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A study of elastic and inelastic scattering of electrons by He and Ne atoms in their

ground states is made within the framework of the first Born approximation.
elastic case a partial-wave analysis is also carried out.

For the
Properly correlated configura-

tion interaction wave functions, and also Hartree-Fock wave functions, are used through-

out. It is shown that for an accurate description of both elastic and inelastic scattering, a
correlated wave function is essential. A table of elastic and inelastic electron scattering

factors for the elements studied is given.

L. INTRODUCTION

Calculations of differential cross sections for
atomic electron scattering and x-ray scattering
have been the subject of many works. !—1°

The problem can be divided into separate con-
siderations of elastic and inelastic scattering. For
the elastic part the failure of the first Born approxi-
mation has already been discussed, %!! especially
at low energies and for atoms of large atomic num-
ber. In the latter case an improvement can be
made by means of the partial-wave method. How-
ever, for the inelastic part of the scattered ampli-
tude we may expect that the first Born approxima-
tion should provide a more suitable description. 2

Besides improving the method for treating the
scattering process, a refinement can also be made
by using very accurate wave functions to describe
the scatterer.®—1° This is especially true for the
inelastic part where the first Born approximation
contains a term-~dependent on the reduced second-
order density matrix, this one being sensitive to
electronic correlation. For He, Bartell and
Gavin'®»!® and more recently Kohl and Bonham’
and also Kim and Inokuti!® have illustrated this
fact: There is a 6% discrepancy between the in-
elastic scattering factors obtained by means of
Hartree-Fock (HF) wave functions and those com-
puted through the more exact treatment. The in-
elastic scattering factors are lower than those cal-
culated from HF wave functions. The influence of
electronic correlation on elastic scattering factors
is small; however, properly correlated wave func-
tions are to be employed when a careful compari-
son between theory and experiment is sought.

Current developments of experimental techniques
in electron scattering’® have made it possible to
measure differential cross sections with an uncer-
tainty of less than 0.1%. This error is far smaller
than the magnitude of the corrections introduced
by electronic correlation. Thus it is of interest to
perform more accurate calculations in order to
determine (a) the accuracy of the scattering theory,
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(b) agreement between various atomic fields and
experiment, and (c) details of the electronic charge
cloud such as the electron-pair correlation func-
tion P(7;; ). 12,15, 16

One of the ways to take into account electronic
correlation into the wave function is by the method
of configuration interaction (CI). 1" Recently, a
properly correlated CI wave function for Ne has
become available’® and it has been used in this
work together with a CI wave function for He.

In the next section the theory is presented for the
calculations of both elastic and inelastic parts of
the scattered amplitude. This is followed by a
brief commentary on the wave functions employed.
Finally, the results obtained by means of CI wave
functions are compared with those derived from
HF wave functions.

II. THEORY

A. First Born Approximation

In the framework of the first Born approximation,
the total electron intensity scattered by atoms can
be written as'?, 1°

1,.(8)=175(112 g o’ Hs (), @)
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The quantity | fB(s) is known as the scattered am-
plitude, F,(s) is the x-ray form factor, S(s) is the
inelastic scattering factor and ¥ is the many-elec-
tron wave function of the atom.

B. Partial-Wave Treatment

For the exact treatment of the elastic scattering
problem, a partial-wave (PW) analysis is needed.
The radial part of the Schrddinger equation is con-
sidered:

dz(pl ()
ar?

where lim 4 (r)=0
r-0

e aare) 18D ()20, @

and V(7) is the static scattering potential given by

__Z [p(E) e,
V(y)_—7’+f|?—?| ax

in which p(¥’) is the electronic density.

Equation (5) is solved numerically by outward
integration from the origin using Noumerov’s
method. 2°=22 The starting point for the integration
of (5) is obtained by means of a series solution,
and it is advanced from the origin as ! increases
in order to save computing time and to avoid the
occurrence of excessively large numbers during
the calculations.

The phase shifts ; are obtained through Eq. (5)
by matching the derivatives? of the numerical so-
lution to those obtained from the exact solution of
(5) when V(7) is negligible. This allows us to de-
fine the asymptotic radial wave function

¢ =1, (kr)cosnl -n, (B7) sinn, , (6)

where j; (k7) and n; (kv) are the spherical Bessel
and Neuman functions, respectively. The phase
shift n; is obtained with the help of Eq. (6). Fur-
ther, the scattered amplitude is obtained from
the expression

f(k,9)=2~:]; E) (21+1)(e2inl-1)Pl(cosQ). (7)
1=0

The summation above is carried out in double pre-
cision arithmetic (25 digits in the CDC 3600 com-
puter) down to values of 1y~ 1077,

Although we have performed a nonrelativistic
partial-wave treatment for the scattering process
discussed here, wedo take into account corrections
for relativistic effects on the wave vector k, and
on the mass of the scattered electron. These are
not negligible, especially when we consider scat-
tering of electrons in the keV energy range.

C. CI Expansion

The total wave function ¥ is expanded as

(»)
T= 0, & a.. , (8)
Kp © K
where
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n
K
= L DKochoz(p) . ®)
a=p

In Eq. (9), O(L? S?) is a product of a spin-angular-
momentum projection operator times an orbital-
anguiar-momentum projector, ? and it is taken to
be idempotent. In the Slater determinant Dy,

the o label the possible determinants in configura-
tion K [ a configuration is defined by the ordered
set of all (4,1) numbers which participate in a
given determinant]. The superscript p labels the
elements of a degenerate set.? Each Slater deter-
minant is made up of spin orbitals defined by

Y m “Bi (ny,, 6,0, (o),
l s 14 s
where the Y’s are normalized spherical harmonics
in the Dirac phase convention, ?® and the &’s are
the usual spin functions «, 8 with eigenvalues
mg=+%. The set of functions {R;;} is expanded
in terms of normalized Slater-type orbitals (STO)
Sj; withj=1,...,7(1):

J(1)

Rif? Sit%ii (10)
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S;=Ny AR (11)
é
i+3
@z )2l+2n_7+
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and we have further the orthonormalization condi-
tion

o0
[ R ("R, (r)r’dr=5,, .
o il 7l ij
D. Matrix Elements
The evaluation of F,(s) is straightforward.

For the inelastic case we must consider the op-
erator G

NN
G=f22e

i#j=1

o
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where the integration is taken over the angular
coordinates of 3. The operator G depends on the
Fij only but not on their orientations in space, and
thus it commutes with L?. Thus

[G,0(L? 5?)] =0.
The matrix elements Ggy (p) are given by 2¢

(pq) , . (p) (q)
Gy =2 1G0T

- ) (q)
> b (p q
~18-gq Ka JB

M’v

(D IG!DJB>, (13)

and the “turnover” rule is applied in such a way

that the number of matrix elements between Slater
determinants is kept to a minimum. The evaluation
of quantities like (DKa! GID J3 ) has long been estab-
lished.?” The problem is reduced to the computa-
tion of integrals of the type

I(aclbd)= [ ¥ * 1) ¥ (1)

iS.

x{ e 12>dsz 1 (2)@ 2)dr dr . (14)

The exponential eig' Ti2 may be expanded in terms
of spherical harmonics?®® and then Eq. (14) simpli-
fies into the well-known expression given by Condon
and Shortley?”

I(ac!bd)=5(m g 9] Z} c (l ml ,1€
k=0

ddb
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where now Rk(ac Ibd) is defined by

R (ac1 vd)= @+ 1)1%(ac) 1*(0a)
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Ik(ac) = f:o Riala('r) Riclc (r)jk(sr) 72dv .

The ck are Gaunt coefficients and may be obtained
from Ref. 27, and j,(s7) is a spherical Bessel func-
tion. %

III. WAVE FUNCTIONS

The HF wave functions are those of Clementi’s
table. 3°

For He, we have constructed a 14-term CI natu-
ral orbital expansion3! starting from the STO param-
eters given by Weiss. 32

In the case of Ne we have considered a 65-term
CI wave function (consisting of 1480 Slater deter-
minants) which is a truncation of a more accurate
one. '®

The CI energies are —2.903 07 a.u. (He) and
—-128.8602 a.u. (Ne), respectively, i.e., 98% of
the electronic correlation energy is accounted for
in the first case, while about 85% is recovered in
the second case.

A properly correlated CI wave function is one
which is obtained in the following way: A complete
CI expansion® [ Eq. (8)], expressed in terms of a
nearly optimum one-electron basis and ordered ac-
cording to decreasing magnitude of its linear coef-
ficients a Kp> is truncated. This truncated expan-
sion has an almost maximum overlap with the ex-
act wave function, for the number of terms con-
sidered. The CI wave functions employed in this
work satisfy very closely the criterion expressed
above, %

IV. RESULTS
A. Inelastic Scattering
In Table I a comparison is made between inelas-
tic scattering factors obtained from HF and CI wave

functions. For small s values, between 1 and 6 f\‘l,
a discrepancy of 6 to 12% in the inelastic scatter-

TABLE I. Inelastic scattering factors obtained from HF and CI wave functions.
He Ne
S(s) S(s) S(s) S(s) S(s)
s HF CI CI S HF CI
(A7 (this work) (Ref. 7) (this work) &Y (Ref. 6) (this work)
0.5 0.054 20 0.05145 0.051 64 1.0 0.5326 0.4860
1.0 0.20577 0.194 75 0.19539 2.0 1.8009 1.6106
2.0 0.676 59 0.63774 0.63920 3.0 3.2452 2.8733
3.0 1.1550 1.0888 1.0902 6.0 6.4467 6.0397
5.0 1.7231 1.6519 1.6520 8.0 7.5073 7.2887
7.0 1.9149 1.8733 1.8726 10.00 8.0737 7.9801
10.0 1.9838 1.9703 1.9699 12.0 8.4137 8.3768
12.0 1.9941 1.9877 1.9877 15.0 8.7658 8.7529
20.0 1.9998 1.9992 1.9993 20. 9.2017 9.1915
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FIG. 1. Electron distribution function P(7;;) for
the ground state of He computed from a properly cor-
related CI (solid curve) and HF (dashed curve) wave
functions.

ing factors for Ne is observed. That is, in the
small s region, where inelastic scattering is pre-
dominant, the corrections to the total electron in-
tensity due to electronic correlation are larger
than today’ s experimental uncertainties.

It is illuminating to transform the two-electron
terms in Eq. (3) into the electron-pair correlation
function P(7;;) discussed by Bartell and Gavin. %'3
In Figs. 1 and 2 we plot P(7;; ) for He and Ne, re-
spectively, computed with the CI and Hartree-Fock
wave functions. These P('ri- ) values are obtained
from the two-electron terms of (3) by means of a
Fourier transformation which is carried out numer-
ically using Filon’s method.3® In both cases the
effect of the electronic correlation is to displace
the peaks to larger distance. In the case of neon
we canalso see this effect for the K-shell electrons
in the small shoulder P(7;;) at »~0.2 a.u. The
effect of correlation in the P('rij ) for He and Ne
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FIG. 3. AP(r) for He atom as defined by Eq. (15).
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FIG. 2. The P(rj) function obtained using a CI
wave function for the ground state of Ne (solid curve)
compared with P('rij) calculated employing HF wave
function (dashed curve). Notice the feature at »~0.14A
caused by the K-shell electrons.

atoms is better seen in the plot of AP( 'rz-]-) (Figs.
3 and 4, respectively) as a function of », where

NORES SUCAES S (15)

In Tables II and III we list values for x-ray scat-
tering factors and inelastic scattering factors cal-
culated from properly correlated CI wave functions.

B. Elastic Scattering

It is the common opinion of many authors?®,%7
that HF and properly correlated wave functions
give essentially the same results for the values
of one-electron properties. However, in elastic

001
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FIG. 4. AP(rg) for Ne atom as defined by Eq. (15);
the effect of the K-shell electrons can be seen at
r~0.14A.
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TABLE II. X-ray scattering factor and total inelastic TABLE II. X-ray scattering factor and total inelastic
scattering factor for the He ground state. scattering factor for the Ne ground state.
s (A Fy(s) S(s) s A Fyls) S(s)
1.00 1.8936 0.19539 1 9.5774 0.486 01
2.00 1.6250 0.63920 2 8.4874 1.6106
3.00 1.2975 1.0902 3 7.1095 2.8733
4.00 0.992 27 1.4295 4 5.7690 4.0688
5.00 0.74341 1.6520 5 4.6320 5.1390
6.00 0.55372 1.7896 6 3.7397 6.0397
7.00 0.41349 1.8726 7 3.0709 6.7512
8.00 0.31095 1.9222 8 2.5833 7.2887
9.00 0.236 02 1.9520 9 2.2330 7.6860
10.00 0.18098 1.9699 10 1.9825 7.9801
11.00 0.14026 1.9809 11 1.8020 8.2024
12.00 0.10984 1.9877 12 1.6693 8.3768
13.00 0.086 905 1.9919 13 1.5686 8.5201
14.00 0.069432 1.9946 14 1.4886 8.6432
15.00 0.055991 1.9963 15 1.4218 8.7529
16.00 0.045 551 1.9974 16 1.3632 8.8532
17.00 0.037368 1.9982 17 1.3095 8.9463
18.00 0.030895 1.9987 18 1.2587 9.0334
19.00 0.025732 1.9991 19 1.2096 9.1150
20.00 0.021580 1.9993 20 1.1615 9.1915
22.00 0.015470 1.9996 21 1.1141 9.2629
30.00 0.0050127 1.9999 22 1.0674 9.3294
23 1.0215 9.3910
electron scattering, no rigorous attempt has been 2 0.976 31 9.4479
. . 25 0.93204 9.5002
made to definitely prove this fact. In Table IV we 26 0.88884 9 5482
compare results from “exact” partial-wave calcu- 97 0'8 1683 9‘5 920
lations employing HF and CI wave functions. The 28 0’806 10 9'6320
discrepancy is of the order of 0. 7% for He and 29 0‘76675 9.6683
about 1.5% for Ne. This confirms the well-known 30 0‘728 83 9'7012
fact that HF values for the electron density are - i
qualitatively correct, although for accuracy at or
below the 1% level, a properly correlated wave wave scattered amplitude and phase, as a function
function is needed in order to describe the one- of s, for 40-keV electrons scattered by He and Ne
electron density. %8 atoms in their ground electronic state. The phase
In Tables V and VI we list values for the partial- n(s) is defined as follows:

TABLE IV. Partial-wave results for the scattered amplitude of 40-keV electrons employing HF and CI
wave functions.

He Ne
s If(s)lHF If(s) 'CI s 1f(s) ’CI
(A7 (this work) I () I gp™ ® (this work) (A-Y If ) I g (this work)

0 0.4496 0.4509 .4526 0 1.750 1.777

1 0.4302 0.4309 0.4328 1 1.684 1.708

2 0.3801 0.3800 0.3819 2 1.510 1.528

3 0.3170 0.3168 0.3180 3 1.287 1.297
10 0.074 20 0.074 25 0.074 15 10 0.3234 0.3235
30 0.009040 0.009057 0.009040 30 0.042 03 0.042 03

aReference 9, see footnote 22.
The difference between this column and the previous one arises because the authors of Ref. 9 have employed a
least-squares technique in order to approximate the field, while in this work the potential was obtained directly
from Poisson’s equation.
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n(s)=tan"*{Im[f (s)] /Re[f (s)]},
where Im and Re are the imaginary and real parts,
respectively, of f(s) as given by Eq. (7).
This work makes available for the first time

elastic partial-wave and inelastic scattering factors

for Ne based on a CI wave function giving 86% of
the correlation energy. It is thus now possible to
develop experimental sector corrections from Ne
with nearly the same theoretical reliability as was

TABLE V. Partial-wave amplitude and phase for 40~
keV electrons scattering elastically from the electronic
ground state of He. The phases are given in radians.
A CI wave function®! was used.

s A7 s & n(s)
1 0.4328 0.02254
2 0.3819 0.024 91
3 0.3180 0.028 74
4 0.2566 0.03378
5 0.2048 0.03973
6 0.1637 0.046 28
7 0.1319 0.05316
8 0.1075 0.06015
9 0.08877 0.067 10
10 0.07415 0.073 88
11 0.062 66 0.08043
12 0.05351 0.08672
13 0.046 15 0.09271
14 0.04016 0.09841
15 0.035 23 0.1038
16 0.03113 0.1089
17 0.02769 0.1138
18 0.02478 0.1184
19 0.02230 0.1228
20 0.02017 0.1270
21 0.01832 0.1310
22 0.01672 0.1348
23 0.01531 0.1384
24 0.01408 0.1419
25 0.01298 0.1452
26 0.01201 0.1484
27 0.01114 0.1515
28 0.01037 0.1544
29 0.009672 0.1573
30 0.009 040 0.1600

previously possible with He. This is a major ad-
vance from the experimental point of view since
neon intensities are considerably easier to mea-
sure than helium., In addition for very careful
relative differential cross-section measurements
of both elastic and total (elastic plus inelastic)
scattering below the 3% accuracy level, the re-
sults of this work should prove invaluable as a
check of the first Born-scattering theory.

TABLE VI. Partial-wave amplitude and phase for 40~
keV electrons scattering from the electronic ground
state of Ne. The phases are given in radians. A CI
wave function® was used.

s (A f(s) A n(s)
0 1.777 0.09768
1 1.708 0.1008
2 1.528 0.1102
3 1.297 0.1253
4 1.067 0.1453
5 0.8663 0.1692
6 0.7012 0.1959
7 0.5701 0.2246
8 0.4672 0.2545
9 0.3867 0.2848

10 0.3235 0.3150
11 0.2736 0.3446
12 0.2338 0.3732
13 0.2018 0.4006
14 0.1758 0.4267
15 0.1545 0.4514
16 0.1368 0.4747
17 0.1220 0.4967
18 0.1096 0.5175
19 0.09899 0.5371
20 0.08988 0.5556
21 0.08200 0.5731
22 0.07514 0.5898
23 0.06913 0.6056
24 0.063 83 0.6208
25 0.05913 0.6353
26 0.5495 0.6491
27 0.05120 0.6625
28 0.04783 0.6754
29 0.044:79 0.6878
30 0.04203 0.6999
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