.681
—0.728
—0.758
—0.779
—0.795
-0.807

E&(t)

—0.586
—0.662
—0.714
—0.747
—0.771
—0.789
—0.804

E,.„t(s) +E~(s)

—1.440
—1.782
-2.051
-2.287
—2.507
—2.718
—2.924

z;„,(t) + Ez(t)

—1.388
—1.750
—2.027
—2.269
—2.494
—2.709
—2.919

1s22s22P2 (~D)

6

7
8

9
10
11

-0.205
—0.452
-0.576
—0.679
-0.773
-0.863
—0.952

—0.214
—0.438
-0.564
—0.668
—0.762
—0.854
—0.944

—0.783
—1.050
—1.169
—1,244
—1.289
—1.330
—1.358

—0.790
—1.032
—1.153
—1.229
—1.278
—1.321
—1.349

—0.988
—1.502
—1.745
—1.923
-2.062
—2.193
-2.310

—1.004
—1.470
—1.717
—1.897
—2.040
—2.175
—2.293

1s22s22p3 (2P)

7
8

9
10
11

-0.602
—0.938
—1.155
—1.340
—1.510
—1.673

—0.624
—0.953
—1.174
—1.362
—1.533
—1.697

—0.538
—0.616
—0.665zo
—0.706
—0.736
—0.758

—0.538
—0.594
—0.642
—0.686
—0.717
—0.742

—1.140
—1.554
—1.820
—2.046
—2.246
—2.431

—1.162
—1.547
—1.816
—2.048
—2.250
—2.439

gives the degree of decoupling of X nt and g&.
Some Eint and EF values from the three different
calculations are compared in Table III. The two
correlations are decoupled to within 0.02 eV.

The E;„t and Ey values reported in Tables IV-
VII are from the total CI [ARHF (Xint+ Xy )] and

do not include any yjnt pQ coupling error. Ejnt
values of Table I were taken from the separate
X. t CI (QRHF —X „t) to make a more meaningful
comparison with the values of Refs. 7 and 20 which
consider yjnt alone.

Of course, our attempt to calculate Xjnt+

TABLE IV. Breakdown of the correlation energy {in eV) into its three components for various species of B and C.
These values are fromtotal CI, ft)RHF (pjnt+ X~) (see text). ECORR("expt") is the "experimental" correlation energy
(see text); Zjnt is the internal correlation energy; Ey is the polarization plus semi-internal correlation energy; and
Ez {"expt") = ECORR ("expt") —(Eint+ E~) is the "experimental" all-external correlation energy (see text) . The notation
(-) indicates that ECORR ("expt") is not available through lack of experimental data.

Species

1s2s2p P
1s2s2p P

$$

1s2s2p S
2D

2P

1s 2s2p P
IP

ls 2s2p P
2D

S
2P

CORR{

—3.40
(-)
(-)
(-)

—1.60
2 077

Eint

-0.802
-0.259
—0.214
-0.980

—0.586
—0.760
—0.790
—0.261

—0.150
—0.972

EN ("expt")

—2.01
(-)
(-)
(-)

—1.45
—1.80

ECORR( ' p' )

-3.78
-4.30
-4.60
—5.41

(-)
(-)
(-)

—1.63

—2.03
—3.43
—3.44
—3.99

Eint

—1.088
—0.465
—0.438
—1.626

0
0

—0.624
0

—0.662
—1.014
—1.032
—0.138
—1.022
—1.065
-0.538
—0.154

—2.03
—2.82

3 0 13
—3.65

(-)
(-)
(-)

—1.47

—0.139
—1.119
—0.316
—1.511

—1.89
—2.31
~ 3 ~ 12
—2.48

E~ EN ("expt")
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TABLE V. Same as Table IV for various species of N and O.

Species

ls2s2p P
s22s22p2 3

D
'$

ls2s2p S
2D

2P

ls2s2p P
iD
fS

ls 2s 2p P
ls 2s2p P

ls 2s2p P
D
S

2P

ls 2s2p S
3D

3P
iD
3$
iP

ls 2s2p P
2D

2$

~P

ls 2s2p P
ls 2p P

D
iSa

ECORR("expt")

-4.11
-4.54
—4.90
—5.96
—5.12
-5.66
—6.31

(-)
(-)
(-)

~ le72
—3.06

2 0 11
-3.53
-3.40
-4.14
—2.55
-4.40
-4.45
—6.00
—5.37
—5.30
—5.47

(-)

—1.88
—2, 92
—1.10

int

~l 313
—0.580
—0.564
—2.148

0

0
—0.953

0

0
—1.099

—0.714
—1.135
—1.153
—0.070
—1.278
—1.314
—0.594
—0.818
—0.933
—0.101

—0.154
—1.112
—0.144
—1.132
—0.180
—1.598

0
—1.211
—0.735
—2.416
—1.891
—1.344
—0.978
—2.011

0 0

0 —0.925
—2.192 —0.209

Ez ("expt")

—2.08
—2.83
-3.18
-3.74
-3.84
-4.35
-4.76

(-)
(-)
(-)

—1.57
—1.95
—1.97
—2.40
~ 3 ~ 22
—2.54
—2.55
-3.19
-3.71
-3.58
-3.48
-3.96
-4.49

(-)

—1.88
—1.99
-3.08

ECORR("expt")

-4.41
-4.76
-5.17
—6.42
—5.25
—5.80
—6.58
-7.02

7 &3 2
—8.33

(~)
—1.82
-3.14
—2.28
—3.66
-3.43
-4.32
—2.72
-4.55
-4.52
—6.07
—5.51
-5.88
—5.63
-7.03
-7.00
—7.96
—8.54
—1.93
—2.99
—0.851

Z=8
Eint

—1.522
—0.679
—0.668
—2.571

0
0

—1.174
0

0
—1.500

0
0
0

0
0
0
0

0
0
0
0
0
0

0
0
0
0

0

0
0

—2.543

—0.747
—1.204
—1.229
—0.046
—1.397
—1.446
—0.642
—1.036
—1.091
—0.041
—0.551
—0.155
—1.132
—0.147
—1.137
—0.144
—1.641

0
—1.222
—0.664
—2.391
—1.975
—1.426
—0.935
—1.957
—1.164
—2.523
—1.947

0-0,887
—0.207

E ("expt")

—2.14
—2.88
~3y27
-3.80
-3.85
-4.35
-4.76
—5.98
—6.23
—6.79

(-)
—1.67
—2.01
—2.13
—2.52
—3.28
—2.68
~ 2,72
-3.32
-3.86
-3.67
—3.54

4 45
-4.70
—5.07
-5.83
-5.43
-6.59
—1.93
—2.11
-3.19

aThis species is the only one in our calculations where another state with lower energy but the same symmetry and

N exists (ls 2s S). For this reason it could not be treated by total CI by our program, and the reported values of

Ejnt and E~ are from separate C I; QRHF pint and QRHF XQ (see text)

TABLE VI. Same as Table IV for various species of F and Ne.

Species

s22s22p

ls2s2p P
iD
is

s'2s'2p'4
2D

2P

ls 2s 2p P
iD

$

ls 2sp P
P

ls 2s2p $

ECORR("expt")

-4.71
-4.95
-5.39
—6.91
—5.36
-5.90
—6.83
—7.07
—7.40
—8.57
—8,82
—8.08
—9.18

Z=9

int

—1.723
—0.772
-0.762
—2.955

0
0

—1.362
0
0

—1.801
0
0
0

—0.771
—1.249
-1.278
—0.032
—1.465
—1.530
—0.686
—1.127
—1.181
—0.014
—0.625
—1.818
—2.692

E ("expt")

~ 2y22
—2.93
-3.35
-3.92
-3.90
-4.37
-4.78
—5.94
—6.22
—6.75
—8.20
—6.26
—6.49

ECORR("xpt")

-4.95
-5.12
—5.61
—7.35
—5.44
—6.04
-7.10

7 ~ 27
—7.59
—8.95
—8.92

—12.19

Z=10

int
—1.920
—0.862
—0.854
—3.320

0
—1.533

0
0

—2.059
0

—0.789
—1.281
—1.321
—0.026
—1.515
—1.587
—0.717
—1.186
—1.242
—0.004
—0.672

—2.661

E„("expt")

—2.24
—2.98
-3.44
-4.00
-3.93

~ 4.45
-4.85
—6.08
—6.35
—6.89
—8.25

9.53
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TABLE VII. Same as Table IV for various species of Na (Z = 11) .

Species

ls 2s 2p P
1s 2g 2p P

iD
's

1s 2s 2p S
2g)

2P

1s 2g 2p P

ig

lg 2+ 2p P
s'2 s2p

CORB
—5 ~ 20
-5 ~ 25
-5.88
—7.81
-5.52
—6 ~ 18
~ 7e37
—7.46
—7.78
—9.33
—9 ~ 14

—12.08

int
—2 ~ 115
—0.950
—0.944-3.672

0
—1.697

—2.296

E

—0.804
—1.305
—1.349
—0.023
—1.549
—1.629
—0.742
—1.227
—1~ 284-0.000
—0.702
—2.256

E ("expt")

—2.28-3.00-3.59
-4 ~ 11
—3.97-4.55
—4.93
—6 ~ 23
—6.50
—7.035
—8.44
—9.557

without considering y~ introduces a second de-
coupling assumption; the decoupling of Xu and Xlnt
+ p~ . However, as shown by the recent calcula-
tions of Yin and Silver stone" on 2 'P He and 2'P
He, this coupling is expected to be of the order of
the energy contributions of single excitations in
closed shells . The latter are known to be small. '

IV. "EXPERIMENTAL" AND ALL-EXTERNAL
CORRELATION ENERGIES

The total correlation energy is defined as

CORR tot iRHF REL ' (24)

where EREL is the relativistic energy including
spin-orbit coupling. Total energies of atoms and
ions Etot can be obtained using the experimental
ionization potentials reported in Moore 's" tables.
RHF energies for many species are reported in
the literature" ' or can be calculated using
available programs. These ERHF are calculated
assuming infinite nuclear mass and must be
multiplied by 1 —m /M~ for "elementary mass
correction. ""EREL is the hardest to calculate .
Silverman, Scherr, and Matsen" using a semi-
empirical procedure obtain estimates of relativis-
tic energy for closed shells ~ Assuming orbital
additivity for EREL and calculating spin-orbit
coupling contributions using experimental term
level energies" and the Lande splitting rule,
fair estimates of the relativistic energy are ob-
tained. Thus we get all terms on the right-hand
side of Eq. (24) and obtain the so-called "experi-
mental" correlation energy. The reason for
writing "experimental" in quotes is the semi-
empirical nature of this quantity.

Clementi used the procedure outlined above to
get correlation energies of ground configurations ."
He estimates an error of about 6% for 8 & 10 and

10% for Z & 10 (e. g. , -0.6 eV for neutral Ne).

ECORR for 1s 2s2p and 1s'2p' configurations
were calculated by one of us (I. O. ) for this work.
The "experimental" all- external energy E~
("expt") is now obtained from

Z ("expt") =Z ("expt")-Z. ,+Z ) . (26)

A breakdown of the total correlation energy into
its three components for various species of B, C,
N, 0, F, Ne, and Na is shown in Tables IV- VII
which constitute a summary of our calculations.
The error in the "experimental" energy is of
course carried over into Ez. The all- external
correlation energies reported in these tables are
therefore less reliable and are given to fewer
digits than E t and E~ Ejnt is seen to carry
most of the Z dependence of the total correlation
energy . The approximate transferability of E
along Z for a given isoelectronic sequence is ap-
parent ~ Transferability of all- external pair en-
ergies among ions, configurations, and symmetry
states of a given Z will be discussed in Paper II.

The three kinds of correlation energy are plotted
for ground states of first- row atoms in Fig. 3 .
The internal correlation energy decreases linearly
with the number of added 2P electrons with parallel
spin. ' E& is dependent on the number of vac anc ies
in the HF sea as well as on the number of electrons.
Therefore it makes a maximum at nitrogen where
the holes and particles in the 2P subshell are
balanced. The decrease to the left is due to de-
creasing N while the decrease in the number of
holes is responsible for the decrease to the right.
The all -external correlation energy E„ is seen
to increase smoothly with the added electrons.

Each CI computation gave a detailed wave func-
tion including all the "specific" correlation ef-
fects. " The CI wave function for 1s'2s'2p' 'D
carbon is reported in Table VIII as an example.
The HF wave functions for closed shells are
known to reproduce charge densities quite ac-



I. OKSUZ AND O. SINANOGLU 1S1

io. 0

8.&

curately. The similarity of )(„ to )( of closed
shells suggests that ((RHF+ )(tnt+ )(y might have
the same property. Calculations of transition
probabilities using the wave functions of this
work will be reported in Paper III of this series.

4.o

Z.O

@el I'

8 c N 0 F Hg

FIG. 3. Three kinds of correlation in ground states
of neutral first-row atoms Ejnt is the internal cor-
relation energy (x), E~ is the polarization plus semi-
internal correlation energy (~ ), and EN is the all-
external correlation energy (~).

ACKNOWLEDGMENTS

We thank Dr. Bolesh Skutnik for many helpful
discussions, Dr. Alfred Lowrey and Dr. Vincent
McKoy for preparing the STO integral subroutines,
and Dr. Harris Silverstone and Mr. Moon-Lung
Yin for making Ref. 28 available to us before
publication. Support of this work by grants from
the U. S. National Science Foundation and Alfred
P. Sloan Foundation is gratefully acknowledged.
One of us (I.O. ) thanks the Scientific and Techni-
cal Research Council of Turkey for his pre-
doctoral fellowship.

TABLE VIII. CI wave function for ls 2s 2p D carbon. 8 is the antisymmetrizer. Each determinant is followed by
its coefficient (in the (QHHF ( pltHp)= 1 normalization convention) and its contribution to the energy (see Ref. 15 of
text). Note that the sum of all contributions (-1.470 eV) is rigorously equal to DECI= ECI-ERHF, where ECI
= —1025.398 eV and ERHF = -1023.928 eV; any apparent discrepancy is due to roundoff error. The "renormalization
factor, "which is the coefficient of QltHP when (gltHF+)(;nt+X~ I gftHP+X;nt+)(y)=1, has the value 0.980101. Bar
on an orbital indicates P spin; no bar indicates e spin.

A

f2s2ss 2p

Af2s2p; 2p

ARHF =

A4 ——

66 ——

&s =

&i3=

&i5=
&i6=

Determinant

8 (1sl s2s2s2p+ 2p'+)

8 (1sl s2p 3p'+ 2p'+ 2p'+)

8(lsls2p 3p, 2p, 2p, )

Q(lsls2pp3pp2p+ 2p+)
8(lsls2pp3pp2p+ 2P +)

8(lsls2p 2s3d ~ 2p+)
8(1 1-2p,2-3d, 2p, )

8{1sls2p 2s2p+ 32++)
8(1sls2p 2s2p+ 3d++)
8(lsls2pp2s2p+ 3d+)
8(1sls2p02s2p+ 3d p
8(lsls2s2p 3d ~ 2P+)
8(1sls2s2p 3d~ 2p+)
8(1sls2s2Pp3d p 2P ~)
8(lsls2s2p03d+ 2p+)
8(1sls2s2P 2P+ 3d++)
8(1sl s2s2pp2p+ 3d+)

Coefficient

1.000 000
0.011954

—0.011954
—0.011742
—0.011742

—0.031 225
—0.017 570
—0.060 423
—0.029 199
—0.043 022
—0.025 452
—0.029 199

0.060 423
0.025 452
0.043 022
0.031 225

—0.017 570

Contribution (eV)

—1023.928
-0.012
—0.012
-0.012
-0.012

—0.058
-0.023
—0.203
—0.044
-0.102
-0.027
—0.044
—0.203
—0.027
—0.102
—0.058
—0.023

f2P2P; 2P
&is=
&is=

S(lsls2s2s2p 4j+++)
8(1sls2s2s2p 4f +++)
8(1sl s2s2s2pp4f ++)
8(1sl s2s2s2pp4f ++)

0.034 569
—0.034 570
—0.020 005

0.020 005

—0.025
-0.025
-0.008
-0.008

f2s

f2P

& int

A2 f —8(1s1s3dp2 s2p +. 2p +)

422 ——8(1sls2s3dp2p+ 2p+)

623 ——8(1sl s2s2s4f + 2P+)
&24

——Q(1sl s2s2s2p+ 4f +)

A25 = 8(1sls2pp2p p2p+ 2p+)

0.004 505
0.004 505

0.008 947
0.008 947

—0.143 152

—0.001
-0.001

-0.002
-0.002

—0.438

=0. = 0, = 2.12, G. = 0.6 x 2.12=1.2723s 3p 3d ' 4f
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