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Requirements are outlined for a suitable set of dynamic orbitals for theoretical studies in
collision problems. The effect. of these upon the wave function, dynamic energy co@rection,
and effective internuclear potential are all considered. It is shown that earlier forms sug-
gested for this type of problem do not meet all required dynamic boundary conditions, prin-
cipally because of their failure to recognize that physically, for moderate speed collisions,
the electron at times "belongs" to the "molecule" proper and not to either atom individually.
The earlier orbitals also fail to make allowances for the reluctance of an electronic charge
distribution to follow rapid rotation of an internuclear axis. These considerations suggest
a new form of dynamic orbital which by remedying these deficiencies automatically achieves
complete orthonormality. The results of preliminary charge transfer calculations with the
new orbital basis are presented.

I. INTRODUCHON

There have been many attempts, '~' recently some
notably successful ones, '~4 at a theoretical verifi-
cation of the remarkable differential cross-section
data of Everhart et a/. ' for charge exchange in the
proton-on-hydrogen-atom system. One result of
all these efforts has been the emergence of two
clear shortcomings of the original method of per-
turbed stationary states (pss) proposed by Bates,
Massey, and Stewart. ' These are (1) failure of
the theory to account, in charge transfer processes,
for transfer of the momentum of the electron and

(2) failure of the theory to account for the reluc-
tance of electronic eigenfunctions to follow the ro-
tation of an internuclear line in even moderate
speed collisions. Both of these failures are due
to the inability of the theory to account for velocity-
dependent effects caused by the presumably small,
yet finite, relative velocity of the colliding particles
and both enter into the mathematics of the theory
through the form chosen for the electronic basis
functions. Bates and McCarroll' showed that the
first of the above difficulties was related to the in-
ability of an adiabatic basis to match the correct
asymptotic form for the system wave function and



suggested the use of "traveling orbitals" which
differed from their static counterparts by the in-
clusion of a velocity-dependent exponential factor.
Thus for a homonuclear system such as the one
under discussion, they suggested the use of gerade
(+) and ungerade (-) basis functions of the form
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FIG. 1. Relative and electronic coordinates.

Here the y represent static molecular electronic
eigenfunctions (or approximations thereto), r and
5 are as defined in Fig. 1, and V is the relative
velocity vector between protons. A positive (nega-
tive) sign in the exponential corresponds to the
electron moving with nucleus B(A). The type of
function shown in Eq. (1) was formulated to make
allowance for the motion of each nucleus relative
to the center of mass of the nuclei (c.m. n. ) and is
exact for any' when V=O or for any V when R=~.
The type of velocity dependence suggested by Bates
and McCarroll' has been widely used' ' and has
been shown to shift the predicted results toward
better agreement with experiment. Performance
of calculations with an extended basis made up of
orbitals of the type shown in Eq. (1) is, however,
made difficult by their strong lack of orthogonality.
Thorson' has pointed out that this condition is
caused by the necessity, in this basis, for the
recognition of an electron as "belonging" at all
times to one or the other of the colliding centers
and moving with the full velocity of that center.
In reality, however, during the interaction phase
of a slow encounter the electron actually "belongs"
to neither. The functions shown in Eq. (1) also
display anomalous behavior in the united atom
region. Here the electron effectively "bees" a
point nucleus with a rapidly changing, albeit negli-
gible, quadrupole moment. Instead of reducing
to this, the velocity-dependent factors in Eq. (1)
give rise to aphysical sine and cosine terms. Pre-
vious authors' have, for the most part, attempted

to get around the above difficulties by artificially
removing the contributions due to nonorthogonality.
One of our objectives in this work is to attack the
problem at its source by proposing a modified
form of basis function which i8 orthonormal to its
partners, is exact in both the sepa, rated and united-
atom limits, and is devoid of the aphysical aspects
of "belonging to" inherent in Eq. (1).

The second of the difficulties mentioned above,
the reluctance of electronic eigenfunctions to fol-
low the rotation of an internuclear line, was first
identified by Bates. " Bates found that in the limit
of high velocity and weak interaction the two-state
version of the pss method did not tend, as it should,
to the Born approximation, but tended, instead,
incorrectly, to an approximation which he chris-
tened the perturbed rotating atom (pra). The two
approximations differed in that in the Born approxi-
mation, expansion was in terms of orbitals quan-
tized in space-fixed axes, while in the pra approxi-
mation quantization was in terms of axes rotating
with the internuclear line. Bates" found that the
pra results could be made to harmonize with the
Born approximation if allowance were made for
certain terms, previously ignored, which induced
strong coupling between states differing in the
separated- or united-atom limits in magnetic
quantum number only. He also found that this
equivalence could be established, a priori, by
using electronic eigenfunctions quantized in a
fixed coordinate system with its z axis parallel to
the internuclear velocity V. Now the entire ques-
tion is not of great importance as long as an atom-
ic basis set about a single center can be employed.
Simply by including all magnetic substates of each
atomic state used in the basis set, the rotating and
nonrotating basis sets become completely equiva-
lent. However, the picture changes when the phys-
ics of the situation requires that a.molecular basis
set be used instead of an atomic basis set. Al-
though the effect described by Bates still persists,
it is not so easy to eliminate in this case, because
an infinite number of molecular orbitals is re-
quired to make rotating and nonrotating bases equiv-
alent. Since practical considerations permit only
a very small number of basis elements to be han-
dled in a computation, it is imperative, therefore,
to select the basis elements with care. In a very
real sense, the selection of the basis elements
used constitutes the definition of the model. Most
authors, '»" in calculations of excitation and
charge transfer probabilities, have used orbital
bases quantized in a rotating frame in the hope
that, by including coupling terms previously omit-
ted, a small number of rotating orbitals would be
sufficient. The evidence, however, seems to in-
dicate this is not always the case and that whereas
inclusion of terms coupling a limited number of
low-lying states may give satisfactory results for
transfer of charge between spherically symmetric
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states, 4 such early truncation may predict side
effects, such as excitation, which are highly mis-
leading. '~4 A second goal of this investigation was,
therefore, to present further evidence favoring the
use of nonrotating orbitals as a compromise basis
which retains some of the molecular orbital char-
acteristics without the aphysical effects of the ro-
tating frame of reference.

II. CRITERIA FOR VELOCITY-DEPENDENT
ELECTRONIC FUNCTIONS

It is instructive at this point to enumerate those
boundary conditions which should be satisfied by
an orbital basis for use in a collision problem.
As Bates and McCarroll' and Thorson' have point-
ed out, in the limit of infinite internuclear sepa-
ration each molecular orbital should approach
combinations of the corresponding degenerate
atomic eigenfunctions which, in the c.m. n. sys-
tem of relative coordinates and with the electron,
for example, on atom A take the form

xexp(- (i/h)[e +-,'m(V/2)']fj. (2)

The coordinates in Eq. (2) are as in Fig. l;
(r&) and ez are the nth atomic eigenfunction and
eigenvalue, respectively, and the velocity-depen-
dent factor in the wave function and term in the
energy appear due to the motion of atom A rela-
tive to the c.m. n. The quantity m actually repre-
sents a reduced electron mass, but this effect is
small. Implicit in Eq. (2) is the requirement
that the expectation value of the molecular Hamil-
tonian also approach the bracketed energy term
as R-~. The Bates-McCarroll'-type wave func-
tions shown in Eq. (1) do satisfy the requirements
imposed by the initial and final boundary conditions
and do, thereby, take account of transfer of the mo-
mentum of the electron in charge exchange. The
use of different signs before the exponent imV r/
2A, however, precludes their forming an ortho-
normal set and is directly related to the very real
physical difficulties associated with the require-
ment for the electron, in this description, to "be-
long" at all times to one or the other of the inter-
acting atoms. Clearly, a desirable alternative
basis would be one composed of orbitals which
also matched the asymptotic conditions but which
did form an orthonormal set and did allow for the
electron to, at times, belong to neither atom.

The form assumed by the wave function in the
united-atom limit is also of importance. This
point is most easily seen by considering for a mo-
ment the wave function for the entire system. It
may, at any time, be expanded in terms of prod-
ucts of molecular electronic eigenfunctions

iz(r, 5(t) ) and purely nuclear components
Fz(R(t)), i.e. ,

q(r, %(f))=Q C (r, %(f))Z g(f)).

This expansion, suggested by Born" as a modifi-
cation to the original Born-Oppenheimer approxi-
mation, results in a set of coupled differential
equations rigorously relating nuclear and electronic
motion. We know, however, that as the united-
atom limit is approached, our problem approaches
the two-body case of an electron with reduced mass
moving with respect to the c.m. n. and that, in
this limit, a separation of variables becomes pos-
sible and the expansion in Eq. (3) should reduce
to a single term wherein the electronic component
contains no explicit velocity dependence. This
can, in fact, be regarded as the recognition, mathe-
matically, of the physical principle that in this
limit for slow collisions the electron "belongs" no
more to one nucleus than to the other. Our elec-
tronic wave functions and energies which are re-
quired to take on the velocity-dependent forms
shown in Eq. (2) in the asymptotic region, should
gradually lose this dependence as R-0. The Bates
and McCarroll' functions in Eq. (l) clearly do not
show this behavior; they tend in fact toward real
and imaginary velocity-dependent trigonometric
functions multiplying the lowest-lying g and u
states of the united atom.

Further examination of the system wave function
in the united-atom limit reveals still more condi-
tions which should be satisfied by the electronic
functions. Substitution of the expansion Eq. (3)
into the Schrodinger equation for the system re-
veals that nuclear and electronic motion are re-
lated in such a way that the gradients of the elec-
tronic functions with respect to heavy-particle
coordinates contribute directly to an effective inter-
nuclear potential. " Thus the velocity dependence
associated with the internuclear potential will be
influenced by the type of velocity dependence se-
lected for the 4 . By taking the gradient with re-
spect to nuclear coordinates of the effective po-
tential, we can calculate an effective internuclear
force. Clearly, if we want the effects associated
with the inclusion of velocity dependence to dimin-
ish as the united-atom limit is approached, we do
not want the effective force terms which are pres-
ent only because of its inclusion to become domi-
nant as R-0. Hence we should also require that
the derivatives upon which these terms are based
become small in the united-atom region. A sim-
ilar but less powerful argument can be made based
upon the appearance of the 8/&Z operator in the
matrix elements

(4)
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which figure prominently in calculations based on
the impact-parameter version of the pss theory. '

III. GRTHGNGRMAL VELOCITY-DEPENDENT GRBITALS

The arguments cited above suggest orbitals of
the form

4 (r, t) =- y (r, n) exp[i (m/2h ) V Ff (r, 5) ]

shown in Eq. (5), the Ii take the form

&„„(t)= e„'(R(t) )

+(h'/2m)f Iy I'[V (mV Ff)/2h]'dr. (8a)

Here q (R(t) ) is the static electronic energy,

~ (R(t)) =(q (F, R) Ie Iq (F, %)),

xexp[- (i/n) fII (t)dt]

for use in a velocity-dependent molecular basis.
The functions y~ are, for now, to be considered
as approximations to the static molecular eigen-
states. Complications introduced by the use of a
nonrotating basis are discussed in the next section.
In any case, the y+ are presumed to contain vari-
able orbital exponents so that they can match iden-
tically the correct asymptotic and united-atom
forms of the adiabatic electronic eigenfunctions.
The function f (r, %) is introduced in order to in-
sure that the functions 4 match the correct dy-
namic forms in the separated and united-atom
limits without sacrificing the desired condition of
orthonormality. With the single universal form
of the velocity-dependent exponential in Eq. (5),
it is seen that orthonormality of the adiabatic
orbitals implies orthonormality of the dynamic or-
bitals, i.e. ,

4 I@ =5 , if(X IX )=5
n m nm' n ";m nm

'

Further, the spatial components of the functions
4~ assume the correct limiting forms, provided
that functions f (r, R) can be found which take on
the values +l (—l) when the electron is on nucleus
B(A) in the asymptotic region, and which vanish
in the united-atom region. The requirement of
vanishing velocity-dependent effective nuclear
force terms requires that derivatives « f (r, 0)
with respect to nuclear coordinates also vanish in
the united-atom limit. The final factor in Eq. (5)
introduces the explicit time dependence of the wave
function in a m»ner»alogous to that first pro-
posed by Jeffreys'~" for systems with time-
dependent but slowly varying Hamiltonians. The
terms H (t) are not the static energies, but
a.re actual expectation values of the electronic
Hamiltonian,

a (t)=(C+(F, t)IIf iIC (r, t)).

They are time-dependent due both to changes in
internuclear separation and to changes in the de-
gree of the electron's "belonging" to one atom or
another. Evaluated explicitly with the functions

and the second term in Eq. (8a) is, at any instant
t, just the correction to the electronic energy due
to the translational motion impressed on the elec-
tron by the dynamical correction factor exp
(imV rf/2h). The physical significance of this
correction factor becomes more transparent if
we denote by U(F, 5) the quantity V. Ff (r, %)/2,
so that the first exponential in the wave function
defined by Eq. (5) becomes

exp[imV. rf (F, 5.)/2h] =exp[imU(F, 0,)/n].

The quantity V U can be interpreted as the local
impressed translational velocity. [Note that for
the Bates and McCarroll wave function, Eq. (l),
this quantity is always +V/2. ] Equation (8a) now
takes the form

(t) =c (R(t))+-, m f Iy I'[V U]'d~. (81

The second term is seen to be the local impressed
kinetic energy —,m[ V U]'at position r, weighted
by the probability density t y )' that the electron
will be at the location r and integrated over all
space. - It is, therefore, the average impressed
kinetic energy. Prom what has already been said,
it is clear that in order for Hn+n(t) to take on the
correct limiting forms this term should vanish in
the united-atom region and should approach
—,m( V/2)' as the internuclear separation is in-
creased. Physical reality requires also that this
transition be a smooth one.

The conditions imposed upon the function f (r, 5)
by the criteria discussed above are summarized
in Table I.

IV. ONE FORM FOR THE FUNCTION f (r, R)

The function cose/[l+ (a/R)'] is proposed as
suitable for the function f(F, %). The angle 8 is
here measured from the internuclear axis to the
position of the electron (Fig. l) and the quantity
a is to be regarded as a relatively small distance
below which the electron essentially "sees" a
united atom and ceases to "belong" to either nu-
cleus individually. Comparison of the properties
of this function with the requirements outlined in
Table I shows that the two are in good agreement.
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TABLE I. Required behavior for the function f(r, R) .

Criterion

1. Orthonormality

2. Asymptotic behavior of wave function

3. Asymptotic energy correction

4. Intermediate range energy correction

5. United-atom energy correction

6. United-atom behavior of wave function

7. United-atom expression for effective inter-
nuclear potential

Required behavior

f be of same form for all functions Cn so that

(y Iy )=0 implies (C 1C )=0
n m nm n m nial

For xg» xg (j.arge R) „ f ]
For x&»x~ (large R), f
As R '0, [V (V'rf)) —V"

[7' (V 'rf)] decrease smoothly with decreasing R

As R-D, tV (V rf)]'-D
As r& x& (especially as R D), f 0

AsR 0, 'VRf sndVR f 0

The first requirement is automatically fulfilled by
the choice of the wave function, Eq. (5). A glance
at the coordinate system in Fig. 1 reveals that the
second requirement is also easily fulfilled. In an
Appendix to this paper, we show that requirement
No. 2 in Table I is actually not stringent enough.
In order for linear combinations of the functions
C~+ shown in Eq. (5) to exactly match the behavior
of the correct asymptotic functions, Eq. (2), not
only must (fa 1)- 0 as R -~ (the + sign for the
electron on center A, the —sign for the electron
on center B), but this quantity must approach zero
faster than R '. With the function suggested here
for f, binomial expansion shows that the expres-
sions (f +1) take on the asymptotic forms 2[rA(B)/
R]'sin'8~(&), so that the more stringent form
of requirement No. 2 is also met. The term
[V ( V rf)]' may be expanded as

[Y (V rf )] = [(V' r ) 7 y]'

+2f(V r)(V f V)+f'. (10)

Examination of the derivatives of coso reveals
that the first two terms on the right-hand side of
Eq. (10) vanish as R-~, the third of course ap-
proaches unity. Hence, requirement No. 3, the
correct form of the asymptotic energy correction,
is also met by our proposed function. The trigono-
metric form of the proposed function and hence,
too, of its derivatives insures that requirement
No. 4 is also met. Thus the expectation value
of the term [ V (V. rf )]' varies smoothly from Vs
in the ground state of a separated hydrogen atom
to +, [1+(a/R)'] -' V' in the region of the united
He+ atom. This last result points up the impor-
tance of the factor a. With the distance a set
equal to zero, requirement No. 5 could obviously
not be met; the energy correction would approach
the constant value+, [ &m(V/2)'] in the united-
atom limit. However, with a dominating as B-O,

requirement No. 5 is easily achieved. Require-
ment No. 6 is satisfied by the geometry of the
problem. Finally, we come to requirement No. 7,
posed by the physics of an effective internuclear
potential. Here again, the requirement is met so
long as (a/R)'»1 as R-0. The term VRf, for
example, blows up as 8-' with a=0, but vanishes
as R+' with nonzero a values. We see then that
the use of orbitals of the form shown in Eq. (5)
with an f function as suggested above does pro-
vide a means for the attainment of a satisfactory
orbital basis. The form suggested for the static
functions y„ is discussed in the next section.

V. NONROTATING ORBTIALS

We have already noted Bates's" findings of
anomalies in the excitation probabilities predicted
by the two-state version of the pss method with the
use of molecular-oriented, and hence rotating,
orbitals. Mathematically, these difficulties are
introduced by the strong coupling between states
differing in the separated- or united-atom limits
in magnetic quantum number only, caused by the
operator 8/SZ in Eq. (4). This is most easily
seen when 8/BZ is expressed in terms of rotating
coordinates. " Physically, the difficulties are
caused by the inability of the actual distribution
of electronic charge to redistribute itself fast
enough to follow rapid rotation of the internuclear
line, in short, by a breakdown of the adiabatic
approximation. These points are illustrated very
clearly by a comparison of the data generated by
Bates and Williams' with recent unpublished data
generated by one of us (A. R. ) in conjunction with
S. C. Mukherjee. In the discussion which follows,
we will follow the guide lines for orbital nomen-
clature established by Herzberg. " Bates and
Williams' studied the effect of adding H,

+ (2ps)
orbitals to the basis used in calculating char~e
transfer and excitation probabilities in the H on
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FIG. 2. Excitation probability in the H+-on-H system,
E=2 KeV (V=0.283 a.u. ).

H system. This expanded basis gave improved
agreement with the experimental charge transfer
results, ' but it was found that the 2po - 2pm united-
atom coupling terms made the cross section for
excitation of the second quantum level remarkably
large, and it was concluded that H2+(2po ) — H2+(3po')

and other couplings might also be of importance.
To test this hypothesis, Mukherjee and Russek
added the H,+(3PIr) —H(a'u2s) and H, (4Pv)-H(gu2P)
orbitals to the problem and recomputed the ex-
citation probabilities. It was found that while the
addition of the highly antibonding on2p orbital was
relatively unimportant, the addition of the ou2s
orbital was so important that it significantly
changed the excitation probability. In Fig. 2 are
shown plots of excitation probability versus im-
pact parameter at an energy of 2 keV as calculated
by both sets of authors. The most striking fea-
ture of the figure is the following. The Bates and
Williams' data indicate, as we should expect on
physical grounds, that for fixed V, as b-0, P-0
(V, relative velocity; b, impact parameter; P, ex-
citation probability). The Mukherjee and Russek
data, on the other hand, indicate that when the
ou2s state is included in the problem, then al-
though the probability for excitation to a 2p+1
state still -0 as b-0, the probability for excita-
tion to a 2s state of the separated atoms continues
to increase as 5 becomes very small, and so also
does the total probability for excitation to the I.
shell. In addition, the Mukherjee and Russek
curve for P(5TI2P), although qualitatively similar
to the corresponding Bates and Williams' curve,
peaks earlier and does not reach as high a max-
imum.

The reason for the behavior mentioned above
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FIG. 3. Excitation probability as a function of angle
in the H+-on-H system, impact parameter =0.1 bohr.

becomes clearer from a study of Fig. 3. In Fig.
3 are shown curves for the probability of occu-
pancy of the ground state and the two lowest-lying
excited states of ungerade symmetry, plotted for
the small impact parameter b=0. 1 bohr versus
the angle ( 2 7r P—), the complement of angle P
shown in Fig. 1. Here again there are several
things apparent from the figure, but one is most
striking. Both the Bates and Williams' and the
Mukherjee and Russek curves for P(7ru2p) build
steadily until the region near (25 —P) =0 and then
trail off again. However, whereas in the Bates
and Williams' result depletion of the ~02p level
results automatically in a repletion of the ou1s
level, in the Mukherjee and Russek result deple-
tion of the 7tu2p state results mainly in a building
of the ou2s state. The effect of the truncation
introduced by Bates and Williams' in omitting this
latter state is seen to be severe. By so doing
they obtain, fortuitously, results of the type shown
in Fig. 2 which appear to be qualitatively correct.
However, as soon as the approximation is carried
one step further, the type of behavior exhibited in
Fig. 3 which accounts for the weird behavior of
the P(oII2s+ 7ru2P) curve in Fig. 2, is obtained.
The reason for this is not hard to find. From the
Bates and Williams data in Fig. 3, it can be seen
that in the region near P =

& 5(Z = 0 in Fig. l) the
wave function becomes essentially all pu2p, which
means that although the internuclear axis has ro-
tated through an angle of 2 m, the actual orbital
wave function describing the electron has, for
this small impact parameter, rotated not at all.
When the sign of the coefficient weighting the con-
tribution to the total wave function of the ou1s or-
bital is examined, this result becomes even clear-
er. Examination of the data indicates that this
coefficient starts out at -0. 707, passes through
zero near (—,7r- P) = 0, and finally returns very
close to its initial value, with, however, a change
in sign indicating that although the molecule-ori-
ented axis has flipped, the original o orbital in
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which the electron started out has not. These re-
sults are in good agreement with classical intui-
tion. If the electron is considered to perform or-
bital motion about one of the centers, with angular
velocity w of 1 a. u. , then it is likely that reluc-
tance of the corresponding eigenfunction to follow
rotation of the internuclear line, given by angular
velocity wN, will begin to appear when ~

q N
Expressing all quantities in a. u. , the ratio &d~/(de
is given, in general, and at the point of closest ap-
proach, in particular, by the first and the second
of the following equalities, respectively:

/(o =(V/8) sinP= V/b,

where b is the impact parameter, R is the internu-
clear separation, and P is the angle defined in Fig.
1. For the data plotted in Fig. 3 the "threshold
value" V/b =1.0 has been reached, and the reluc-
tance of the electronic functions to follow the nu-
clear rotation is clear. The data indicate that if
the orbital basis is constructed, nevertheless,
from functions which do rotate, then the mu2P or-
bital, as it depopulates, selectively fills the ou2s
orbital when given the opportunity to do so. That
this should happen is really not very surprising,
since as the separated atoms limit is approached
these two levels become degenerate and each lies
some 9.8 eV above the Ouls level. The importance
of the mu2P —vu2s coupling, while mathematically
logical, accounts, however, for the anomalously
large probability of excitation indicated in Fig. 2
for small impact parameters. This, in turn,
strongly suggests the inadequacy of early trunca-
tion when the orbital basis is written in terms of
rotating functions and suggests the possible superi-
ority of a nonrotating orbital basis.

These arguments are given further weight by
the additional data of Mukherjee and Russek which
are shown in Table II. In Table II excitation prob-
abilities P (excited state) are tabulated against
impact parameter for a velocity of 0. 2 a. u. at
values of (—, m —p) of 0, (—,'s —p)~1(max), and 1.55
rad. The quantity (2m —p)+1 ma ) is defined as
that angle where P(su2p) reaches a maximum in
curves of the type shown in Fig. 3. The other
two angles represent the mid and end points of the
collision. For each of the angles we list P(mu2p)
and P(ou2s). The vu2s state is reached from the
Ouls state only with the mu2P state as an inter-
mediary. Hence the sum P(ou2s+mu2p) gives the
best indication of the importance of rotational ef-
fects at (—,'m —p) =0 as well, of course, as giving
the fina) probability of excitation at (2 m —P) = 1.55
rad, and it too is tabulated for these two angles.
From Table II we see that at a given V as b is
decreased and hence the ratio V/b is increased
from considerably below to somewhat above unity,
the sum P(ou2s + su2P) evaluated at (—,~ —P ) = 0
increase steadily, indicating the increasing reluc-

AS

SS
~~

0
Ctj

Ctj

S
~M

M
0

II

~ W
V0
S

Ctj

Q
Q

CI)

Cd

8
N

N

I

0
I

+

S

~ W

~W

Cd

04

0
~ W

Cd+
O

0
II

I

Ctj 4
Eg„

Ctj
4

LQ
LQ

II

I

b

+
0)

b

-H ~
Ctj

I

MI+

0 ~ + LQ
LQ QO W QO
QO CO 0 N Cg QO

C
0 0 0 0 0 0

QO CD M M QO
QO N ~ 0

N & N + O 00 0 O O O
O Q Q O 0 O

LQ M M M L
CD M LQ CO L CQ

CD ~ M M QOn n n ~ 0
0 0 0 0 CI 0

CQ CD lQ 0
CO CD R Cb 0 O
Cg Cg ~ Cg Cg

0 0 0 0 0 0

CD 0 ~ CO
O Q LQ CD L O

LQ N O O0 0 0 0 0 0
0 0 0 0 0 0

LQ
LQ

O ~ LQ tQ Cg

O O O O O Q
+ + + +

O O CO t CO

L
O O N N R O
0 0 0 0 0 0

0g O
F) Q LQ + O O0 O O O
0 0 0 0 0 0

lQ ~ CO W CD
cg CD 0 CD N I.
CO CO O LQ QO

N Ce N W C
0 0 Q O O O

CD0 QO + N
N O 0 O O O

lQ
LQ

0 O 0 0



318 S. B. SCHNEIDERMAN AND A. RUSSEK 181

tance of the electronic wave function to follow the
rotation of the internuclear line. We also see
from Table II that for small b the maximum in the
P(vu2P) versus (—,a- P) curve is reached earlier,
thereby giving it more time to deplete to the Ou2s
state than for larger impact parameters where
this maximum is reached much later in the colli-
sion process. For small b, therefore, the final
value of P(ou2s) is large and curves of the type
shown in Fig. 2 differ markedly from those of
Bates and Williams. ' For large b, however, the
maximum in P(mu2p), although considerably
smaller, is reached much later, has less time to
deplete to ou2s, and gives a curve in at least
qualitative agreement with those of Bates and
Williams. This, of course, is consistent with
the earlier arguments, since as b increases V/b
decreases and so does the reluctance of the elec-
tronic functions to rotate. Browne" has indepen-
dently confirmed the results just discussed. The
recent results of Gallaher and Wilets4 and of
Cheshire' confirm the conclusion that arbitrary
early truncation of a basis expressed in terms of
rotating orbitals is disallowed by rapid rotation
of the internuclear line. The action of the 8/SZ
operator couples orbitals of this type which differ,
in some region, in magnetic quantum number only;
the inclusion of each additional orbital seems to
beget the inclusion of another.

The considerations just discussed suggest the
use, for the yu+ appearing in Eq. (5), of linear
combination of atomic orbitals-molecular orbitals
which are made up of atomic orbitals quantized
in the nonrotating (unprimed in Fig. 1) frame.
For the lowest state of each symmetry type, these
might be expressed, for example, in a simple
approximation as

q (r, R)=C (R)1X (R)[e A+e &])

+C (R)(R ( )[zAe A~a e ~]]. (12)

The molecular orbitals y, are made up of two
contributions, 1s and 2p„which are themselves
already normalized by the Ns and Np+ terms and
are quantized along the nonrotating axis. The
coefficients Cs and Cp give the respective con-
tributions of the two terms. The exponent n is
allowed to vary freely as a function of internu-
clear separation. Use of this type of orbital
amounts to a compromise between the two ex-
tremes of (1) the high-velocity case wherein the
Born approximation is most appropriate and the
expansion is in terms of unperturbed atomic eigen-
energies and eigenstates quantized along space-
fixed axes, and (2) the very low-velocity case
wherein the pss approximation is most appro-
priate and the expansion is in terms of exact molec-
ular eigenenergies and eigenstates quantized

VI. CHARGE TRANSFER IN THE TWO-STATE APPROXI-
MATION WITH NONROTATING ORBITALS

As a first use of the new type of velocity-depen-
dent and nonrotating orbital forms suggested here,
calculations have been performed in the two-state
approximation for charge transfer probability in
the famous O' H+ on H scattering experiments of
Everhart et a/. ' The expression for Pg(E), the
charge transfer probability, is superficially
similar in form to that first derived by Bates and
McCarroll, '

P (E) = sin'f,

where g=(25) 'f [Too —T» ]dt. (14)

However, in our case the quantities Top are given
by

&00 =&oo+ 2m&'(y, Iaaf/~ZI y, ),

with Hoo as defined in Eq. (8) and coordinates as
in Fig. 1. The expressions for I100 and Tpp to-
gether with the united-atom behavior imposed
earlier upon the function f (r, 0) reveal, upon
closer inspection, that our expression for PI3(E)
actually differs considerably from that in Ref. 7.
Most noticeably, the trigonometric type integrals,
which there enter into the calculation because of
the nonorthogonality of the orbitals, are here re-
placed by integrals which enter due to the varia-
tion in f necessary to correctly match all bound-
ary conditions.

Values of the charge transfer probability for 3'
scattering were calculated over the range of en-
ergies covered by experiment, ' approximately
1-50 keV. The variable parameters appearing
in the adiabatic functions y, were determined by
the Rayleigh-Ritz determinantal form of the
variation principal" through minimization of the
adiabatic electronic energies e, . Both linear
and exponential parameters were optimized. All
integrations needed in the evaluation of the adia-
batic terms were performed analytically, some
taken from the work of Rosen" and others evalu-
ated explicitly in prolate spheroidal coordinates. "

along axes which rotate with the internuclear line
(see also Cheshire, ' in this connection). These
orbitals tend to the correct high-velocity limit
and are unencumbered by rotation-related dif-
ficulties. It turns out, too, that they also provide
an approximation to the exact static molecular
energies nearly as good as similar functions which
do rotate. Calculations of charge transfer prob-
ability which are ba.sed upon the orbitals in Eqs.
(5) and (12) are presented in the next section.
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The expectation values of the nonadiabatic terms
in Hoo, Eq. (8), are not evaluable in closed form.
These integrations were accomplished numerically
in prolate spheroidal coordinates. 32-point Lobatto
quadrature" was used for integration over g(- 1
& q ~ 1) and 82-point Laguerre quadrature" for
integration over $(l & $ «). Finally, integration
over nuclear coordinates was accomplished by
11-point Lobatto quadrature. " These last inte-
grations were carried out to an internuclear
separation Z = 10.0 a.u. (Fig. 1), at which point
the integrand in Eq. (14) was already 2 to 2 orders
of magnitude below its maximum value.

The results of the calculations are shown in
Table III. Since we have chosen, initially, to
perform the calculations in the two-state approxi-
mation, there is no damping predicted; its inclu-
sion requires the use of channels of excitation'
and/or a full wave treatment. ' We are interested
then, in these particular calculations, only in the
location of the extrema in the ~(E)versus Ecurve,
and it is these that are tabulated in Table III. They
are tabulated for both the nonrotating orbitals
shown in Eqs. (5) and (12) and the similar rotating
orbitals which are obtained by replacingzg gy in
Eq. (12)by z~ g (Fig. 1). The data of Ferguson, '
which were obtained using the rotating orbital ap-
proximation for H2+ given by Dalgarno and Poots"
are also shown, as are the experimental data. '
For each of the theoretical cases the extrema are
given both with and without the inclusion of the
velocity-dependent correction functions in Ho,
and To+. None of the theoretical results are in
anywhere near as good agreement with experiment
as the very large basis results of Gallaher and
Wilets' and of Cheshire, 4 but this is to be expected
and is not here the point. Comparison of the three
columns labeled "a" indicates that for the particu-
lar resonant charge-exchange process being
studied, orbital orientation is not very important.
This is especially true for small impact param-
eters, where small values of the angle P, i.e. ,
significant rotations of the internuclear line, are
not reached until the near united-atom region.
For these cases, by the time rotation of the inter-

nuclear line is great enough so that, at moderate
8, it mould effect the calculation of the Too terms,
the actual A is already small enough so that what
is being calculated is, in effect, a perturbed
atomic energy which is independent of rotation of
orbitals. This insignificance, here, of orbital
orientation is not very surprising when one con-
siders that by limiting ourselves in these first
calculations to the two-state approximation, we
have restricted ourselves to initial and final states
that are all spherically symmetrical, thereby
automatically excluding the anomolous coupling
effects of the 8/BZ operator on rotating orbitals.
Our previous discussion of Fig. 3, and the work
of Bates, "Gallaher and Wilets, ' and Cheshire, '
makes it clear that the salient feature of the use
of nonrotating orbitals, the elimination of this
anomoly, will appear only when the basis is ex™
panded sufficiently to include a study of excitation
effects as well.

The good agreement exhibited in Table III be-
tween the results of Ferguson' and the current
results for the adiabatic case makes possible a
comparison of the effect of the velocity-dependent
correction suggested by Bates and McCarroll, '
Eq. (1), and the type suggested here, Eq. (5).
From Eqs. (8), (14), and (15) it is clear that the
nonadiabatic phase corrections to the charge
transfer probability are proportional to V. Hence
as would be expected, the data in Table III indi-
cate these corrections are negligible at the lowest
energies considered, E = 1 keV. For energies
much above 25 keV, which corresponds to a proton
velocity of 1 a.u. , the mhole concept of a per-
turbed stationary state becomes invalid. One
would expect, therefore, that the most meaningful
area for the type of nonadiabatic correction sug-
gested here would be at or near the 25-keV mark„
The data in Table III indicate that this is the case.
The corrected extrema calculated with the f func-
tion corrections become progressively better as
E is increased to near this limit. Additional data
show that beyond this point the corrections tend
to over-shift, i. e. , to place the next extremum
below the experimental value. With the Bates-

TABLE III. Results of charge transfer calculations in the two-state approximation for 3' scattering in the H -on-H
system; a, without velocity-dependent corrections; b, with velocity-dependent corrections.

Extrema

Ferguson
(Ref. 1)

Rotating
orbitals

Nonrotating
orbitals Experiment

(Ref. 5)

min

min

min

58.4
14.6
6.48
3.65
2.34
1.63
1.19

16.9
6.95
4.06
2.70
1.96
I.51

6.5
3.7
2.3
1.5
1.0

5.2
3.2
2.1
1.4
1.0

58.4
15.0
6.5
3.7
2.3
1.5
1.0

21
10
5.4
3.3-

2.2
1.4
1.0

21
7.8
3.9
2.4
1.6
1.1
0.78
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McCarroll'-type function this overshift occurs at
much lower energies and so, consequently, does
the area of best agreement with experiment.

A final determination of the practical merits of
the new type of velocity dependence suggested in
Eq. (5) must await the performance of more de-
tailed calculations. For one thing, we have in
these preliminary calculations optimized the
orbital wave functions with respect to the static
electronic energies e+. A better procedure would
be to fully optimize these functions with respect
to the actual expectation value Ho+ shown in Eq.
(8). And, as pointed out by Mittleman' and de-
veloped by Cheshire, ' a still better procedure,
which fully takes account of the dynamic nature of
the encounter, is to minimize the integral

I =J (e ~a —i a/sf (e )df.

The integral in Eq. (16) will, of course, vary
with impact parameter b. Use of the variation
principle in its minimization will therefore be
more powerful if the parameter "a"appearing in
f =cos8/[I+(a/R)'] is allowed to vary with b. As
mentioned earlier, this parameter is to be re-
garded as a relatively small distance below which
the electron essentially "sees" a united atom and
ceases to belong to either nucleus individually.
That "a" should vary with the relative velocity
V, and hence, for fixed angle scattering, with the
impact parameter b, is therefore entirely consis-
tent with and even required by its physical inter-
pretation. In the calculations performed thus
far, "a"was regarded as constant for an entire
PR(E) versus E curve, and it was found that the
best values of the charge-exchange probability,
those given in Table III, were obtained with "a"
values of the order of 8 to ~~6 a. u. For smaller
"a"values, derivatives of the f function blow up
and the correct united-atom behavior is not
achieved; for larger "a"values, the velocity-
dependent terms are damped out too quickly and
the correction terms calculated are too small.
Further investigations into the best form for the

f function and the effect of nonrotating orbitals
on excitation probability are required.
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APPENDIX

Asymptotic Form of the Wave Function

In the impact-parameter version of the method

of pss, the time-dependent wave function describ-
ing the electronic state of the system is expanded
as

4 (r, f) =Q C (t) e (r, t) . (i7)

"0 X(a)' (IS)

Derivation of the expression, Eq. (13), for the
probability of capture by proton 8 of an electron
initially on atom A requires a knowledge of the
coefficients C, (-~) weighing, in Eq. (17), the
contribution of the 4+(r, f) to the wave function
describing the initial electronic state of the sys-
tem. This latter is given by Eq. (2) with n = 0.
Substituting Eq. (18) into Eq. (2) and the resultant
into Eq. (17) gives, upon inner product formation
with the C+, of Eq. (5),

C, (- ) =2 '"fd~ ly, i'

xexp[- (im/2h)V r [1+f(r, Tt)]]. (19)

In obtaining Eq. (19) we have made use of require-
ment (3) in Table I. In order for combinations of
the 4, to behave as asymptotically exact wave

0
functions, the integral in Eq. (19) should approach
unity as R-m. Using Eqs. (18) to transform to
atomic eigenfunetions and expanding the exponential,
Eq. (19) may be rewritten as

C (- )=2 "'fdic ly (r ))'0 0 A

Z —
&

(- im/25V r [ 1 +f (r, Q)] ) (20).=0 "~

A study of Fig. 1 reveals the following trigono-
metric equality:

V r = Vs = V(s —~R cosP).
A (21)

With the electron on A, cosp= —1. The V r term
in Eq. (20) therefore contains a term linear in R
which can cancel exactly any R-' dependence ap-
pearing in the asymptotic form of (1+f ) when the
multiplication indicated in Eq. (20) is performed.
The series form of the exponential makes it clear
that the expectation value of the quantity in brack-
ets will consequently vanish as R-~ only for func-
tions f(r, %) for which the quantity (1+f)-0, as
R-~, faster than R '. For functions which do
meet this criterion such as, for example, cos8,
the integral in Eq. (19) does approach unity as
R-~ and the wave functions are asymptotically
exact.

The form of the 4 (r, f) suggested here are shown
in Eq. (5). The static part of the 4 (r, i), the
yn(r, 0) shown in Eq. (12), display the usual as-
ymptotic behavior, namely,

2-'"[y,+(r, 0) &+-)1, (r, 5.)]
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