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Measurements of the attenuation of sound in liquid ‘He down to 0.1 K have been performed
at 12, 30, 36, 60, 84, 90, 108, 132, 150, and 208 MHz. Measurements of the temperature
dependence of the velocity of sound were made at 12, 36, 60, and 84 MHz. These data are
compared with recent theoretical work, particularly that of Khalatnikov and Chernikova. The
attenuation data agree well with theory in the vicinity of the peak in the attenuation near 1 K
but do not agree elsewhere, the observed attenuation being greater than that predicted by
theory. The temperature dependence of the velocity at low temperatures is found to be less
than that predicted by theory, while the frequency dependence of the velocity (at finite tem-

perature) is opposite to that predicted by theory.

I. INTRODUCTION

The pioneering work at ultrasonic frequencies
on the propagation of sound in liquid “He was
done by Pellam and Squire.! They found that the
attenuation is very high at the lambda point, has
a minimum at about 1.9 K, and increases as the
temperature is lowered. Khalatnikov?:? calcu-
lated the attenuation of sound for this temperature
range, This theory, which has two parameters
to be fixed by the experiment, was successful in
explaining the later more precise data of Atkins
and Chase* and Chase.® Further measurements
at lower temperatures® ! showed that the attenu-
ation reached a maximum around 0.9 K and then
fell off as the temperature further decreased.
The data below 0.9 K were however in disagree-
ment with the theory of Khalatnikov. For the
usual ultrasonic frequencies, the situation above
and below 0.9 K are physically different. Above
0.9 K collisions between the quasiparticles, i.e.,
phonon-phonon, phonon-roton, and roton-roton,
are frequent and therefore local equilibrium is
established within a time 1/w where w is the im-
pressed sound frequency. This regime is called
the hydrodynamic regime, and it is well known
that the attenuation is given by

a=(w?/2pc®)($n+¢) ,

where n and ¢ are the first and second viscosity
coefficients. ! Khalatnikov has calculated these
first and second viscosity coefficients. On the
other hand, below about 0.9 K the collisions are
infrequent, and we are in the collisionless re-
gime where the attenuation does not follow the hy-
drodynamic result and a different approach is re-
quired. It is clear that the full temperature and
frequency dependence of sound propagation in
liquid “He are quite a difficult problem which re-
quires the use of the kinetic equation. One has to
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take into account elastic (particle conserving) as
well as inelastic (those not conserving the num-
ber of particles) collisions in the collision inte-
gral of the kinetic equation. Even so, Khalatnikov
and Chernikoval®~!® recently derived an expres-
sion for the attenuation of sound without any ad-
justable parameters. The theory is very suc-
cessful at low frequencies (1 to 6 MHz) and at
higher frequencies it is especially successful
around 0.9 K. As is well known, below 0.6 K
the only excitations in the liquid are the phonons,
and the problem would appear to be simpler.
There is also great interest in this case because
at the usual ultrasonic frequencies when we are
in the collisionless regime we can attack the
problem fundamentally as a phonon-phonon scat-
tering problem. This problem is also of great
interest for the attenuation of sound in a dielec-
tric solid. The liquid, however, is a much sim-
pler system theoretically and experimentally, It
is isotropic, only longitudinal phonons exist,
there are no dislocations, and for all practical
purposes there are no impurities. Thus the only
mechanism for the sound attenuation isthe phonon-
phonon interaction. This problem was attacked
recently by many theoreticians using different
methods which will be discussed in the next sec-
tion. Because certain of the theoretical results
were not in agreement with each other or with
the existing experiments, the present work was
initiated. The emphasis has been on the very
low-temperature region which is dominated by
phonon-phonon scattering, but some high-tem-
perature data could also be taken at the lower
frequencies. In these experiments we measured
the attenuation of sound at 10 different frequen-
cies'®!3 and the velocity of sound at four fre-
quencies. !®* The experimental method is pre-
sented in Sec. III and the results are discussed
in Sec. IV.
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II. THEORY

Liquid “He, being a quantum liquid, has the
property that for temperatures less than about
2 K, it is possible to describe approximately the
state of the system in terms of a set of weakly
interacting normal modes or elementary excita-
tions possessing definite energies and momenta.
The relation between the energy and momentum
of an elementary excitation was first deduced by
Landau from general considerations, and experi-
mental heat capacity and second-sound propaga-
tion data. %2 It was later detemined in much
greater detail from the inelastic neutron diffrac-
tion experiments of Henshaw and Woods?! which
are shown in Fig. 1. The solid line in Fig. 1 is
a fit to the experimental data of the form

e€=A PP+ A, p* + A P8 + A P8 (1a)
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FIG. 1. The elementary excitation spectrum of liquid
‘He at 1.12 K as determined by the neutron diffraction
measurements of Henshaw and Woods. The solid line
is a four-term fit to the spectrum of the form suggested
by Landau and Khalatnikov. The dashed line is the
limiting slope determined from the velocity of sound.

where € is measured in degrees Kelvin and mo-
mentum in reciprocal angstroms. This form
was suggested by Landau and Khalatnikov.?* The
values used are A, =(10%%zc/k)? =328, where ¢

is the sound velocity and « is Boltzmann’s con-
stant, A,=- 189, A;=36.6, and A,=-2.17. In
the long-wavelength limit this may be written as

e=cp(1-yp?) , (1b)

where ¥ =2.59X10% in cgs units. While the over-
all fit is rather good, it is seen that the observed
dispersion at small momenta is less than that
predicted by the fit and thus this value of y rep-
resents an upper limit. If we use the four-term
power-series fit but include data only up to 1.2
A~', theny (which is related to 4,) is negative,
and of order 10%, while the magnitude of A, be-

comes much greater (the sign remaining the
same). Sound-velocity measurements would, in
principle, determine the value of ¥ but would re-
quire an accuracy of parts in 108 at 100 MHz.
Though it is somewhat misleading, it has be-
come customary to consider two regions of this
curve separately; namely, the region near p=0
where the spectrum is approximately linear (for
which the name phonons is appropriate) and the
region near the minimum (~2A-!), (for which

the name rotons has been adopted). Only the pho-
non and roton region of the spectrum are appre-
ciably occupied at higher temperatures, while be-
low 0.6 K only the phonon region plays a role.

At finite temperatures, elementary excitations
may be annihilated, created, or scattered. This
leads to a lifetime broadening or energy uncer-
tainty in the excitations. Thus as the tempera-
ture is raised and the number of excitations and
collisions increases, our description of the sys-
tem in terms of elementary excitations becomes
more and more imprecise. For example, it is
known from the neutron data that the energy un-
certainty for a roton is of the same order as its
mean energy for temperatures above about 2 K,
However, as the temperature is lowered, a de-
scription of the system in terms of elementary
excitations becomes an increasingly accurate
model to use for calculating various thermody-
namic and transport properties. A measure-
ment of sound propagation at very low tempera-
ture yields very useful data with which to com-
pare the results of calculations based on the in-
teracting elementary excitation model.

At absolute zero the elementary excitation spec-
trum is identical to the energy eigenvalue spec-
trum of a single excitation of the liquid (where
these eigenvalues are numbered according to
their momenta). For this to be the case, the
lifetime of this single excitation must be infinite.
That this is the case follows from the special
form of the spectrum; once an excitation is cre-
ated it cannot decay into two (or more) subse-
quent excitations since the laws of energy and
momentum conservation forbid it, We will de-
monstrate this stability for long wavelengths.
Let us consider the decay of a phonon of momen-
tum p; into two subsequent phonons of momentum
Py and pg. The energy- and momentum-conser-
vation theorems yield (where we have assumed
that all the phonons are collinear since this is
the most favorable case for positive y):

bi=pp+bg

pi(l - yp;) =1>f(1 - 'rpfz) +1>s(1 - Ypsz)

(momentum conservation),

(energy conservation).

Subtracting these two equations and taking the
cube of the first equation yields the following set
of equations
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pr=pf+p sl pi=(prp P

Since these equations have only the trivial solu-
tion p¢ =0, it is clear that energy and momentum
conservation cannot be satisfied.

Let us now consider the case where there are
two excitations in the liquid. In the same way
that energy and momentum conservation will not
allow one phonon to decay into two, two phonons
cannot combine (inelastically scatter) to form
one. Thus three phonon events (one going into
two and vice verse) appear at first sight to be
forbidden. For this reason Landau and Khalat-
nikov®? considered only the four-phonon process,
the elastic scattering of two phonons.

The matrix element for phonon-phonon scatter-

ing can be derived from the hydrodynamical mod- -

el of Landau, !° and we refer the reader to Khalat-
nikov’s® or London’s?* works for a more detailed
account. The equations of hydrodynamics are
nonlinear, and monochromatic sound waves are
not strictly normal modes but are weakly coupled
by the nonlinear terms in these equations of mo-
tion. In quantum hydrodynamics these nonlinear
terms result in phonon-phonon scattering. Since
historically the four-phonon process was the first
to be treated theoretically, 22 we shall begin our
discussion of phonon-phonon scattering here.

The calculation proceeds as follows. From quan-
tum hydrodynamics we get third-order terms in
the Hamiltonian coupling three phonons, and
fourth-order terms connecting four phonons.
Four-particle matrix elements follow from (a)
third-order terms in the Hamiltonian treated in
the second order of perturbation theory and (b)
fourth-order terms in the Hamiltonian treated

in first-order perturbation theory. There are
six different diagrams contributing to process

(a) and one to process (b). The diagram con-
tributing to process (b) and five of the diagrams
contributing to process (a) are argued® to be
small or zero and are neglected. The remain-
ing diagram may be substituted in the “golden
rule” to yield a transition probability. In the
final step the transition probability is substituted
in a collision integral from which a phonon life-
time ¢, , or attenuation coefficient a results.
This calculation, as outlined here, was originally
carried out by Landau and Khalatnikov. 2 I we
treat sound attenuation from the point of view that
it is simply a scattering of sound phonons by
thermal phonons® (valid for w7>>1, where 7 is
some relaxation time), then we may use the pho-
non lifetime calculated by Landau and Khalatni-
kov to determine the attenuation. The result®
(valid for 7w < kT) is

1 5 (u+1) s
O = =G A wT® (four phonon) , (2)

bp

where u=(p/c)dc/8p, k is Boltzmann’s constant,
and p is the density. On the other hand, if we
had neglected dispersion in the energy spectrum
[y=01in Eq. (1b)], this would have allowed the
three-phonon process to “go” since it would not
violate energy- and momentum-conservation
theorems (incidentally expression (2) would be
divergent in this limit). If we take the third-
order (three phonon) terms in the Hamiltonian,
substitute this matrix element in the golden rule
and again evaluate the collision integral, the fol-
lowing relationship results:

g w12
60 P 7t

So to sum up the theoretical point of view on pho-
non-phonon scattering, we expect that if, some-
how, the three-phonon process is allowed we
will get an wT* behavior®-22 for the attenuation,
while if the three-phonon process is forbidden
then the next higher-order process should lead
to an wT® behavior. The early low-temperature
data (7<0.6 K) of Chase and Herlin® seemed to
support the three-phonon result rather than the
four phonon, which was puzzling since it seemed
at first sight to violate the energy- and momen-
tum-conservation theorems described above.
The solution to this dilemma was given indepen-
dently by Kawasaki®® and Simons® and the argu-
ment goes as follows. Since the thermal phonons
are continually colliding with each other, we ex-
pect an energy uncertainty 6e ~7%/7, where T is
some mean thermal phonon lifetime. If this en-
ergy uncertainty 6€ is greater than the energy
discrepancy Ac (between the initial and final
states in the three-phonon process) then the three-
phonon process can take place. The energy dis-
crepancy Ac is easily calculated to be Ae ~ 3yprw,
where p is the thermal phonon momentum, Thus
for the three-phonon process to take place we
must have 3yp?wT < 1. One can phenomenologi-
cally incorporate this idea into the theory by us-
ing the correct energy dispersion law, but in-
stead of the delta function in the golden rule we
use a Lorentzian spectral function. The result
of such a calculation is

wT* (three phonon) . (3)

a_lrz_(u+1)2 K
30 p 73S

x[tan~*2wT) - tan"*(3y p?w )] , “)

wT*

where p is the average thermal momentum 3x7/c.
This result was first derived (using thermal
Green’s functions) by Kwok, Martin, and Miller®
and independently by Pethick and ter Haar.3 It
was later rederived along the lines outlined
above by Eckstein, 3

In Refs. 34 and 35 the thermal Green’s-function
approach was used. The exact spectral function



350 ABRAHAM, ECKSTEIN, KETTERSON, KUCHNIR, AND VIGNOS 181

was, of course, not evaluated in this work; a
Lorentzian was substituted as an approximation.
We note the result is identical to that obtained
using the “golden rule, ” and considerably more
difficult to arrive at.

Let us now examine various limits of this ex-

. pression. For w7 > 1> 3yp2wT we get the usual
three-phonon result of Eq. (3). For 3yp 2wt >1
this process goes to zero, as it should, since the
three-phonon process is forbidden in this limit.
There is, however, a problem. It is believed
that the attenuation follows directly from the
lifetime calculated in the thermal Green’s-func-
tion approach. Khalatnikov maintains that the
attenuation must go over into the four-phonon re-
sult a « wT% asymptotically at low temperatures.
The limit we get however is axT2?/y7. It is dif-
ficult to reconcile these conflicting results, and
we can only conclude that the present theory is
incomplete. It is not known whether the failure
of the low-temperature limit of the thermal
Green’s-function approach is due to the use of
an incorrect spectral function or the exclusion
of vertex corrections. The possibility that the
wT ¢ form of Khalatnikov may be in error should
not be excluded. Furthermore, since we have
introduced a phenomenological parameter T the
theory is incomplete in this respect also.

So far we have discussed sound attenuation
strictly from the point of view of phonon-phonon
scattering, and we must now examine the validity
of such a point of view. When w7>1, the ther-
mal phonon relaxation time is much longer thanthe
period of a sound wave; however, the thermal
phonon distribution is assumed to relax to an
equilibrium distribution function. Since we were
using equilibrium distribution functions in the
derivations outlined before we may assume that
these results are valid (if anywhere) in the w7
>1 region, or since Tcc T— 7, in the very low-
temperature high-frequency limit. As the tem-
perature is raised two things happen. The ther-
mal phonon lifetime T becomes shorter and,
above 0. 6 K, the rotons begin to contribute to the
attenuation process. We neglect the rotons for

the moment, deferring this discussion until later.

When w7 <« 1, the thermal phonon distribution
relaxes in a time short compared with a sound
period. Since the sound wave sets up periodic
variations in the local properties of the medium,
the thermal phonon distribution function relaxes
to some value characteristic of local equilibrium
but not to the thermal equilibrium value; con-
sequently, the derivations we have described
break down. Thus in this region the sound wave
periodically modulates the thermal phonon dis-
tribution function, and one needs a formalism
that allows for spatial variations in the distribu-
tion function. Such a formalism is provided by
the Boltzmann or kinetic equation. Actually, the

results of a Boltzmann-equation treatment are
valid for both regions (w7>1 and w<1). Indeed,
the low-temperature limits of the results based
on the kinetic equation are identical to the scat-
tering and Green’s-function methods we have de-
scribed previously. The sound attenuation will
now be treated as the attenuation of a classical
density wave propagating through the liquid,
rather than as a scattering problem.

Two additional equations and some assumptions
about the nature of the collision integral in the
kinetic equation are required to solve the prob-
lem. The additional equations are the equation
of continuity and the equation of motion of the
condensate or superfluid, The problem of how
to handle the collision integral has recently been
approached from two different points of view.
Disatnik® employed a “collision-time” approxi-
mation, with energy and momentum conservation
directly built in. Such a model has the advantage
of simplicity but has the disadvantage of intro-
ducing a phenomenological phonon-phonon relaxa-
tion time 7 whose temperature dependence is un-
known. Khalatnikov and Chernikova, =8 in their
treatment, used a previous calculation by Landau
and Khalatnikov, *’ of the viscous or wide angle
scattering time 7pp. In this calculation it is as-
sumed that the collinear four-phonon scattering
time #pp is extremely short. This results ina
quasiequilibrium among the thermal phonons
moving in a specific direction which can be char-
acterized by some temperature T(6) which, as
indicated, is angular-dependent. It is further-
more assumed that an inelastic (collinear) five-
phonon scattering time 73 . 9 (where three pho-
nons combine to form two) is so small compared
with other important scattering times that it re-
sults in a vanishingly small chemical potential
for the thermal phonons. This is because the
chemical potential for excitations whose number
are not conserved vanishes in thermal equilibrium
and, since the five-phonon processes change the
number of particles, equilibrium at the local
temperature can be established. Thus the non-
equilibrium distribution function can be written
in the form of a Planck distribution with an an-
isotropic temperature. The resultant relaxation
time 7, is proportional to 7-°. The results for
the attenuation of sound calculated by Khalatnikov
and Chernikova and by Disatnik are identical to
those given previously in the limit 7> 1 pro-
vided the 7 entering the phenomenological treat-
ments is equated to Tpp. Khalatnikov and
Chernikova state, however, that their results
are valid only when fpp < Tpp. The kinetic-
equation approach of Refs. 16—18 and 36 and
also the Green’s-function approach of Ref. 35
allow, in addition, a determination of the tem-
perature and frequency dependence of the sound
velocity. The result in the limit w7pp>> 1is
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c(T)- c(O)—a)- i o
1+Qw Tpp)2 6)
X ln——z————-——z . 5
1+@ypw Tpp)
Andreev and Khalatnikov® obtain a nearly identi-
cal result.

For the ultrasonic frequencies employed to
date, rotons contribute strongly at temperatures
where wTpp <1 and thus the expressions based
only on phonon-phonon scattering are not valid
in this limit. The expressions do, however, go
over into the classical hydrodynamic expression
for first viscosity attenuation (@ <w?rpp). The
theory could be verified experimentally only at
very low frequency and at temperatures less
than 0. 6 K.

The appearance (above 0.6 K) of rotons in the
liquid greatly complicates the calculation of
transport processes. The rotons may scatter
elastically and inelastically both among them-
selves and also with the phonons. The theoreti-
cal treatment must now include two coupled ki~
netic equations, one for phonons and one for ro-
tons. Nevertheless, Khalatnikov and Chernikova.
proceeded to investigate this problem, 168

The matrix element for phonon-roton scatter-
ing may be calculated more or less exactly from
a knowledge of the density dependence of the pa-
rameters A and p,, which describe the roton, and
further from the requirements imposed by
Galilean invariance. 2»2® Roton-roton scattering
can be calculated only on the basis of some mod-
el, and Landau and Khalatnikov??2® used a delta-
function potential. With this potential (the
strength of which is fixed by experiment) the
elastic roton-roton scattering time #yp was
shown to be very short and thus a Planck distri-
bution with a local temperature is appropriate to
describe the rotons. Inelastic phonon-roton and
roton-roton scattering times are shown to be
long compared with the other important scatter-
ing times; thus the roton distribution function
must contain a local nonvanishing chemical poten-
tial since particle equilibrium (zero chemical
potential) is achieved only through the inelastic
collisions. The remaining scattering time Tpy
for elastic phonon-roton collisions turns out to
be the most important scattering time in the re-
gion of temperature 0.9-1.2 K. For wTpr>1
the expressions go over into the hydrodynamic
form where now, however, a second viscosity
coefficient (e« Tpy) appears. Near 1 K where
wTpr=1 a large attenuation and dispersion result.
As the temperature is raised above 1.2 K the
rapidly decreasing phonon-roton scattering time
Tpr becomes equal or less than the five-phonon
scattering time 7g..9. When this happens, local
number equilibrium can no longer be established

m (u+1)? (xT)“
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in the phonon gas and a nonvanishing chemical
potential in the phonon distribution function must
be included. The treatment in this region pro-
ceeds by ignoring the effect of wide angle scat-
tering and includes only Tpr and 73 -2.
Khalatnikov and Chernikova have derived two
different sets of expressions for the temperature
and frequency dependence of the attenuation and
velocity of sound in liquid *He. The expressions
are rather lengthy and have been collected in the
Appendix. One set describes the range less than
1.2 K while the second is for temperatures above
1.2 K. The treatment above 1.2 K would not be
valid, of course, near the lambda point since the
whole character of the problem is different in
this region. 3° It should also be pointed out that
the equations for 7>1.2 K do not join with the
corresponding ones for T<1.2 K. Furthermore,
Khalatnikov and Chernikova made it clear that
their treatment for wTpp >1 is not valid when
wtpp =1, i.e., when the reciprocal of the angular
frequency becomes comparable with the collinear
four-phonon scattering time. Since tpp is pro-
portional to y/T7, and the value of ¥ is somewhat
uncertain, it is not known at what temperature
their treatment becomes invalid. Disatnick sug-
gests that his treatment with a phenomenological
scattering time may still be valid in this limit.
We note again, however, that when 3yp2w7>1
(very low temperature and very high frequency)
none of the phenomenological treatments go over
into the four-phonon result and thus, we believe,
must be incorrect. Nor is it clear that the 7 in
the Green’s-function and scattering approaches
should be identified with the 7, of Khalatnikov
and Chernikova’s treatment. Indeed we would
expect #pp to be reasonable for the energy un-
certanity 6e. Since a large portion of the data
to be described was taken at low temperatures
where possibly wipp> 1, it should be understood
that the data may well lie outside the range of
validity of existing theoretical treatments.

III. EXPERIMENT

At first sight it would appear that the simplest
way to study the attenuation of ultrasound in *He
would be to observe the exponential decay of the
amplitude of a sound pulse which has undergone
repeated reflections in a cavity containing the
liquid. Such a technique is not feasible in *He
because of several spurious attenuation mech-
anisms which can be so severe as to completely
mask the true attenuation.*® This is particularly
true at low temperatures and high frequencies.
The dominant source of spurious attenuation
comes from nonparallelism of the reflecting sur-
faces in the sonic cavity, these surfaces usually
being the quartz piezoelectric transducers. The
nonparallelism causes the different regions of
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the wave front to arrive at different times or,
equivalently, different phases; consequently,

the relative phase across the wave front changes
on each reflection. Thus the transducer, which
really measures an average over the wave front,
detects a different amplitude on each reflection
even if there were no attenuation in the liquid.
In addition some energy must be extracted on
each arrival of the wave front for the purpose of
detection, Obviously some other technique is
required. The problem has been attacked by
three different approaches.

Pellam and Squire® constructed a sonic cavity
where the receiving transducer could be moved
relative to the transmitting crystal. The attenu-
ation may then be studied by observing the change
in amplitude of the signal when the transmitter
and receiver are moved relative to each other by
some known distance d. The technique works
as long as the relative nonparallelism of the re-
ceiving and transmitting transducers can be
maintained. Chase® has improved the technique
by allowing an independent adjustment of the rela-
tive inclination and the distance between the
transmitting and receiving transducers.

A radically different approach was employed
by Woolf, Platzman, and Cohen.*! What they did
was to use the density variations set up by a
transmitting transducer as a moving diffraction
grating to scatter laser light. This is possible
since the index of refraction is slightly density-
dependent. Since the wave is attenuated in the
liquid the angle at which diffraction maxima are
observed will have a finite width. The attenua-
tion follows immediately from the magnitude of
the width. There are difficulties in practice but
the method looks promising, particularly at high
temperature and frequency.

The third method, the one used in these ex-
periments, measures only the change in attenua-
tion as a function of temperature. In order to
determine the absolute value of attenuation one
must resort to theory. One can in general write
that

a(T) = a(T) - oz(Tmm)+ a(Tmin)
),

or a(T)_(Aa)min+ at(Tmin
where (Aa)min is the change in attenuation in
going from the lowest temperature reached
(Tmin) to the temperature in question, and
a@(Tmin) is the true attenuation at the minimum
temperature. If we can demonstrate that
a@(Tmin) is less than the resolution of the instru-
ment than one can neglect @(7T'min) and set a(T)
=(Aa)min. The true attenuation according to
theory is proportional to T” at very low temper-
atures, where n=4 or 6 for the three- and four-
phonon processes, respectively i.e., the true

attenuation rapidly approaches zero at low tem-
peratures. Assuming then that @ =a7”, it can
be shown that

s

(1)~ a(Tmin) (Aa)min (®)

oT n = n )
-1 (T/Tmin) -1

)=
min

(r/ Tmin)
All of the parameters on the right, except for #,
can be measured experimentally, Within the
resolution of our instrument (0.02- 0.1 dB), we
usually observed no change in the attenuation
from the minimum temperature up to some high-
er temperature (7). In this situation, assum-
ing the most unfavorable case of n=4, Eq. (6)
can be written as

(Aa)resolution

a(T = = .
(Tc/Tmin -1

)

min

We observed in all cases that (T¢/Tpinl = 2;
consequently a(Tpin) Was always less than the
resolution of our instrument and hence can be
set equal to zero.

If Tyin is greater than 0.1 K, one may try to
obtain the absolute value of the attenuation by a
least-squares fitting of the attenuation change to
some assumed temperature dependence. In
particular one may again assume the form

) s

sa=a(T)-a(T_. )=aT" - a(T_.
min min

where a, #, and a(Tmin) are determined from

the fit., Such a procedure is reliable only if it is

known for certain that the true attenuation may

be accurately represented by such a fit. As we

shall see later the value of » is slightly tempera-

ture-dependent and thus such a normalization

procedure is risky. ’

In order to be able to accurately resolve small
attenuation changes, it is necessary that the mea-
surement technique be unaffected by changes in
the input power level applied to the transmitting
transducer, or changes in the gain of the am-
plifier-detector following the receiving trans-
ducer. The methods adopted for these measure-
ments were variations of the “pulse-comparison”
technique and the “pulse-interference” technique°
A simplified block diagram is shown in Fig. 2,
Power from a continuously running oscillator
was split into two channels. Appropriately
timed pulses were generated in each channel by
means of two coaxial rf switches. One pulse,
the signal pulse, was applied to the sonic cavity;
a second pulse, the reference pulse, was applied
to a high-precision attenuator which was followed
by an accurately calibrated (in nanoseconds) de-
lay line. The output from the sonic cavity and
from the 50-Q attenuator following the delay line
were combined, amplified, detected, and finally
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SIMPLIFIED ULTRASONIC COMPARATOR

CRYOSTAT

HELIUM CHANNEL

OSCILLATOR RECEIVER

DELAY
A
SWITCH H ATTENUATOR H LINE

REFERENCE CHANNEL

FIG. 2. Simplified block diagram of the ultrasonic
comparator.

displayed on an oscilloscope. The attenuation-
measurement technique consists of initially
matching the amplitude of the two channels at
some temperature (usually 7',;,) and then heat-
ing the sonic cavity and observing the change in
the attenuator setting (in the reference channel)
necessary to re-establish the amplitude balance
in the two channels. Such a measurement tech-
nique is obviously insensitive to changes in trans-
mitter power or receiver gain. As the attenua-
tion increases the power level of the transmitter
may be raised in order to re-establish a favor-
able signal-to-noise ratio. Care must be taken,
however, to keep the power level in the helium
below some critical value (which increases with
increasing temperature); otherwise the attenua-
tion becomes amplitude-dependent. This was
easily observed in practice by establishing a
balance at some low power level and then in-
creasing the power level to the point where the
balance was upset.

In the pulse-comparison technique the switches
in the reference and signal channels were acti-
vated on alternate cycles of a basic clock fre-
quency. The amplitudes of the two channels were
then equated by visual comparison with an oscillo-
scope. In the pulse interference method the two
channels were activated at very nearly (but not
quite) the same time (with each cycle of the clock),
the time difference being equal to the transit time
of the sound wave in the liquid. This means that
both signals arrived at the receiver input at the
same time and, providing they were coherent,
would interfere. By proper adjustment of the de-
lay line and the attenuator a null was achieved.
Since the velocity is temperature-dependent, a
change in temperature will cause a change in
transit time or, equivalently, a change in phase
of the signal traversing the helium. By observing
the change in the delay line setting A¢ required
to restore the null we could study, in addition,
the temperature dependence of the velocity of
sound between two temperatures 7' and Tmi
through the relation

n

At/d=1/c(T) - I/C(Tmin)’

where d is the length of the sound cavity .*® 1t is
understood of course that if the attenuation
changes we must adjust the attenuator also to
achieve the null; thus we obtain a simultaneous
measurement of the temperature dependence of
the attenuation. Since both the reference and
signal pulses were derived from a continuous
oscillator, coherence was assured. For the
velocity measurements it is further required,
however, that the long-term stability of the
oscillator be uncommonly good, since a change
in frequency 6f is observed as an apparent change
in transit time 67 (or velocity 6c) through the re-
lation

6t =(d/c)(6f/f) (or 6c/c=56f/f).
The oscillator used had a stability of one part in
107 per hour which was satisfactory. The fre-
quency was monitored with an electronic frequen-
cy meter.

It is quite important that stray rf coupling to the
receiver be carefully avoided, because it would
interfere with the received signal. Since the
velocity (or phase) is temperature- dependent
then the relative phase of the leakage and the re-
ceived signal would vary in the course of the ex-
periment and the measured attenuation would be
spurious. The rf leakage was reduced to a negli-
gible level by the following precautions. The re-
ceiver and signal generator were kept well sep-
arated and all interconnecting cables were double
shielded. Furthermore the rf switches used had
a minimum of 40-dB isolation,

Figure 3 shows the cell which contained the
sonic cavity. The sonic cavity was formed by a
3-in. o.d. X $-in. i.d. x 1, 022-cm-long fused
quartz annulus. The ends of the cavity were un-
loaded, coaxially plated, x-cut quartz trans-
ducers. Both 12- and 30-MHz fundamental fre-
quencies were used in these experiments. The
transducers were clamped to the quartz spacer
by flat polished stainless-steel rings which also
facilitated one of the electrical contacts to the
transducer. A small coil spring about 0. 050 in.
in diameter was wound with 0. 002-in. -diameter
Pt wire, and it served to make the second elec-
trical contact. The spring was such that it caused
a minimal warping of the transducer (thus re-
ducing spurious attenuation) while still providing
the necessary electrical contact. A Teflon
“sound spoiler” filled the remainder of the stain-
less-steel clamping ring and greatly attenuated
the signals returning to the transducers from
this region. The remainder of this section of
the sonic cell was filled with coaxial washers
which completed the electrical connections to the
transducers. The end caps of the sonic cell
(which are necessary for the assembly of the
components of the sonic cavity) were sealed to
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FIG. 3. Cross sectional view of the sonic cell. The
following items are indicated: (F) copper tubing for
pressurizing and sealing the cell. (T) resistance ther-
mometer, (C) coaxial connector for rf input, (E) epoxy-
sealed stainless-steel transmission line, (O) lead O
ring, (Q) X-cut quartz transducer, (S) fused quartz
spacer, and (P) threaded stud for attaching magnetic
thermometer.

the sonic cell by lead O-rings*? (made by bending
wire in a circle and twisting the ends) which were
compressed by four screws. Radio-frequency
power was brought into and out of the sonic cell
(through the end caps) by vacuum and pressure-
tight coaxial transmission lines. The outer con-
ductor of this transmission line was a 0.100-in,
o.d. X0.010-in, wall stainless-steel tube while
the inner conductor was a 0.025-in. o.d.
X0.021-in. i.d. stainless-steel tube. The annulus
was filled with Emmerson and Cummings Stycast-
filled epoxy®® (which has a much smaller thermal
expansion coefficient than pure epoxy). A good
bond to the stainless-steel tube was assured by
abrading the inside of the tube. Most of the seals
of this type withstood numerous cyclings between
room and helium temperature, as did the lead o-
ring seals. A copper coil spring was soldered to
the end of the inner conductor which made contact
to the previously mentioned coaxial washers. Min-
iature coaxial connectors were employed on the
opposite end of the transmission line. A magnetic
thermometer was thermally and mechanically at-
tached to the bottom of the sonic cell.

For a variety of reasons it is advisable to con-
struct the sonic cell as a bomb (the main difficulty
being associated with heat conduction associated
with film flow). By this we mean that the sonic
cell contains a large enough storage region so that
when it is pressurized to some nominal value at
room temperature [500 psi (gauge) in our case]
there will be enough liquid to fill the sonic cavity
at helium temperature. The upper region of the
sonic cell shown in Fig. 3 serves as this storage
region. Pressurized gas from a helium cylinder
was passed through a liquid-helium cold trap, and
then through a soft copper tube which entered the
cell at the top. When the pressure reached 500 psi
(gauge) the copper tube was “crimped” off and the
end soldered closed.

The use of unloaded transducers is quite impor-
tant (by an unloaded transducer we mean one loaded
only with helium and with no bonded solid backing),
since an uncommonly good electrical impedance
match can be obtained to a quartz transducer loaded
only with liquid helium.*® The advantage of a good
electrical match is that the sonic power level in
the helium may be much lower because of the in-
creased detection efficiency that results from a
good electrical match. Thus reliable data may be
taken with a much higher signal-to-noise ratio be-
fore the previously discussed amplitude dependent
effect contributes. Also since the efficiency of a
transducer falls off rapidly with increasing fre-
quency, we can carry out measurements to much
higher frequencies (208 MHz in these experiments)
if we take advantage of the better electrical match
achieved with an unloaded transducer. The peak
electrical power input to the sonic cell was never
greater than; W in these measurements and a
signal-to-noise ratio as high as 90 dB was achieved
while working at the fundamental of a 30-MHz trans-
ducer., Also the clock frequency was never high
enough to cause the average power input to heat
the sonic cell. The price of the good electrical
match is a very narrow bandwidth., This results
in a slow rise time for the signal pulse (4-10
usec in our case). Since the transit was on the
order of 50 usec, however, there was ample
time for the pulse to build up.

We now proceed to the cryogenic aspects of
the experiment. The sonic cell, together with
an iron-ammonium alum thermal guard salt,
potassium-chromium alum refrigerator salt, and
cerium-magnesium-nitrate magnetic thermome-
ter were located inside a copper can (inner can)
which was cooled by a ®He evaporation refriger-
ator (shield). The inner can was isolated from
the “He bath by means of a vacuum space be-
tween the inner can and an outer can. Both the
magnetic thermometer and the refrigerator salt
were thermally anchored to the sonic cell. Co-
axial stainless-steel transmission lines were
used to bring the rf power into and out of the ap-
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paratus. The inner and outer conductors were
insulated from each other with Teflon “spaghetti”
and the annuli were filled with high-viscosity sil-
icone oil to facilitate thermal grounding of the
inner conductor. The outer conductor was ther-
mally anchored at several points with copper
wire, which was soldered to the outside of the
tube. Resistance thermometers monitored the
refrigerator salt, sonic cell, and guard pill,

and were useful in determining thermal equilibri-
um following a heat input to the apparatus.

The magnetic thermometer was calibrated
against the vapor pressure of 3He between the
temperatures of 600 to 1600 mK. Helium-3 ex-
change gas was admitted to the inner space; the
salts and cell were then cooled by pumping on
the 3He shield. After the inner parts had cooled
to about 500 mK the pump valve was closed and
heat was supplied to bring the temperature to
about 600 mK. One hour was allowed for equi-
librium before making pressure, susceptibility,
and resistance measurements and before heating
for the next point. The temperature drift was 1
mK per minute or less, and all readings were
taken as a function of time so that all parameters
could be interpolated to the same time. The 3He
pressure was read on an oil manometer or on a
mercury manometer with a cathetometer., Four
to five points at equal intervals of 1/T were taken,
and the calculated temperature was within +0.2%
of the measured temperature using the equation
T=A/(M- B), where Mis the susceptibility bridge
reading and A and B are constants determined
from the calibration.

The low temperatures were reached by adia-
batic demagnetization from 500 mK. The heat
of magnetization was removed with a small aux-
iliary 3He evaporation refrigerator from which
all the *He was ultimately pumped out. With
copper-nickel or brass sonic cells, temperatures
as low as 30 mK were routinely achieved.

Following demagnetization, it was observed
that the upward temperature drift of the appara-
tus was never more than 1 mK per hour. After
waiting a period of time to allow for thermal
equilibrium, a reference level of the attenuator
(and when measuring velocities a delay line set-
ting) was established. The cell was then heated
and after temperature equilibrium had been re-
established the new attenuator and delay line
settings were determined. This process was

_continued until the signal disappeared into the
noise, or an amplitude dependence precluded
further measurements. At the lower frequencies
it was possible to follow the attenuation up to the
lambda point. Measurements above the lambda
point were not made in these experiments. At
the higher temperatures, where the velocity
change causes the delay time difference to be
greater than the period (1/f), we re-established

the null setting by subtracting one period from
the delay line setting.

Measurements of the temperature dependence
of the attenuation were made at 12, 30, 36, 60,
84, 90, 108, 132, 150, and 208 MHz. Measure-
ments of the temperature dependence of the ve-
locity of sound were made at 12, 36, 60, and 84
MHz. A detailed discussion together with a com-
parison of these data with theory will be carried
out in the next section. We will also compare
our results with the experimental results of
other authors.

IV. DATA AND INTERPRETATION

Figures 4 through 13 show the temperature de-
pendence of the attenuation at 12, 30, 36, 60,
84, 90, 108, 132, 150, and 208 MHz. The data
have been plotted in a log-log manner so that if
the attenuation were proportional to some power
of the temperature it would appear as a straight
line with a corresponding slope. Note that plot-
ting in this manner appears to amplify the ex-
perimental error associated with reading small
attenuations; thus the data necessarily show
more scatter atlow temperatures. The 30-, 90-,
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FIG. 4. The 12-MHz attenuation data. The solid line
is the theory of Khalatnikov and Chernikova. The break
in the theoretical curves at 1.2 K results from the dif-
ferent expressions which must be used above and below
this temperature.
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FIG. 5. The 30~-MHz attenuation data. The solid line
is the theory of Khalatnikov and Chernikova. The pluses
show the data corrected by 0.6 dB to account for a pos-
sible normalization error. The break in the theoretical
curves at 1.2 K results from the different expressions -
which must be used above and below this temperature.

and 150- MHz data were taken with a 30-MHz
fundamental frequency transducer, while the 12,
36, 60, 84, 132, and 208 were taken with a 12-
MHz fundamental frequency transducer. In gen-
eral a much better signal-to-noise ratio was
achieved with the 30- MHz transducer. Signals
at the odd harmonics between 132 and 208 MHz
were observed but no runs were made, Signals
were also observed at still higher frequencies
but the amplitude-dependent effect prevented the
taking of meaningful data. Were greater care
taken to insure a more parallel alignment of the
transducers, there is no reason why the tech-
niques could not be extended to still higher fre-
quency.

The 12- and 30-MHz data were observed con-
tinuously from the lowest temperature where an
attenuation change was resolvable right up to the
lambda point. We note the following general
characteristics of these 12- and 30-MHz data.
At low temperature the attenuation rises rapidly
(with temperature) with a slope that corresponds
to a nearly T* behavior. The attenuation reaches
a maximum near 1 K and then falls rapidly finally
reaching a minimum near 1.9 K. Near the
lambda point (2.2 K) an extremely rapid rise is
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FIG. 6. The 36-MHz attenuation data. The solid line

is the theory of Khalatnikov and Chernikova. The break
in the theoretical curves at 1.2 K results from the dif-
ferent expressions which must be used above and below
this temperature.
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FIG. 7. The 60-MHz attenuation data. The solid line
is the theory of Khalatnikov and Chernikova.
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FIG. 8. The 84-MHz attenuation data. The solid line
is the theory of Khalatnikov and Chernikova.
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FIG. 9. The 90-MHz attenuation data. Because of

the excellent signal-to-noise ratio of the 30-MHz
transducers some data were observed near 1.9 K. The
solid line is the theory of Khalatnikov and Chernikova.
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FIG. 11. The 132-MHz attenuation data. The solid

line shows the theory of Khalatnikov and Chernikova.
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FIG. 12. The 150-MHz data. The solid line shows
the theory of Khalatnikov and Chernikova.
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FIG. 13. The 208-MHz data. The solid line shows
the theory of Khalatnikov and Chernikova.

observed. The 12-MHz data show a clear change
in slope near 0.35 K. This frequency was re-
peated five times and all features were completely
reproducible. If one had attempted to determine
the absolute value of the attenuation by fitting
only data taken above 0.35 K (by using the least-
squares fit procedure described in the last sec-
tion), one would have obtained an erroneous re-
sult. Thus carrying the measurements to low
temperature is essential if a reliable determina-
tion of the absolute value of the attenuation is to
be obtained. On one 12-MHz run, data were tak-
en on the fifth rather than the first echo (the
points shown in Fig. 4 below 0.1 dB/cm are from
the fifth echo measurements.) Since the attenua-
tion and velocity changes are multiplied by a fac-
tor (2% +1) where # is the echo number, it was
possible to resolve smaller attenuation and ve-
locity changes and thus extend the measurements
to lower temperatures.

The first data taken in these experiments were
at 30 MHz, In this run the comparison pulse was
derived from a second oscillator. The power
output of these oscillators had some tendency to
drift relative to each other. Equating of the
power outputs was overlooked in establishing the
low-temperature reference point, and by the time
the system had been heated to where the first data
point was taken some drift may have occurred.
Care was taken throughout the remainder of the
run to equate the power outputs and thus the data
as given are accurate to within 0.1 dB as differ-
ences, but the absolute value may be off by more
than this amount. As can be seen, the data do
not lie on a straight line at low temperatures.

By adding 0.6 dB to all points a straight line re-
sults (at low temperature) corresponding to a
temperature dependence of the attenuation pro-
portional to 7'%% (pluses in Fig. 5). Circum-
stances did not permit retaking the low-tempera-
ture data (the high-temperature region was re-
peated twice and normalized to the first run at
the minimum near 1.9°K), We have included this
data so that we may later compare it at high tem-
perature with the theory of Khalatnikov and
Chernikova. A 0.6-dB correction contributes
negligibly at high temperature. In all future
runs both pulses were derived from the same
oscillator.

The lower-signal-to-noise ratio achieved with
the 12-MHz transducers (and thus the earlier on-
set of the amplitude dependence) prevented ex-
tending the 36-MHz data to the peak at 1 K. The
rest of the curve has been resolved in detail,
however. The 36-MHz data show the same gen-
eral features as the 12 and adjusted 30- MHz
data, namely an essentially 7* behavior at low
temperature, rising to a peak near 1 K and then
falling off to a minimum near 1.9 K.

From 60 to 208 MHz only the low-temperature
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portion could be studied in detail although some
data near the minimum at 1.8 K were resolvable.
In all cases these low-temperature high-frequency
data fall on a fairly good straight line with the
slope near (but rarely equal to) four.

In order to communicate the full accuracy of
the data we have collected the results of all ex-
perimental attenuation runs in Tables I through
X. The letters (A, B, etc.) indicate different
experimental runs. The temperatures are as
calculated from the calibration fit and the last
decimal place is not significant. The last deci-
mal place of the attenuation (and velocity) mea-
surements is only partially significant. If an ac-
curate frequency is not quoted then the frequency
is the nominal value and is accurate to approxi-
mately one percent.

A very interesting feature of the low-tempera-
ture data is displayed if we plot the frequency
dependence of the attenuation for a few tempera-
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tures. Since measurements were taken at ten
different frequencies we obtain a fairly complete
picture in the range 12 to 208 MHz. Figure 14
shows the results of such a plot at 0.2, 0.25,

0.3, 0.35, and 0.4 K. The solid lines are smooth
curves drawn through the points. At low tempera-
ture the errors are due to inaccuracies in mea-
suring the attenuation, At higher temperatures
the errors are due to inaccuracies in measuring
the temperature and calibrating the thermometer.
Clearly the attenuation is proportional to the fre-
quency between 12 and 36 MHz but “flattens out”
at higher frequency (above 0.3 K). This is quali-
tatively what we would expect on the basis of Eq.
(4) and we are encouraged to attempt a closer
comparison. We must bear in mind, however,
that since this formula does not go over asymp-
totically to the four-phonon result a close com-
parison may not be justified. It is, however, in-
teresting to pursue the analysis. We will adopt

TABLE I. Temperature dependence of attenuation and velocity of sound in liquid ‘He at 12 MHz.

Temperature Attenuation Ac x 10° Temperature Attenuation Ac % 10°

(mK) (dB/em) c (mK) (dB/cm) c
Series A 11.92 MHz = T,;;,,=80.0 mK
210.7 0.32 0.4 681.4 10.38 650.1
212.4 0.32 0.4 787.6 15.66 531.6
242.0 0.50 4.2 780.5 15.66 531.6
245 .4 0.50 4.2 838.3 17.84 306.7
276.7 0.87 10.7 831.6 17.84 306.7
278.2 0.87 10.7 899.1 18.84 -155.1
301.3 1.16 19.1 892.9 18.84 -155.1
305.5 1.16 19.1 980.0 17.85 -912.2
335.2 1.63 39.9 980.0 17.85 -912.2
340.5 1.63 39.9 1100.1 12,81 -2282.7
386.5 2.68 81.9 1100.5 12.81 -2282.7
394.1 2.68 81.9 1230.6 5.86 -4138.1
440.8 3.56 135.2 1371.3 2.56 —-6751.4
446.1 3.56 135.2 1520.2 see —9969.7
490.7 4,66 191.0 1700.4 cen ~19596.7
493.0 4.66 191.0 1849.0 oo —-32292.3
562.8 6.46 308.5 2004.1 cee -57000.4
564.0 6.46 308.5 2154.2 see —-84898.1
681.4 10.38 650.1
Series B 12.02 MHz Echo No. 5 Tmin= 108.4 mK

109.1 0.00 0.0 187.8 0.11 1.5
118.8 0.01 0.4 211.5 0.23 3.6
120.3 0.01 0.4 213.3 0.23 3.6
130.1 0.02 0.7 227.7 0.32 4.8
130.7 0.02 0.7 229.2 0.32 4.8
141.4 0.04 0.9 257.6 0.64 10.2
142.6 0.04 0.9 260.2 0.64 10.2
153.9 0.04 1.0 297.3 1.08 24.0
155.3 0.04 1.0 299.0 1.09 24.0

187.2 0.11 1.5
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TABLE I (Continued)

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)

Series C Normalized to series F

171.7 0.11 529.0 6.03 1560.8 1.86
176.8 0.12 558.7 6.98 1565.5 1.84
180.2 0.13 606.3 8.63 1569.5 1.84
184.0 0.14 621.4 9.15 1627.6 1.95
189.7 0.17 671.7 11.31 1631.0 1.94
193.0 0.17 733.5 14 .45 1633.3 1.88
201.0 0.21 791.8 17.72 1733.9 1.44
206.4 0.26 838.5 19.22 1740.3 1.31
214.2 0.27 911.3 19.46 1802.0 0.99
216.5 0.30 804.6 17.89 1822.5 0.88
221.1 0.32 1034.3 16.41 1827.5 0.92
224.2 0.35 1085.0 13.61 1910.1 0.72
228.6 0.37 1124.3 10.04 1914.0 0.78
233.2 0.41 1146.9 8.78 1924.2 0.98
238.4 0.46 1170.6 7.80 1932.1 0.89
244.3 0.51 1195.1 6.87 1947.1 1.09
250.1 0.55 1214.7 6.23 1969.7 1.23
263.7 0.68 1238.1 5.53 1997.5 1.14
277.8 - 0.83 1262.4 4.87 2002.9 0.80
292.5 1.03 1314.3 3.74 2152.7 2.37
317.9 . 1.31 1353.7 3.09 2158.0 3.21
358.6 2.03 1384.6 2.70 2161.4 4.33
412.8 3.07 1438.5 2.48 2163.7 6.53
442.6 3.75 1476.6 2.45

482.3 4.70 1527.6 2.18

Series D Normalized to series F

176.5 0.12 212.6 0.25 258.7 0.63
184.2 0.13 217.8 0.28 257.2 0.58
205.3 0.19 227.1 0.34
207.2 0.21 - 237.4 0.50

Series E Normalized to series F

178.0 0.12 212.0 0.26 244.9 0.57
182.3 0.13 214.0 0.25 255.9 0.67
183.3 0.16 223.5 0.33 269.5 0.81
191.0 0.15 235.3 0.50 282.1 0.95
200.9 0.16 244.8 0.54 305.6 1.26
326.3 1.56 1097.8 12.87 1619.7 1.17
325.2 1.54 1132.0 11.50 1657.3 1.14
355.0 2.07 1151.6 10.12 1674.4 1.05
395.0 2.81 1158.2 9.34 1691.8 1.01
443.1 4.07 1178.7 8.36 1704.0 0.96
531.5 6.03 1189.2 7.65 1706.2 1.01
546.0 6.74 1205.9 6.93 1716.9 1.03
586.0 8.03 1215.7 6.59 1717.9 1.04
632.4 9.40 1232.3 6.06 1741.4, . 0,93
677.4 11.06 1245.9 5.69 1741.9 0.95
726.7 13.30 1263.1 5.27 1764 .4 0.77
755.5 15.37 1286.9 4.83 1788.5 0.56
789.8 17.38 1306.0 4.41 1810.3 0.73

819.0 18.46 1329.1 4.02 1860.6 0.90
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TABLE I (Continued)

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
844.9 19.14 1350.1 3.70 1925.9 0.59
874.5 18.95 1370.4 3.28 1992.5 0.81
894.0 19.14 1389.3 3.03 2072.0 2.59
925.1 19.14 1407.2 2.91 2108.4 1.73
979.5 18.95 1429.9 2.71 2136.4 0.80

1019.4 17.87 1550.6 1.25 2170.2 0.82

1046.1 16.40 1576.2 1.12

1080.0 14.54 1598.0 1.17

Series F Ty ,=146.6 mK

182.6 0.13 257.6 0.57 434.9 3.43
181.9 0.13 258.0 0.57 438.9 3.48
181.9 0.13 266.8 0.67 444.6 3.62
195.1 0.20 267.1 0.68 484.7 4.57
195.4 0.19 276.7 0.80 484.9 4.60
195.4 0.20 277.6 0.81 496.7 6.33
209.8 0.22 298.0 1.08 504.9 5.13
209.8 0.22 297.6 1.09 514.9 5.37
223.9 0.29 297.6 1.09 530.7 5.70
225.2 0.29 317.2 1.34 530.7 5.86
225.2 0.29 317.2 1.34 532.8 5.94
232.8 0.33 349.1 1.81 538.9 6.05
233.1 0.34 349.9 1.84 550.9 6.47
240.9 0.40 382.5 2.41 552.1 6.50
241.4 0.40 382.2 2.40 597.7 7.81
248.8 0.47 416.1 3.11 590.9 7.65
248.8 0.47 414.8 3.07 590.9 7.65
257.6 0.56 414.5 3.03 645.9 9.46
645.9 9.46 1066.7 15.68 1563.1 1.37
690.4 11.25 1066.7 15.81 1572.6 1.38
686.8 11.15 1139.1 10.82 1679.0 0.79
737.4 13.42 1134.1 11.14 1663.0 0.93
733.2 13.30 1126.7 11.53 1616.5 1.08
789.9 16.79 1205.0 7.30 - 1807.3 0.67
780.5 16.21 1196.7 7.45 1807.3 0.70
780.5 16.11 1207.8 7.59 1806.6 0.86
845.9 18.92 1221.9 6.55 1852.3 1.01
832.9 18.70 1219.1 6.50 1852.3 1.06
832.9 18.68 1216.2 6.47 1852.3 1.17
911.7 19.24 1317.8 4.17 1920.6 0.46
888.3 19.37 1307.9 4.35 1920.6 0.40
888.3 19.37 1304.6 4.35 1920.6 0.36
924.6 19.13 1391.8 2.70 1994 .2 0.93
914.9 19.21 1380.7 2.85 1994.2 0.93
903.8 19.27 1380.7 2.85 2073.6 3.11
953.4 18.86 1462.1 1.79 2114.8 2.61
964.0 18.75 1454.0 1.83 2159.6 9.57
978.5 18.66 1449.9 1.89 2159.6 19.18

1071.1 15.19 1586.9 1.34
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TABLE II. Temperature dependence of the attenuation of sound in liquid ‘He at 30 MHz.

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)

Series A Tmin= 175.1 mK

235.3 0.53 416.5 10.58 1185.6 36.51
235.9 0.58 441.4 12.69 1185.6 36.44
237.1 0.67 460.5 14.84 1231.3 30.97
237.7 0.68 460.5 15.04 1231.3 30.71
237.7 0.59 488.7 17.43 1280.7 26.59
240.7 0.70 512.2 20.36 1298.1 23.62
245.0 0.75 512.2 20.53 1298.1 23.28
250.7 0.92 720.3 48.44 1315.9 19.11
250.7 0.95 720.3 49.82 1353.1 16.39
256.8 1.02 742.6 51.32 1455.9 12.97
263.9 1.15 754.3 52.26 1478.3 11.04
270.6 1.51 760.3 53.09 1550.1 9.62
283 .4 1.73 766.4 53.97 1575.6 8.69
309.0 2.89 772.5 54,93 1629.2 7.34
322.5 3.50 778.8 56.04 1716.8 6.30
342.1 4.66 785.2 57.15 1780.6 5.77
3565.2 5.43 791.7 58.03 1885.8 5.62
372.7 6.67 833.0 60.34 1963.1 5.51
395.8 8.28 799.6 62.94 1963.1 5.75
414.7 9.84 931.9 61.28 2091.7 6.53
414.7 9.98 1103.6 54.93 2138.3 . 14.41
414.7 10.11 1129.7 51.06 2187.2 9.16
415.6 10.30 1157.0 44.67 2187.2 20.23
416.5 10.51 1185.6 36.71 2208.6 32.69

Series B Normalized to series A

367.0 6.26 411.0 9.79 513.5 20.86
368.4 6.30 417.7 10.38 517.5 21.35
371.3 6.36 "421.4 10.86 520.2 21.84
369.8 6.44 428.0 11.45 524.5 22.33
372.7 6.54 434.3 12.04 528.3 22.82
374.2 6.61 442.4 12.92 533.6 23.31
374.2 6.76 453.4 14.10 536.5 23.80
377.1 6.86 465.2 15.35 540.9 24.29
378.6 6.93 471.1 15.88 544.5 24,78
381.6 7.29 477.4 16.69 548.6 25.27
386.2 7.57 487.0 17.71 552.8 25.76
389.6 8.05 493.4 18.44 556.4 26.26
396.8 8.60 499.8 19.17 561.1 26.75
404.6 9.29 475.9 20.29 562.8 27.24
567.9 27.73 754.6 54.05 1446.0 15.90
571.2 28.22 770.9 56.16 1485 .4 13.40
576.2 28.71 796.6 59.10 1516.8 12.39
579.2 29.20 824.2 61.06 1546.1 11.12
581.5 29.69 840.3 62.04 1595.1 10.02
589.3 30.67 869.6 63.64 1641.3 8.71
592.4 31.16 920.4 63.64 1679.9 8.14
596.3 31.65 945.0 62.49 1694.5 7.75
610.1 33.52 1082.9 59.30 1740.1 7.18
617.9 34.59 1106.9 55.60 1781.1 6.65

624.0 35.57 1136.8 52.49 1824.0 6.34
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TABLE II (Continued)

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
629.7 36.06 1161.5 47.67 1902.7 5.72
640.5 37.53 1184.3 42,14 1968.2 5.49
646.3 38.51 1206.0 38.99 2014.2 5.51
654.2 39.49 1227.5 35.23 2071.5 6.02
670.3 41.45 1246.3 32.96 2128.4 7.37
679.7 43.41 1249.7 31.92 2151.3 8.71
696.1 45.37 1253.1 31.51 2154.6 11.33
709.9 47.33 1253.1 31.78 2161.2 13.95
731.5 50.27 1246.3 32.64 2167.9 18.71
Series C Normalized to series A
368.4 6.34 456.1 14.60 681.3 41.80
372.7 6.68 462.8 15.27 695.1 43.76
377.1 6.96 471.8 15.90 709.9 45.82
389.4 8.06 482.8 17.18 720.5 46.80
394.2 8.32 498.4 19.01 733.8 49.25
397.5 8.76 513.1 20.77 746.4 50.62
400.8 9.01 523.6 . 22.13 765.9 53.27
405.9 9.40 535.3 23.58 786.1 55.23
411.1 9.83 546.1 24.89 809.7 57.78
414.7 10.17 556.6 26.31 831.9 60.47
418.3 10.40 566.1 27.64 860.6 61.94
420.1 10.75 575.5 28.64 878.2 63.17
425.7 11.30 584.1 29.11 898.8 62.09
431.5 11.62 596.8 30.72 1004.3 61.31
435.4 11.95 608.0 32.28 1083.3 58.17
437.4 12.28 616.8 33.46 1136.8 50.52
439.4 12.73 625.6 34.89 1162.5 44,74
443.5 13.22 639.7 36.21 1182.3 42.38
447.6 13.63 652.1 37.97 1195.6 39.54
451.8 14.01 667.5 39.83 1216.6 36.40
1227.5 34.83 1679.9 8.03 1908.0 5.68
1244.1 33.17 1700.9 7.44 1940.4 5.56
1248.6 31.93 1744.5 6.89 1968.2 5.50
1255.4 31.68 1744.5 6.98 2029.0 5.57
1374.8 29.38 1744.5 7.29 2059.2 5.62
1447.6 15.05 1790.4 6.70 2080.8 5.98
1495.2 13.05 1814.3 6.49 2112.3 6.31
1528.8 11.91 1814.3 6.39 2134.9 7.22
1600.7 9.92 1814.3 6.38 2157.9 8.88
1625.6 9.10 1828.9 6.35 2167.9 10.42
1651.3 8.46 1838.7 6.21 A 2167.9 14.44
for the moment the point of view that the fre- temperature dependence of « is not expected but
quency dependence is accurately represented by some variation was observed. A “best value”
Eq. (4) but that the coupling constant (u+1)?, of u=5.30 was selected which is to be compared
and the product of the dispersion constant y, and with the accepted value of 2,65, Furthermore,
relaxation time T are to be determined from a we find y 726X 10%°/T 2 which differs radically
least-squares fit. We obtained a value of » and from the 7-° behavior expected on the basis of
y T at a specific temperature by fitting to the ten Landau and Khalatnikov’s theory. Whitworth’s*
experimental frequencies. The same fit was measurements of the thermal conductivity in nar-
then carried out at a second temperature and a row channels lead to a phonon lifetime 7= 1.6
new value of # and y T was determined. By re- x10~3/T4-3 which lends some support to the 7 -3
peating this process for several temperatures behavior deduced from our fit. Actually most of
in the range 0.2 to 0.4 K the temperature de- the estimates of T predict that below about 0.3 K

pendence of # and y T are determined. A strong the lifetime will be “size-effect limited” by scat-
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TABLE III. Temperature dependence of attenuation and velocity of sound in liquid ‘He at 36 MHz.

Temperature Attenuation Ac % 10°
(mK) (dB/cm) c (mK) (dB/cm)

Temperature Attenuation Ac % 10°
c

Series A 35.89 MHz Normalized to series C, Ac¢/c Normalized to series B

202.5 0.40 3.3 367.4 7.66 22.0
203.3 0.40 3.3 384.2 8.97 28.3
225.7 0.62 3.1 404.5 11.40 39.5
226.7 0.65 3.1 407.0 11.40 40.0
253.8 1.18 3.8 427.1 14.18 55.8
255.1 1.18 3.8 429.5 14.18 55.8
285.9 2.18 8.0 450.7 17.38 79.0
323.1 3.92 9.8 472.4 21.01 109.3
336.5 4.82 11.9 478.9 21.21 112.1
351.5 6.03 16.4 486.5 23.46 136.9

Series B 35.89 MHz Normalized to series %, A c/c Normalized to T1hin=174.0 mK

174.0 0.30 0.0 264.8 1.80 4.4
175.6 0.30 0.2 284.3 2.36 6.3
192.7 0.48 0.9 304.3 3.23 7.2
207.3 0.48 1.4 365.1 7.30 19.3
209.0 0.48 1.6 367.9 7.30 19.3
222.4 0.87 2.1 465.2 19.69 96.9
233.3 1.04 3.0 489.7 23.75 136.1
249.0 1.26 3.2 509.9 29.14 169.1
251.4 1.26 3.2
Temperature Attenuation Temperature Attenuation Temperature Attenuation

(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)

Series C Tmin=93'9 mK

94.9 0.00 363.8 7.09 1552.9 17.16
136.8 0.17 403.6 11.19 1600.6 15.20
148.9 0.22 448.4 16.90 1649.8 13.53
164.1 0.26 498.2 24.84 1699.9 12.22
180.4 0.43 546.5 32.68 1748.4 11.02
198.6 0.63 603.9 45.82 1797.9 10.26
216.4 0.76 1294.9 42.98 1845.7 9.70
239.2 1.12 1350.6 34.05 1887.2 8.91
263.8 1.74 1399.6 29.49 1976.7 8.62
292.3 2.69 1448.7 23.94 2101.2 12.59
327.2 4.43 1500.5 19.91 2124.3 20.88

Series D Normalized to series C

167.3 0.20 277.5 2.06 406.4 12.07
198.6 0.49 278.2 2.00 446.1 17.59
215.0 0.44 307.8 3.26 492.5 25.77
251.4 1.25 341.1 5.35
252.0 1.36 372.4 7.95
tering off the boundaries of the chamber.*® In which we find is in the vicinity of 10%, The
this case an appropriate form of 7 would be temperature dependence of 7 still goes approxi-
mately as T3, It is interesting to note in passing
1/1 =1/7, +1/7 , that the inclusion of boundary scattering changes
total boundary the asymptotic form of Eq. (4) (as T=0) from «
where T Sd/c . «T2?/yTto acwT4.
boundary The 12-, 30-, and 36-MHz data can be com-
By fitting a Tyotq] Of this form to our data it is pared with the theory of Khalatnikov and

possible to obtain an approximate value for y Chernikova for a wide range in temperature since
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TABLE IV. Temperature dependence of attenuation and velocity of sound in liquid ‘He at 60 MHz.

Temperature Attenuation Ac

Temperature Attenuation Ac

6
(mK) (@B/cm) e <10 (mK) (dB/cm) Palebld
Series A 59.84 MHz Tmin=89'2 mK

91.4 0.00 0.0 275.3 3.02 8.4
138.4 0.19 0.9 293.9 4.11 9.1
140.6 0.19 0.9 304.3 4.11 9.1
151.3 0.15 0.9 325.2 5.99 9.8
160.1 0.41 1.1 329.3 5.99 9.8
172.9 0.54 2.1 353.9 8.94 11.9
187.8 0.62 2.8 380.8 12.79 13.3
204.1 0.78 3.2 404.5 17.45 20.5
223.3 1.17 4.2 408.9 17.45 20.5
243.7 1.63 . 5.8 436.4 24.80 30.6
246.6 1.63 5.8 455.5 30.49 44.1
266.8 2.34 7.0 459.1 30.49 44.1
268.2 2.34 7.0 477.2 36.81 55.1

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
Series B Normalized to series A
112.6 0.15 172.3 0.43 303.9 4.26
119.3 0.16 173.4 0.43 304.3 4.26
119.3 0.11 193.4 0.58 305.0 4.28
119.6 0.12 194.2 0.59 335.2 6.61
130.4 0.15 217.7 0.98 335.2 6.63
130.7 0.15 217.7 0.98 367.6 10.43
144.1 0.20 243.1 1.61 367.6 10.43
144.5 0.21 244.3 1.61 405.8 16.84
158.2 0.31 272.4 2.58 446.9 27.41
158.6 0.32 272.8 2.59 493.0 42.31
Series C Normalized to series A

107.5 0.10 178.8 0.43 359.4 9.59
109.5 0.10 196.5 0.73 403.2 16.35
113.1 0.13 218.4 1.10 442.7 26.04
123.6 0.17 240.9 1.60 480.2 38.85
136.4 0.15 265.5 2.39 478.9 36.86
149.1 0.26 294 .4 3.74
162.7 0.34 325.7 5.96

these data are fairly complete at the higher
temperatures. The solid line in Figs. 4, 5, and
6 shows the theoretical results (see the Appen-
dix for the theoretical expressions). Rather good
agreement is obtained near the peak at 1 K (where
WTpr = 1), but the theoretical value is too small
both above and below this temperature. The pa-
rameters used in this theory were the same as
those used by Khalatnikov and Chernikova. The
curves above and below 1.2 K result from the

two different theoretical treatments used by these
authors. As we stated before, they do not join
smoothly with one another. If computational dif-
ficulties are surmountable, it would be useful to

extend the theory to include simultaneously the
effects of elastic phonon-roton (7py), inelastic
five phonon (73 —5) and wide angle phonon-phonon
(Tpp) scattering. The agreement is particularly
poor at low temperatures. In these calculations
the accepted value of »=2.65 has been used.
Since the Khalatnikov and Chernikova theory is
asymptotically the same as Eq. (3), we know
from our previous fit that # =5.30 gives better
agreement (at low temperature). Such a value
of # would destroy the agreement at high tem-
peratures, however.

Above about 1.2 K the attenuation should behave
in a classical manner, that is
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TABLE V. Temperature dependence of attenuation and velocity of sound in liquid ‘He at 84 MHz.

Attenuation Ac Attenuation Ac

Temperature 2C 108 Temperature —x 10°
(mK) (dB/cm) c (mK) (dB/cm)
Series A 83.79 MHz Tmin= 91.4 mK
92.6 0.00 0.0 257.6 2,76 7.0
125.7 0.22 1.4 286.7 4.29 10.0
127.2 0.22 1.4 289.8 4.50 9.3
155.3 0.43 2.1 318.6 6.66 10.5
156.2 0.43 2.1 320.6 6.66 10.5
176.4 0.65 2.5 349.9 10.41 12.6
177.6 0.65 2.5 352.5 10.41 12.6
203.3 1.01 4.2 385.3 16.38 13.0
203.3 1.01 4.2 388.2 16.38 13.0
231.3 1.80 6.5 416.1 23.20 16.5
232.3 1.80 6.5 416.8 23.20 18.9
256.3 2.76 7.0
Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
Series B Tp;n=109.1 mK
119.1 0.04 194.9 0.81 333.5 8.33
127.8 0.04 194.9 0.84 333.5 8.35
127.8 0.02 213.4 1.26 368.9 13.68
134.8 0.15 237.6 1.98 422.9 23.78
152.6 0.27 257.6 2.86 464.4 32.47
152.6 0.28 257.6 2.89 495.3 48.49
168.4 0.42° 282.8 4.06
187.8 0.67 306.9 5.61
Series C Tmin= 85.2 mK
111.4 0.04 74.9 0.78 266.3 3.43
123.3 0.18 188.0 0.97 292.9 5.00
135.9 0.18 202.1- 1.28 321.5 7.38
148.0 0.27 218.6 1.63 355.8 11.61
152.8 0.34 233.0 2.06 398.6 19.65
162.5 0.49 249.1 2.66 437.1 30.53
28 T T T T
28 1 a=(w?/2pc®)(§n+¢) ,
- <
::_ o as given in the introduction. Specifically the at-
_ 2o} 4 tenuation should be proportional to the square of
§ 18- . the frequency. At the minimum in the attenuation
= I6F b near 1.9 K it was possible to observe an echo for
g - ] frequencies up to 90 MHz, In Fig. 15 we have
g :Z[ | plotted the square root of the attenuation at 1.9
<.k i K as a function of frequency on a log-log plot.
ek | The data of Chase and of Woolf, Platzman, and
o /S . o———TT025K - Cohen have been included to extend the frequency
2t -l oo o range. We observe that the data follow a

straight line with a slope of one.
After, the completion of the attenuation mea-

o0 ° o !
(o] 50 100 150 200

Frequency (MHz)

FIG. 14. The observed attenuation as a function of
frequency for temperatures 0.2, 0.25, 0.3, 0.35, and
0.4 K. The solid lines are smooth curves drawn
through the data. The 20-MHz points are the data of
Waters, Watmough, and Wilks (Ref. 14).

surements equipment for the accurate measure-
ment of the temperature dependence of the sound
velocity was acquired. The measurement of
sound velocity and attenuation are complemen-
tary. In the Green’s-function theory, where one
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TABLE VI. Temperature dependence of the attenuation of sound in liquid ‘He at 90 MHz.

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
Series A Tmin= 116.1 mK
118.7 .29 324.7 9.11 1629.2 60.09
119.8 .19 337.3 10.09 1657.4 60.09
122.6 .19 352.2 12.45 1686.6 58.62
139.4 .19 367.0 14.80 1814.3 58.13
144.9 .19 383.2 17.84 1885.8 56.96
160.4 .29 400.8 21.17 1923.6 55.39
200.8 1.17 414 .7 25.68 1963.1 54,21
198.7 .98 414.7 25.88 2091.7 53.43
226.4 1.47 439.4 32.54 2187.2 54.31
259.6 2.45 456.1 38.52 2187.2 56.17
291.1 5.29 471.9 51.37 2238.3 60.19
291.1 5.19 476.6 48.43 2469.0 65.98
312.0 8.13 486.2 54.70
313.0 7.64 1602.0 63.03

Series B Normalized to series A

361.5 13.33 399.1 21.39 425.7 28.67
361.5 13.36 400.8 22.10 425.7 28.88
361.5 13.35 402.5 22.37 425.7 28.88
362.8 13.51 404.2 22.86 425.7 28.90
364.2 14.06 405.9 23.35 425.7 28.98
367.0 15.08 409.4 23.84 425.7 28.89
372.7 15.52 411.1 24.33 425.7 29.18
377.1 16.02 412.9 24.82 429.5 32.16
378.6 16.49 414.7 25.31 435.4 33.33
381.6 16.88 416.5 26.00 439.4 34.53
383.2 17.26 416.5 26.44 443.5 36.18
386.2 17.94 418.3 26.88 445.5 37.20
389.4 18.45 418.3 27.22 451.8 38.94
392.6 19.08 420.1 27.45 458.3 41.79
394.2 19.65 422.0 28.24 462.8 44.14
395.8 20.12 423.8 28.30 467.3 45.22
395.8 20.61 425.7 28.44 )

399.1 21.10 425.7 28.67

TABLE VII. Temperature dependence of the attenuation of sound in liquid ‘He at 108 MHz, Tmin= 109.7 mK.

Temperature Attenuation Temperature Attenuation Temperature Attenuation

(mK) - (dB/cm) (mK) (dB/cm) (mK) (dB/cm)

120.3 0.03 181.6 0.80 277.5 4.44

131.5 0.00 197.1 1.02 303.3 6.39

143.0 0.19 214.3 1.47 331.8 9.37

154.2 0.38 233.6 2.26 368.9 15.02

167.4 0.55 253.8 3.01 399.5 21.61
calculates a self-energy, the velocity and atten- =1/A=w/c(w, T). The attenuation and velocity
uation are, respectively, the real and imaginary are, in fact, related by a dispersion relation. 46
parts. When a kinetic-equation approach is used, Measurements of the temperature dependence
one calculates a complex propagation constant of the velocity were made at 12, 36, 60, and 84

k=B+ia, where a(w, T) is the attenuation and g MHz. Figure 16 shows the low-temperature
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TABLE VIII. Temperature dependence of the attenuation of sound in liquid ‘He at 132 MHz.

Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
Series A Tmin=85’4 mK
102.6 0.06 153.5 0.59 240.2 2.79
102.6 0.07 153.6 0.61 262.8 4.65
115.1 0.12 167.3 0.89 263.3 4.26
114.9 0.13 181.3 1.12 288.1 6.91
127.8 0.24 181.3 1.12 317.2 9.65
127.5 0.24 199.7 1.60 317.2 9.75
140.4 0.42 219.2 2.24 348.2 15.14
Series B Tmin= 117.9 mK
129.4 0.10 189.1 1.23 278.5 5.55
141.4 0.28 209.2 1.74 306.0 8.04
156.5 0.55 230.2 2.68 335.6 11.80
170.2 0.78 252.9 3.78
TABLE IX. Temperature dependence of the attenuation of sound in liquid ‘He at 150 MHz, Tmin= 126.5 mK.
Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
135.6 0.39 172.9 1.07 254.7 4.11
144 .4 0.29 1794 - 1.17 275.2 6.17
156.2 0.29 227.0 2.45 293.8 8.13
164.8 0.78 221.7 2.25 322.5 11.56
TABLE X. Temperature dependence of the attenuation of sound in liquid ‘He at 204 MHz, T;,=98.0 mK.
Temperature Attenuation Temperature Attenuation Temperature Attenuation
(mK) (dB/cm) (mK) (dB/cm) (mK) (dB/cm)
120.2 0.20 171.2 1.12 212.8 2.81
134.5 0.36 183.9 1.53 228.2 3.72
135.0 0.35 184.2 1.55 228.7 3.78
143.3 0.48 197.8 2.06 246.6 4.97
144.1 0.45 198.4 2.09 268.9 7.20
144.9 0.51 199.4 2.14 295.6 10.40
157.7 0.78 209.8 2.68 324.3 15.11
157.7 0.72 210.2 2.71 324.5 15.30
170.0 1.11 212.4 2.80 356.3 22.25

portion of the data, Tables I, III, IV, and V
contain the data for all four frequencies. As
described earlier, the change in sound velocity
between two temperatures T and Tpjy is cal-
culated from the change in transit time through
the relation

1/c(w, T) - 1/c(w, Tmin) =Aat/d .
The temperature T in at which these runs were

started was about 35 mK. The theory tells us
that the velocity change approaches zero as T'*

and if we couple this fact together with the fact
that no velocity changes were observable below
about 150 mK then we may approximate Tpmin by
zero. Since the total observed velocity change
was much smaller than the velocity itself we can
make a first-order expansion and obtain

ac/c(w, 0)=[c(w, T) - c(w, 0)] /c(w, 0)
2 c(w, 00at/d .

For c(w, 0) we used the value of Whitney and
Chase?” 2.3827x10* cm/sec (for the usual ultra-
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FIG. 15. A log-log plot of the square root of the
attenuation as a function of the frequency. The circles
are the 12—, 30-, 36-, and 90-MHz data from the
present experiment. Shown also are the data of Chase
at 6 and 12 MHz (squares) and also the data of Woolf,
Platzman, and Cohen at 556 and 723 MHz (triangles).
The straight line (with a slope of one) shows that the

attenuation is proportional to the square of the frequency.

sonic frequencies the dispersion at zero tem-
perature is negligible). The solid lines in Fig.
16 are the theory of Khalatnikov and Chernikova
for 12 and 84 MHz. The 11.9-MHz data of
Whitney and Chase?® have been included and
agree with us within experimental error. We
observe that the theory predicts a larger velocity
change at higher frequency whereas the experi-
mental data show quite the opposite behavior.
Furthermore the observed velocity change is in
all cases much smaller than the theoretical pre-
diction. Instead of a T* dependence, an initial
T3 going over to T ® behavior is observed. Had
we used the “best value” of » from our previous
fit, the discrepancy would be even larger. The
behavior with frequency should be looked upon as
the most serious disagreement. There is no way
that we can obtain the observed frequency depen-
dence from Eq. (5), and we can only conclude
that the present low-temperature theory is inade-
quate. *°

Figure 17 shows the full range of temperatures
for the 12-MHz velocity data. Even though at-
tenuation measurements were possible above 1 K
for the 36 MHz, velocity measurements could
not be made due to a lack of knowledge of the
phase relative to low temperature. This occurred
because the phase of the signal could not be fol-
lowed through the attenuation maximum. Shown
also in Fig. 17 is the theory of Khalatnikov and
Chernikova. We see that the general behavior

200 . . . .
12 MHZ
1901 THEORY

1801 ;|5 Mz B4 MHZ—]

170} ©36 MHZ
2 60 MHZ
v 84 MHZ
150} § Whitney & Chase

160

140 -
130
120
1O
100 -

O)UNITS 106

C-C

Co
®
o
-

FaY -

g&g&l T — L Il b
(¢} 100 200 300 400 500 600
TEMPERATURE (MILLIDEGREES)

FIG. 16. The temperature dependence of the ve-
locity of sound at 12, 36, 60, and 84 MHz. Only the
low-temperature portion of the 12-MHz data is shown.
Shown also is the 12~ and 84-MHz theory of Khalatnikov
and Chernikova. The points with vertical error bars
are the data of Whitney and Chase.

of the high-temperature side of the 12-MHz ve-
locity data is adequately explained by the theory.
We note the following general features. The ve-
locity change rises to a peak and then passes
through zero at a temperature very close to that
at which the attenuation goes through a maximum,
Thereafter the velocity continues to decrease
with increasing temperature.

We now compare our results with those of other
authors. Chase® has made detailed measurements
of the attenuation at 2.0, 6.0, and 12, 1 MHz for
temperatures above 0.9 K. As described earlier
a moving transducer technique was used in these
measurements which allowed in sifu alighment
of the transducers and thus a determination of
the absolute attenuation., Finite-amplitude ef-
fects were also observed by Chase; his reported
data were taken at power levels than the thresh-
old for this finite-amplitude effect. The 12, 1-
MHz data are essentially in agreement with our
12-MHz data. Near 1.9 K there is some small
disagreement. Since the velocity of sound is
temperature-dependent and amounts to a 4% shift
at 1.9 K, there is some change in the amount of
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FIG. 17. The temperature dependence of the sound
velocity at 12 MHz. The solid line is the theory of
Khalatnikov and Chernikova. The points with vertical
error bars are the data of Whitney and Chase.

energy coupled into the liquid at high temperature.
The change in coupling is difficult to evaluate
numerically. Our data are within Chase’s experi-
mental error, however. Later low-temperature
measurements by Chase and Herlin® are (within
their scatter) in agreement with our data on the
low-temperature side (7<0.8 K). The knee or
change in slope observed in our experiments

near 0.35 K is also clearly seen in the data of
Chase and Herlin. Near 0.9 K a double peak

was reported which was not observed in Chase’s
earlier work. In later measurements at 11.8
MHz Whitney® was able to show that this double
peak was an instrumental effect resulting from
using a single transducer. The magnitude of the
peak measured by Whitney is in very good agree-
ment with our value. Whitney also reports an
indication of a change in slope (in a log-log plot)
near 0.35 K. )

Dransfeld, Newell, and Wilks®'° made mea-
surements at 6.0 and 14.4 MHz. Since we have
made no measurements at these frequencies we
cannot compare their results directly with ours.
Measurements at 6.0 MHz were made by Chase®
as mentioned earlier and also more recently by
Jeffers and Whitney. ! The data of Jeffers and
Whitney are in excellent agreement with the work
of Chase® but are in rather poor agreement with
the data of Dransfeld, Newell, and Wilks. !° Be-
cause of the excellent agreement between Jeffers
and Whitney and Chase, we conclude that there

must be some error in the measurements of
Dransfeld, Newell, and Wilks. Both the 6. 0-
and 14.4-MHz data of Ref. 9 appear quite flat-
tened near the peak. Jeffers and Whitney at-
tribute the discrepancy to the use of a single
transducer for both transmitting and receiving
the sound signals. The danger is that the re-
ceived signal may interfere with either a pro-
longed ringing (of the transducer) following trans-
mission, or a leakage of rf through the gating
circuits used to generate the pulses. Indeed we
observe that the 14.4-MHz data of Dransfeld,
Newell, and Wilks appear as a double peak simi-
lar to that observed by Chase and Herlin, who
also used only one transducer. Finite-amplitude
effects are not discussed in Ref. 10 and may be
another possible source of error.

Jeffers and Whitney have recently made an ex-
haustive study at low frequency. Measurements
were made at 1.00, 2,02, 3.91, 6.08, 10.2, and
11.7 MHz. The 2.02- and 6. 08-MHz data are
in very good agreement with the high-temperature
measurements of Chase. The data of Jeffers and
Whitney were normalized by assuming the attenua-
tion to be proportional to some power of the tem-
perature and least-squaresfitted in the manner
described previously. As we have stated this is
valid only as long as we know that the attenuation
actually follows such a power law. Our 12-MHz
data clearly show a break near 0, 35 K and thus
do not follow a power law. The normalized data
of Jeffers and Whitney do not show a break near
0. 35 K but instead show an over-all T2 behavior
at low temperature, whereas our data show a
limiting slope near four at low temperature. We
believe Jeffers and Whitney’s normalization to
be incorrect. Thus the over-all 72 behavior ob-
served (fitted) at other frequencies may be in er-
ror also. The normalization might also change
the frequency dependence to make it closer to w
rather than w32, We hasten to point out, how-
ever, that the small shift in a(T'min) necessary
to change a T3 behavior into a 7* behavior at
low temperature will have a negligible effect at
the higher temperatures. It is also clear that
the measured difference in attenuation between
any two temperatures is also unaffected by the
normalization.

One common criticism can be made of the low-
temperature work of all the authors discussed.
Warm-up times in their experiments ranged
from 10 min to an hour whereas our warming
rates were on the order of a few millidegrees
per hour. This means that less time is available
for an accurate determination of the amplitude
and temperature. Some possibility also exists
for the system to not be in thermal equilibrium.

Waters, Watmough, and Wilks'* have recently
made measurements at 20.7 and 61.1 MHz, The
61. 1-MHz data are in excellent agreement with
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our own 60-MHz data. We have not made any
20-MHz measurements, but their data fall nicely
on the frequency dependence of fixed temperatures
shown in Fig. 15. They have fit their data to an
wT* dependence of the attenuation at very low
temperatures. Figure 14 shows that at low tem-
perature the attenuation is approximately propor-
tional to w. Waters, Watmough, and Wilks state
that the attenuation is proportional to T* at low
temperatures but that the exponent becomes
greater than 4 at higher temperatures. They at-
tribute this to the w7 ® term suggested by Khalat-
nikov.? According to formula 4 an w7 * behavior
requires 3y p2wT<« 1. At higher temperatures
(where they suggest the wT ¢ contribution) this
inequality is even better satisfied. However,
when this inequality is satisfied the perturbation
theory used to calculate the four-phonon process
(wT®) makes no sense. This is because the ener-
gy uncertainty will then be greater than the ener-
gy difference in the denominator of the second-
order perturbation-theory expression used to cal-
culate the four-phonon process. Indeed Khalat-
nikov®® implies that the transition should be the
other way around; namely, a transition from an
wT* high-temperature behavior to a wT'® low-
temperature behavior. The data of Waters,
Watmough, and Wilks appear to fit equally well

a single power-law expression with » slightly
greater than 4, On the whole we consider their
data to be in good agreement with ours.

The temperature dependence of the sound ve-
locity has recently been measured by Whitney
and Chase.?® Measurements were made at 1.00,
3.91, and 11.9 MHz from 0.2 to 1.1 K. In the
frequency range 1.00 to 11.9 MHz Whitney and
Chase find that (for a given temperature) the ve-
locity increases with increasing frequency. This
is the behavior expected from the Khalatnikov-
Chernikova theory and is opposite to that observed
by the present authors in the frequency range 12
to 84 MHz. Thus the frequency dependence of the
velocity of sound at fixed temperature must pass
through a maximum near 12 MHz in order to be
consistent with both sets of data, This is a
rather surprising and important result which
should be tested again experimentally.

At temperatures below 0.7 K Whitney and Chase
find that the measured temperature-dependent
shift of the velocity is less than that predicted by
Khalatnikov and Chernikova. We again have the
situation where a single Griineisen constant » can-
not simultaneously fit the observed attenuation
and velocity data. The 11.9-MHz data of Whitney
and Chase are shown in Figs. 16 and 17 and are
in good agreement with our 12.0-MHz results.

CONCLUSION

The theory of Khalatnikov and Chernikova agrees
well with experiment only at the peak in the at-

tenuation curve near 0.9 K. Agreement at higher
and particularly at lower temperatures can be
considered only qualitative. At higher tempera-
tures there are a number of relaxation mecha-
nisms contributing and also an elementary exci-
tation model has less meaning. Thus disagree-
ment at high temperature is easily understand-
able. At very low temperature one would think

a more exact theoretical treatment would be pos-
sible since only phonons contribute. The dis-
agreement at low temperature is most upsetting.
As we have seen we can force fit Eq. (5) by fit-
ting # and y7. The temperature dependence of
the 7 we obtain by doing this is in complete dis-
agreement with theory. While it is understood
that there may be some experimental uncertainty
in #, the value required by the fit will destroy
the agreement of theory and experiment near 1
K. We again point out that Eq. (5) does not ap-
pear to have the right low-temperature limit.
The situation with respect to the temperature

and frequency dependence of the velocity is worse.
The value of # which best fits the low-tempera-
ture attenuation is greafer than the accepted val-
ue, while a smaller value of « is required to
bring the theory in better agreement with the ve-
locity. The temperature dependence of the ve-
locity is also in disagreement with theory. Fin-
ally the frequency dependence of the observed ve-
locity changes are in the opposite sense of that
predicted by theory. We therefore conclude that
the present theoretical formulation of sound prop-
agation at very low temperatures is incomplete.

APPENDIX

We give here the expressions for the attenua-
tion and velocity of sound as calculated by
Khalatnikov and Chernikova. !¥~!% For the low-
temperature range (below 1.2 K) we present the
formulas in a different notation than that used by
Khalatnikov and Chernikova. The way they are
given here is due to Whitney®® and is convenient
for machine computation.

py is the normal density of phonons

P 4
= =% 74-1,218X10-4T* |

where k is Boltzmann’s constant, % is Planck’s
constant, p is the density of the liquid, and ¢ the
velocity of sound.

Tpp is the wide angle phonon-phonon relaxation
time

1 9x13! &k° (w+1)*,
T T 7 per T
pp

=3.134x10'T ° sec™* ,
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where u=(p/c)oc/8p=2.64.

Tpr is the phonon-roton relaxation time

1 I p9/2 poiut/? S — A/KT
T e () e
12

9 — —
-1.28x10127% = A/KT o = 1

ec ,

_2,1 (po)?, 2 &) 2_
where I‘—9+25<“C> *5 \ e A+A%=2,62 ,

o) ()2 %)

a,nd A =\ =0 - L0 = - 0.1
<poc a7 " \ue )\ b, o ’
(estimated by Khalatnikov and Chernikova). The
values used are

$0=2.02%x107*° gcm/sec ,
p=1.06x10"% g A/k=8.65K ,
c=2.383%10*cm/sec ,
p=0.145 g/cm?® .,

We define also 9pp =WTpy, epr =Wy, 0=wT
where

1/7=1/1 1/7 .
/ /pp+/pr

The attenuation a(w, 7) and the change in ve-
locity of sound are given by

a(w,T):é(w/c)(pn/p)ImrI) ,
c(w, T)-c(w, 0) == 3c(w, 0)(pn/p)
x[Re<I>+3<u2—-lp—2-a—2%> ],

where

Red=1-3(ND +N.D.)/(D 2+D ?) ,
v v 1 1 v 1
_ _ _ 2 2

1m<1>_1/epr 3(NiDr NrDi)/(Dy +Dl.) ,
N =34?In(1+462)+B C -B.C. ,

v v v 1 1
N.=-y?tan"20+B.C +B C, ,

1 1T v v 1

_ _ 2
B = 2u+1-(2B8+ 1)/6pr )

B, =[2(u+1) +p(1- 6or /65,
A

s

CT=%ln(1 +462) 40" 'tan"1(20) - 2

cz. =(260)"'1In(1 + 462) — tan-1(26)

1 8 -1
=2-{=-=Z 0
Dy 2 (0 i )tan 2
pr
C
3 v
+a (CZ,+B@———> s
pp pr

D.:—l<l———§—) In(1 +462)
pr

s

B=(k/1uc?)T =0.688T .

For the higher temperatures (about 1.2 K) the
only case of interest is wT r << 1. For this case
the five-phonon relaxation%ime is also included.

1/'r3_’2

where sz2.4><417(f<T/h)3 ,

=AKT2/3N
/ p

where A is taken from acoustic experiments and
is 3.4 X 10*3 and

— -8m=9
73__2_1.288><10 T° sec,

W¥T P
a2 1 ]
alw, T) = P o [15+66(3u+1) ,

~

- . (1 . 0.376 )
- )
pr pr 0.451('rpr/'r3 - 2) +0.0036

TBased on work performed under the auspices of the
U. S. Atomic Energy Commission.
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