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Mechanism for Two-Roton Raman Scattering from Liquid Helium
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We study couplings between the phonon-roton excitations of liquid helium and an electromag-
netic field. By including the electronic excitations of the helium atoms as intermediate states,
we find a second-order two-roton H,aman scattering amplitude which may be large enough to
be observable. The roton scattering cross section as a function of energy transfer is calcu-
lated from the experimentally known roton spectrum and the pair-correlation function. The
lowest-order infrared-absorption process involves (qa) and the quadrupole-dipole interaction
and is too small to be observed.

I. INTRODUCTION

In several many-particle systems, Raman scat-
tering has been a. useful tool for studying elemen-
tary excitations, complementing inelastic neutron
scattering. In liquid helium, Brillouin scattering
has permitted the study of sound waves. It is of
interest to ask if the rest (roton part) of the vi-
brational excitation spectrum observed by neutron
scattering could also be observed in light scatter-
ing experiments. One might expect, however,
that only a small coupling would arise between
the phonon-roton spectrum of liquid helium and
an electromagnetic field for two reasons: First,
the requirements of energy and momentum con-
servation would lead only to production of single
excitations of very small energy (Brillouin scat-
tering). Second, none of the excitations carry an
electric or magnetic dipole moment in lowest or-
der of approximation, so no coupling seems pos-
sible. We point out here that one can get around
the first, momentum conservation, difficulty by
considering the creation of two excitations simul-
taneously. Then the peak absorption or scattering
cross section occurs when the two-excitation
density of states is largest, i. e. , when the energy
transfer to the fluid is such that rotons at one of
the two flat places in the co versus 0 curve for the
excitations are produced in the Raman scattering
or infrared-absorption process. Because the
liquid is isotropic these peaks in the density of
states occur at the same energy in all directions
in k space and a larger peak is expected than in
the analogous situation in most solids. ' The ex-
perimental Raman-scattering (infrared-absorp-
tion) peaks would come at convenient energy

transfers (infrared photon energies) of 12 and 19
cm ' so that the experiment might be quite easy
to perform. A Raman-scattering experiment is
also simpler than the corresponding Brillouin-
scattering experiment because the energy and
momentum conservation rules do not fix the angle
of the scattered photon as a function of energy
transfer in the two-excitation case. '

The second, dipole-moment, difficulty is re-
solved if one considers that in an excitation of
large k and small wavelength, the helium atoms
are mutually polarized by the van der Waals in-
teractions. This polarization provides a means
by which the excitation can couple to the electro-
magnetic field. The magnitude of this polariza-
tion clearly increases with increasing k. The re-
suit is that the two-roton process, which involves
high-k excitations, might have a substantial cross
section compared with the one-phonon (Brillouin)
process (small k) even though the latter is of first
order in the density fluctuation associated with the
phonon while the two-roton process is of second or-
der in the density fluctuation associated with the
roton. In this paper, we calculate the Raman-
scattering cross section for two-roton scattering
on the basis of these ideas. We find that the di-
pole-dipole term in a multipole expansion of the
Coulomb interaction between helium atoms gives
a two-roton Raman-scattering cross section
which may be observable. The first contribution
to infrared absorption comes from the quadrupole-
dipole term and is too small to be observable. If
the Raman scattering is observed, an easy way to
investigate the effects of vortices on the roton
spectrum may present itself. This is briefly dis-
cussed.

II. MODEL HAMILTONIAN AND REDUCTION TO PHONON AND EXCITON VARIABLES

The model which we consider is described by the following Hamiltonian:

X = X +K +X
atoms atom- atom atom-field '
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Here M is the mass of the helium nucleus, me is the electron mass, Kl~ =Rl —%~ where Rl is the posi-
tion of the lth nucleus, rii = xii —Rl, and xli is the coordinate of the ith electron on the lth nucleus (we
neglect exchange effects). To express this Hamiltonian in terms of phonon and exciton variables we write
an effective atom-atom interaction

X ((Rl))=(gndIX Ignd),atom- atom

where Ignd) refers only to the electronic coordinates and is defined in the Appendix. Then in the spirit
of the Born-Oppenheimer approximation we consider the part

of the Hamiltonian and find vibrational modes from it. These we will identify with the experimental pho-
non-roton spectrum. To get the vibrational modes in the present approximation scheme we choose a
lattice of nuclear positions (Rl~'&). Later we will average over lattices in a way which is consistent with
the observed pair-correlation function for the fluid. We expand Xeff to second order in atomic displace-
ments 5Rl =%i —Kl~" from this lattice and, restricting attention to lattices for which Ze is a local mini-
mum, we have to second order

N

l, m p. , v

leading in the usual way4 to

x a a
phonons p, kp, Ry. kp, '

where ak& are phonon operators obeying boson commutation relations and related to the displacements

5R/I =RII (Rii )0 by

5R = Q e (5/2p~ V)'~'[a exp(-ik R &'&)+H. c.],
l kp. kp, kp. kg. l

where e k& is the polarization vector and uPk& is the frequency of the phonon.
Now because we want to represent the liquid in some approximate fashion by this model, we assume

that G has the property that it gives no transverse modes so that the sums on p. in the last two equations
are dropped. The Hamiltonian is then rewritten

X=X +X, X =X +X
0 I ' 0 phonons excitons '

g g @ ~ (l)t~ (l) g E (v)t (v)
excitons l v v v v v, k v k k

N 2
X =XI atom- atom
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where Xexc;tons accounts for the electronic states of the helium atoms in a way detailed in the Appendix,
The remaining interactions can now be written in terms of exciton and phonon. variables. Expanding
R atom atom in a, series in ) rlf ( / ) Rim ( in the usual way' gives a multipole moment expansion:

2 2

X =Q Q ' (2~.z.-xx. —y y. )atom-atom . . R li mj li mj li mjl&m i j=l lm

2

, [~ . 'z . —z r.. '+(2x x . +2y .y . —3z .z . )(z . —z . )]li mj lz mj li mj li mj lz mj lz mj

2

4 R ' li mj li mj mj li li mjlm

~ 2(4z .t: . -x).x . —X).X . )'] +" ).lz mj lz mj

Using this, we express XI in terms of local exciton operators bl (v) and local displacements 5Rlm&. We
find

( I)"'(&g;vl)l)l) b +I)"'(vga, u')5) 0 H c ] ]

{y) I & & (y) V P

«) I3 l l m

+
2

Z Z
~

~ jt & )
~

[SR"'(g,g;g, v)(b —bl ) + SR ")(g,g;g, v)(b —b ) + H. c.]
v l &m lm

[SR'"(,g; g)b b + SR"'(,g;g, ')b b +H. .]

+, Z Z —

i
ZM &'4&(1 m)

™5 M &2'~&(i m)

x [SR ")(g,g;g, v)(b —bl )+SR &'&(g,g;g, v)(bl —b )+H. c.](v) (v), , (v) (v) (10)

Here we have kept terms to fourth order in the b and 5B in the dipole-dipole interaction. Some terms
have been dropped on the basis of parity selection rules. In the quadrupole-dipole term we show only
terms linear in the b since these give rise to the only second-order infrared absorption. In (10) the ma-
trix elements are defined as follows

(o)i

~.&")(l,m) = -„ lm

"lm

5R
(2 3) 3 lm lm

M. . ~ (lim) =
2 g {0)2

lm

M.&"'&(1,m) =
4R {o)i 6R (0'zR

lm (2.4) lm lm
(0) ) I' 1 (1)m) 2

) g (0)2
lm zj lm

SR("(v, v'; v", v'") =2Z(v, v')Z(v", v'") —X(v, v')X(v", v'") —Y(v, v')Y(v", v'"),

SR "(v v'. v" v"') =B'(v v')Z(v", v"'), SR ' (v v' v" v'") ——SZ (v v')Z(v" v'")
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S(v, v')=gpss l Q z . p, dT dT
(l)* (l)

V .
1

l2 P
X(v, P)= f fg Z X. $ i dT dT

(1)*t' ' ~ (l)

i=1 l& v 1 2

Y(v, v')= f fp Z Y. g, dT' dT
(l)w ~ l (l)

P
k

~ 1 l21 v
R (v, v')= ffg ~ Z r. g, dT dT2, (l)+ 2 (l)

p . ll v

Z (v, v')= f f y Z z, .2, (1)+ 2 (l)
P .

1
lz v

In Eq. (10), the first two sets of terms involve only exciton operators. When they are added to X
the resultant Hamiltonian can be diagonalized by a canonical transformation (to remove the linear termsI
and a Bogoliubov transformation. The modified exciton Hamiltonian will again be of form (8) but Ev will
depend on K. The width of the resultant exciton band is expected to be small compared with the mean
energy of the exciton, and we will ignore it since it leads to no effects of essential interest here. The
term in M&

'~" leads to light scattering with production of one phonon-roton excitation. For such a scat-
tering the maximum momentum transfer is -2E where E is the wave number of the scattered photon or
10' cm '. This is much smaller than the roton wave number of 10' cm ', and the excitations produced
are thus phonons near the center of the zone. We thus have a mechanism for Brillouin scattering. The
kinematics of this are discussed in Ref. 3 and the process has been observed in liquid helium. The terms
in M~&22' "(l,m) give the two-roton Raman scattering (Fig. 1) mechanism of interest here. The term in
M~&&'P&(1, 222) gives infrared absorption. It is not hard to show, by procedures like those used below, that
the matrix element for this mechanism goes as (1 —e2 ~) where l2 is the photon wave number and a is of
the order of a few tens of lattice spacings at most. Thus the two-roton infrared absorption is expected
to be -()'2a)'« I times less intense than expected from the value of M~& "~'&(l, m) without proper considera-
tion of kinematical effects.

Terms in Matrix Element

I'IG. 1. Diagrams describing mechanism leading to
two-roton Raman scattering.

These remarks indicate that the term of interest is that containing M2&" ~'&(1, m). We express it in
terms of the Fourier transformed operators J3k ",a &. Denoting this part of XI by Xl+ '& we have

"-"= Z Z Z ((p "~p ''~"'( E 'E)
k, k q, p, p. , v, v
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&& [T,(k', q, k+k'-q)a a- -, -, + T,(%',q, —k —k'yq)a aT, , +H c ] ~H c ].
p. p,

' ' '
qp, k+k'-q, p,

'
p. p.

' ' '
qp. k+k'-q, p,

'

(v)g (v')
+(P P K"'(v,g;g, v') [T,(- k', q, k —k'- q )a - a

pp ' '
qp, k —k —q p.

+ 2,(-k, j, -k+k'+j)a a -, -,+H c.&+H. c.&) (i2)
p, p, qp. —k+k'+q, p,

'

Here
M. .&' &(l, m)

iqiq ) = —
4 y ~ ~ (g (o&)5

i,j l-m lm

1

D(l, m; —k', q, q')e e, , (~ ~, ,)'],
qp q p qp q p

in which

(14)

To calculate the Raman amplitude we also need to express 3Catom field in terms of photon operators o. k~
and exciton operators pk(v). We find'

to fi id
= ~ "~k TA'~-T k&

(v) t (v) t (15)
k, ~, v

where m(k, X, v) =le(N/V) "'(2»h/ck)"'[X(v, g) ~ s„- ] (E /h),

and X(v,g) = ff g Q x . &l& dv dv
(l)* ' - (l)

(16)

III. CALCULATION OF RAMAN AMPLITUDE

The scattering rate for the process

(1 photon at q) - (2 rotons at k, k') + (1 photon at q ') (is)

via the mechanism described by Fig. 1 is given by

2- - (2»/@)IM(q, k, k', q')i'6(@c( lql —Iq'I) —@~--@~-),

where M(q, k, k', q) = Z
m' nz"

(qJX ' )m') (m' ]R ' (m") (m" jX ' jk, k', q')
(h c [q (

—E,)(h c ] q1 —E „) (20

atom f' ld' (2i)

The six diagrams' corresponding to the sum (20) are shown in Fig. 1. Writing out M(q;k, k', q')using(12)
and (18) then gives

M(q;k, i&, , k', p, ', q')

(m+(q, v, »)K "&(v g; v', g)T, (q-k —k', k, k')m+(q —k —k', v', X')
V V

P v' ph ph —1 v -1
x[(E - yE-, +h(u- +h&u, ) (h(o +E )—q q —k —k' k k' qA. —q

V V ph ph —I v ph ph —1+(E - +E- - -, +h&o- +hco-, , ) (-hm- +E- - -, +he- +ha-, ) ]—q q —k —k' kp, k'p, '
qA. q —k -k' k k'

+m(q, v, A)K"&(g, v;g, v') T,*(k+k' —q, k, k')m(q —k —k', v', ». ')
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v —1 v v' ph ph —1
x [(h+- —h&o- —her-, , +E- -, - ) (E- +E- -, - —h&o- —h&u-, , )

qX kp, k' p.
' k+k'- q q k+k'- q kp k' p.

'

v —1 ph ph v —1,
+ (-htd» +E» ) (- h(d» —lWd»g g +E» g +E» ) ]

qA. q kg. k'p, ' k+k —q q

+m(q, v, A)SR~" (v', g;g, v) T,*(k+4'-q, k, k')m*(q —k —k', v', X')

v —1 v ph ph —1x (hv- —E- ) (h&u-- E- - -, —hv- —h&u-, , )
q q q q —k —k' kp, k'p'

+m(q, v, A)SR ~'&(v, g;g, v')T, *(q- k —k', k, k')m*(q —k —k', v', X')

ph ph v —1 v —1x [(-h(o-+h(u-, , +h(o- -E- -, - ) (- h(u- —E - ) ] .
q k' p,

'
kp. k+k'- q qX —q

To simplify this, we note that the E v are weakly 0 dependent and that the m depend on q only through the
polarization of the photons. In the situation of interest, )k), [k' (»q so that k = —k'. Further E»A(dkp".
Kith these approximations the k dependence of M is in the factors T which, in this approximation, are the
same for each term in (22). Keeping only the longitudinal l&, as discussed before, T becomes

k /-m Em f "lm
(23)

Writing 8(k; l, m) for the angle between k and Rl "& one has

(„- k, -
k k, )

—Se'h g 5cos'8($;l, m) —I . ,(, k 8(k l ))
2p Ve- ~m

k / —m lm
(24)

and replacing Z ( ~ ~ ~ )-2wf+, 'dp f dRl g(Rl )('''),
l —m

(25)

where g(Rlm) is the pair-correlation function and p, =cos8 (k; l, m), one has, after doing the angular inte-
grals, that

&. ~ g(R )dR (
T(r+r -q r r ) =

-'"'
~

sinkR coskR sinkR
lm lm Lm

kR
'

(kR ) "(kR )
i=T(k'

lm lm
(26)

If we neglect the wave-vector dependence of the exciton energies, we have

M(q; k, )&, ; k', l&, ', q ') = T (k)Q, (m (q, v, X)m*(q ', v', A. ') K "'(v,g; v';g)

1 I 1 I

x[(E +E ) (E ),(E'+E') (E' h~ ) ]
q

+m(q, v, X)m(q', v', &')5II "&(g, v;g, v')

1 1 ' 1
x[(E +h~-) (E +E ) +(E -h~-) (E +E ) ]

q q

I

+ m(q, v, X)m*(q', v', A. ')3I "&(v',g;g, v)/(h(o--E )(h(o- —E )

I

+ m(q, v, X)m*(q', v', X')5II "&(v g g v')/(h(u +E )(h(u +E )] (27)

The dependence of this on energy transfer is entirely contained in T(k). To get the transition rate from
M we have
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W(@~-=@~--@~- ) = (2v/@)Z-) ~(k, q, q')( 5(2k~-p —k&-+k~, )
g Q k q q'

3 k. '

i=1 ()d~ . "/dk. )

(M(k. , q, q ') (

) 2co

where k„k„k, are the three solutions to 2&ofp = b&o. To evaluate this, one needs T(k) which can be
found numerically from the experimental pair-correlation function and the spectrum vkp". The result js
shown in Fig. 2, where the experimental data'~9 for g and &ukp have been used. Using T(k) we compute
W(&to) as shown in Fig. 3. W(&e) is related to the Raman-scattering cross section by the relation

d'o/d(K&u-, )dQ- = W(~) V'q "/k c'(2v)'.

We estimate the magnitude of the scattering rate as follows. From (22) the scattering rate is of order

W - (1/I'c)[(esca )'(5R)'e'a '/B' E'] x (density of states),

(29)

where 8 is the electric field, ak the Bohr radius, B the interatomic distance, &B the displacement
associated with the roton, and E a typical exciton energy. The density of states is

- Vk'4k/4E,

if one observes a range &k of wave numbers and AE of energies. We put V-1 (cm)', k- Ak-1 (A) ',

8 - (2vhc/k)'~ + /c&V - 10 ' statV/cm, E - 10 eV, 5B/B-10 '

(30)

Then we find

scattered photons with energy transfer

coincident

photon) .at the two-roton energy
(31)

If one can increase the path length of the light in the helium by a factor of 10' one has 10 ". This is weak
but might be observable.
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FIG. 2. The function T(k).

IV. DISCUSSION

The model used only represents real liquid heli-
um rather crudely. This is particularly the case
because we have used a rather literal lattice mod-
el' for the liquid. Because we are not trying to
calculate phonon spectra, however, this crude-
ness will not affect the results very much. In
particular, the dependence of the dipole-dipole
interaction on the wave vectors of the interacting

I I M I I

12 16 20 24 28 32 (oK)

(cm ')11.2 1.4 16.8 19.6
Energy transfer

FIG. 3. Computed scattering rate.

excitations is not expected to depend in any im-
portant way on the lattice model. It is this wave-
vector dependence which gives the form of the
predicted cross section. We have assumed that
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the physical origin of the exciton-phonon inter-
action is the same as that of the deformation-
yotential interaction in solids and that this inter-
action can be treated in perturbation theory. The
first assumption seems plausible, as does the
second at least for the very small cross-section
we have calculated. It should be noted though,
that we have proved neither assumption.

The excitons we have used are only Fourier
transformed for mathematical convenience, and
the question of whether the excitons in liquid
helium are localized or bandlike will not affect
the conclusions reached here, An extension of
the present results to include other kinds of ex-
citons, "for example molecular excitations of
the sort, He, *, would not affect our conclusions
in any important way.

The present results do not seem to contradict
any sum rules" on S(q, &u) for the following reason.
The effective coupling which we derive depends on
the distance between the two displaced atoms
labeled l and m with displacements ORE and 5B~
[Eg. (15)]. If we now refer to the standard deri-
vation" of the conclusion that the scattering cross
section for neutron or light scattering is propor-
tional to S(q, &u) we see that it depends on the
assumption of a coupling between exciting field
and many-body system which is of form g. V(x
—xf). If one tries to replace this by the form

g . . V(x-x. , x-x. , x. —x. )
Z 2 z'

appropriate to this situation, then the derivation
fails. Physically, the matter can be put this way:
The large coupling at large wave vectors of the
excited rotons occur because the roton is assumed
to polarize the helium atoms through the accom-
panying very short wavelength density fluctuation.

This polarization cannot be included in S(q, &u)

which contains no reference to the wave vectors
of the rotons.

We note that the two-roton Raman-scattering
experiment would be interesting both because it
could be used to check the present theory and be-
cause it would provide a simpler way of looking at
the excitation spectrum of liquid helium than neu-
tron scattering and therefore might be useful in
the study of questions of temperature, pressure,
and rotation dependence of the roton spectrum.
With regard to checking the present theory, it
should be possible to divide the experimental re-
sults by the roton-phonon density of states de-
termined from neutron scattering and thus obtain
a measure of T(k). With regard to study of the
spectrum, one interesting question concerns what
happens to the spectrum in rotating helium. It is
suggested' by weakly interacting models that the
phonon-roton spectrum will lose its l degeneracy
in the presence of a vortex. Though neutron
studies" have shown no evidence of this effect, it
would be interesting to study this question further.
The treatment of light scattering from a rotating
fluid containing vortices is a somewhat different
theoretical problem which we will consider later.

Finally we note that the present machinery can
be used to study the mechanisms of uv absorption
of light with the production of excitons, a process
of some current experimental interest.
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APPENDIX; EXCITON NOTATION

Define $„)(1,2) such that

[X ' (1)+R ' (2)+ V (1,2)]( (1,2) =E $ (1,2), $ (1,2) = —$ (2, 1).

1, 2 include spin and space. Also

XI ' (i)=(-h /21 ) V&. —2e/(x&. —5&'"], V (1,2)=e /)x&I —
x& (.(E, O). 2 2 2 - (0) (I) 2

Let g& (1,2) be the ground state of the set $„(1,2) . The ground state for the system described by the(I) (I)
Hamiltonian

N
is Igst))=s n )t (x,s;xi, s) )),l=l



where 8{' }= (Nt) ' Q (—1) I
~ ~ JI'

permutes the electron coordinates. Now define

(v)t (&)- (~')-
("ri"ii.'"n'r2) 2

Then for low temperatures

= Z Q Z 5 b +const.(v)t (v)
excitons vl=1 v+g

1 ik ~ R (o)

Fourier transforming, p(v) = (N) ~ Z e — b

l=1

k k k
(v)t (v)

excitons k v v k

Now from our definitions

2, z zexcitons atoms
l = 1 = 1 Ix ' R ) )x ' 8=1 z=1 li l li l l =12me l '

so that
atoms

N 2 N 2
=x . -Z ——v'-Z Zexcitons

l 1
2m e l =1 i=1 Ix .—K I

lz "l
2e

)x. -R &'&I
li Z

&ac
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