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Theory of Electron Diffusion Parallel to Electric Fields. 1. Theory
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Recent experimental results in many gases demonstrate that the apparent rate of electron
diffusion parallel to an electric field can differ significantly from that in the perpendicular
direction. We have explained this anomalous behavior by taking account of the effect of elec-
tron density gradients on the solution of the Boltzmann equation representing a pulse of elec-
trons under the influence of a uniform electric field. When the electron collision frequency
increases with energy, the theory predicts that the leading edge of the pulse has a reduced
mobility because of a higher-average electron speed and collision rate. Similarly the mo-
bility of the trailing edge is enhanced, and consequently the half width of the pulse in the
field direction is characterized by a new diffusion coefficient. The ratio of the longitudinal
diffusion coefficient to the transverse diffusion coefficient is given as integrals involving
the momentum transfer cross section and the unperturbed energy distribution. This ratio
at high electric fields is found to be approximately one-half and one-fifth, for momentum
transfer cross sections that are independent of and linearly proportional to the electron
energy.

I. INTRODUCTION

Many experimental studies of the mobility p, and
diffusion coefficient D for electrons in gases have
been carried out over the years. ' In most cases,
these studies have depended on the Townsend
method' ' for obtaining D/p and the time of flight
(TOF) method4" for obtaining p. In the Townsend
method, electrons which are emitted at a steady
rate from a point source, drift under the action
of a uniform electric field and diffuse laterally to
produce an ever widening radial spread to the
electron swarm. It is the measured width of the
radial distribution of the electrons at a given
drift distance that gives D/p, . In the TOF method,
a one-dimensional pulse of electrons is formed,
and subsequently drifts under the action of an
electric field. The measured speed of the center
of the pulse gives p, .

The measured electron transport coefficients
D and p have been identified in the past with theo-
retical coefficients derived on the assumption
that the electron energy distribution has no spa-
tial dependence. '~' That is, it has been assumed
that an energy distribution that is strictly correct
only when the electron density is spatially uniform,
can be used to describe the transport properties
of electrons when the electron density is nonuni-
form, i. e. , in cases where diffusion is present.
Using this assumption, the theory predicts that
D/p and p,E will be a function of E/N and the
collision cross sections. ' The experimental data
obtained with the Townsend and TOF methods have
been found to be consistent with this theory in
that (I) D/p, and p, E are indeed functions of E/N, '
and (2) the elastic cross section for helium, for
example, that is constructed to give consistency

between theoretical and experimental values of p, ,
also gives consistency between theoretical and
experimental values for D/p, .""' The experi-
mental transport coefficients when analyzed on
this basis have yielded information on the elastic
and inelastic cross sections for many gases. '~"

It has been recognized for many years4~'4 that
the TOF method should be capable of giving Dl p
as well as p, . In this case D/p. is obtained by
measuring the increasing width of the electron
pulse in the field direction, as the pulse drifts
under the action of the field. Assuming the elec-
tron energy distribution is independent of position,
the diffusion coefficient parallel to the electric
fieM determined by the TOF method should be
identical to the diffusion coefficient of the Town-
send method in which the diffusion is predomi-
nantly perpendicular to the field direction. With-
in the last two years, measurements of D/p by
the TOF method have been carried out by Wagner,
Davis, and Hurst for many different gases. "
They found that Df /p, where DI is the diffusion
coefficient parallel to the field, is considerably
different from DT/p. , where DI is the diffusion
coefficient transverse to the field as given by the
Townsend method. For example, in argon, Dl, /p
was found to be approximately one-seventh of
D&/p, at high E/V.

Previously Wannier" has shown that the influ-
ence of density gradients on the energy distribution
function generally results in differences between
the theoretical longitudinal and transverse diffu-
sion coefficients. By considering the case where
the logarithmic derivative of the ion density is
uniform in the field direction, the distribution
function is still independent of position, and
Wannier was able to calculate for ions of mass
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equal to the gas molecules and for constant cross
section, the longitudinal diffusion coefficient in
the high field limit.

The purpose of the present work" is to theo-
retically describe the motion and spreading of an
e1.ectron pulse in a TOF experiment by means of
Boltzmann transport theory, and to relate the
theoretical predictions with experimental mea-
surements. The effect of the density gradients
leads to the distribution function becoming a
function of position. In Sec. II, the conventional
transport theory, which utilizes a position inde-
pendent energy distribution, is reviewed. A semi-
quantitative model is developed in Sec. III that
takes the effect of electron-density gradients on
the energy distribution into account, and yields
a simple physicaI. picture of the dominant process
that leads to the anomalous longitudinal diffusion
observed in the TOF experiments. In Sec. IV, a
solution of the Boltzmann transport equation
applicable to elastic collisions is obtained, which
describes the TOF experiment and yields a for-
mula for the longitudinal diffusion coefficient DI..
This formula is then applied to cases where the
elastic cross section has a simple functional
dependence on the electron energy.

For simplicity, only elastic collisions are con-
sidered in the present Paper I. In the following
Paper II, the theory is extended to take inelastic
collisions into account and is used to obtain
DI/p as a function of E/N for various real gases.
These results are compared with available experi-
mental data.

II. CONVENTIONAL APPROACH

A typical TOF experiment can be described as
follows. A narrow pulse of electrons is injected
into a uniform electric field region containing
gas atoms at a given density. After injection,
the pulse will drift under the action of the electric
field and spread by diffusion. Because the initial
electron energy distribution does not, in general,
match that characteristic of a steady state in the
gas, the energy distribution as well as the drift
and diffusion rates will change as the pulse moves
away from the point of injection. Most of this
change occurs while the pulse travels the order
of an energy relaxation distance d~. This quan-

tity, when only elastic collisions are considered,
can be approximately expressed as"

d = MeE/2m'p'

tance large compared to d~, the electron energy
distribution assumes a steady state characterized
by a balance between the electrons gaining energy
from the field acting on the drift current and

losing energy through collisions with the gas
atoms. It is at this point of the conventional ap-
proach that the effect of electron-density gradients
on the electron energy distribution is neglected.
The equation that expresses this balance when

only elastic collisions are considered can be
written as'

—e'q F(e)+ —— —-- =O, (2)8, M eE ' I BF(e)
Be 6m NQ e ee

where F(e) is the electron energy distribution, e

is the electron kinetic energy, and Q is the mo-
mentum transfer cross section which is, in gen-
eral, a function of e. In writing Eq. (2) it is
assumed that the gas temperature T is zero. The
solution of this equation, which is regular at
& =0 and gives the steady-state distribution, is

6m N'~
F(e) =A exp — —f eQ'de

M eE

where & is a normalization constant" such that

2 &/2 oo

f e '~'Fde = 1 .
m m

Bn Bn—=- p, E—+VV'n
Bt Bz

(7)

where the electric field is taken as f = —Ek where
0 is a unit vector along the z axis. If the pulse is
still quite narrow when the electrons have reached
their steady state, the solution of Eq. (7) that
represents the motion and spreading of the pulse
is given by

After the electrons in the pulse have assumed
this steady-state distribution, they are charac-
terized by a mobility and diffusion coefficient
that are independent of position and given by'

8we e BE
p =—

0

and D = ——,
-- de.8g ~F

(6
SmNJ Q

0

The electron density n will obey the equation of
continuity given by

where M and m are the atomic and electronic
masses, respectively, e is the electron charge,
and v is the electron collision frequency. In con-
ventional transport theory, it has been implicitly
assumed that after the pulse has traveled a dis-

exp f fp —(& —p Et )'].-/4Dt )
o (4~Dt )'I'

where p is a cylindrical radial coordinate and n0
is the total number of electrons in the pulse. It
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is evident from Eqs. (7) and (8) that conventional
theory predicts that the diffusion coefficients
parallel and perpendicular to the field are the
same.

It is clear from Eq. (8) that p, can be evaluated
by measuring the time it takes the pulse to travel
a given distance after the electrons have assumed
a steady-state distribution. In turn, D can be
evaluated from the measured width of the pulse
for a given drift distance. In practice, the effect
due to d& can be made insignificant by working at
sufficiently high gas densities, as is evident from
Eq. (1) which shows that de is proportional to
1/N at a given E/N. The experimentalist assumes
that effects due to d& are negligible if p.E and
DX are found to be density independent at fixed
E/N.

In order to carry out the measurement of drift
time and pulse width, it is necessary to introduce
a metallic boundary which perturbs the electron
density from that given by Eq. (8). The effect
due to boundaries can, in principle, be taken into
aeeount by using the conventional theory in the
form of Eq. (7) along with the boundary condition.
However, in practice, the effect due to boundaries
for measurements of both D7/p, and yE is usually
small because of the high gas density used in the
experiments. 20~"

III. SEMIQUANTITATIVE MODEL

As has been stated above, it is assumed in
conventional transport theory that the electrons
in the pulse relax from their initial energy dis-
tribution into a distribution that is determined by
a balance between the electrons gaining energy
through the field acting on the drift current and
losing energy through collisions with the gas atoms.
This two-component balance is strictly applicable
only when the electron density is spatially uniform.
When the electron density is nonuniform and dif-
fusion currents are present, the balance must also
include the effect of the electrons gaining energy
through the field acting on the diffusion current.
In the TOP experiments, diffusion currents lead
to an energy distribution that is a function of posi-
tion within the pulse, and in turn leads to changes
in the predicted drift and spreading characteristics
of the pulse.

Before developing a quantitative description of
the TOF experiment based on the Boltzmann equa-
tion, we will first give a semiquantitative dis-
cussion of the problem. The purpose of the dis-
cussion is to clarify the role that diffusion plays
in affecting the energy distribution of the electrons
and modifying conventional transport theory.

We assume that each electron can be character-
ized by a mean energy e (z). In the steady state,
the rate at which electrons gain energy from the
field is equal to the rate at which they lose energy

through elastic collisions with the gas atoms.
Therefore,

nv(2m/M)e = —e R ' I, (9)

where v is the electron collision frequency and
2m/M is the fractional energy loss per collision.
The particle current density, I is given by

F.= —pEn —DVn . (io)

The quantities v, D, and p that appear in Eq. (9)
and (10) are considered to be functions of e~.
Taking E = —E$ and using Eq. (10), the energy
balance given by Eq. (9) can be expressed as

e, = (M/2m')(eE/v, )~

where v, is the value of v evaluated at &~ = E'O. By
substituting e~ = &0+ &e and v = v, + sv/&e l,&e into
Eq. (11) and solving for he, we can then express
6~ as

(12)

where &v/&el, is the derivative of v with respect to
energy evaluated at e~ = e0. In obtaining Eq. (12),
we have considered only first-order terms in ~e'

and (I/n) Bn/Sz on the assumption that the effect
of the density gradient on the electron energy is
small. Equation (12) expresses the fact that e~
is greater than e0 when the diffusion current adds
to the drift current and is smaller when diffusion
subtracts from the drift current. The electron
energy is, therefore, a function of position within
the electron pulse. "

Returning to Eq. (10) and using the expression
for e~ given in Eq. (12), the current density can
be expressed as

2m, 1 Bn
vc =epE'- eED ——.M ~ n Bz'

Equation (11), after v, p, , and D are expressed
in terms of e~, can in principle be solved for c
in terms of (I/n) Sn/Sz. We will approximate p
and D by forms which are strictly correct only for
constant collision frequency, ' i.e. , p, =e/m v and
D=2e~/3mv. It is evident from Eq. (11) that when
the density-gradient term is zero, the electron
energy e0 is given by
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and where p, , = e/mv„D, = 2s,/3m v„and where we
have defined the quantity y as y = (eJv, ) Bv/Bc (,.
It is evident from Eq. (13) that while the coeffi-
cient describing diffusion perpendicular to the
field corresponds to the usual diffusion coefficient,
the coefficient for diffusion parallel to the field
is modified due to the dependence of p, on (1/n)
Bn/Bz. Then, D~ and DT can be expressed as

If we take v to vary as

v= v~ (f /E)

where l is an integer, then Df, /D& becomes

D /D =(1+3)/2(I+2).

D =D [I-y/(I+2y)],

and D~ ——D
(14)

or if ~v & 0, then D& &D&,.
~E'

Bp
and if

~ &0, then D~ &D~.
p

Equation (14) also indicates that Df can differ
significantly from D~ when v varies by an appre-
ciable fraction over an energy interval equal to

It is evident from Eq. (14) that D& can be greater
or smaller than D& depending on how v changes
with energy. That is

Bp
if 8

=0 thenD =DT DoSf

For example for I = —1 (v =const), Df D& a=nd for
I= 0 (constant cross section) Df —-0. 75 D7 ~

The difference betweenDI and DY in (14) arises
from the change in the drift velocity p.E that is
associated with the increase (or decrease) of cm
over e p brought about by the electric field acting
on the diffusion part of the current. In the TOF
experiment, E~ is greater than &p in the leading
edge of the pulse where the diffusion current adds
to the drift current, and for the ease of a con-
stant cross section (l =0), pE will be less than

In the trailing edge where the diffusion cur-
rent subtracts from the drift current, f~ & E'p

and, therefore, yE &y.Q. It is evident that this
change in the drift velocity on each side of the
pulse leads to a narrowing of pulse and since this
change is proportional to Bn/Bz, the narrowing
can be characterized by a change in the coefficient
for diffusion parallel to the field.

IV. QUANTITATIVE THEORY

(a) Boltzmann Transport Theory

The average properties of electrons moving through a gas, e. g. , electron density, current density,
mean energy, etc. , can be obtained from the electron distribution function f(r, v, f ). The significance of
this function is that f(r, v, t)drdv denotes the number of electrons at position r in dr and with velocity v
in the range dv. The distribution function in turn satisfies an equation of continuity in position and veloc-
ity space, i.e. , the Boltzmann transport equation. This equation equates the rate change of the number
of electrons in drdv to the net flow of electrons into this volume element. The flow in position space re-
sults from the velocity of the electrons, while in velocity space it results from their acceleration due both
to collisions with the gas atoms and to the applied electric field.

There are several approximations commonly made in order to simplify the integral-differential Boltz-
mann equation when applied to electrons. The first is that the distribution function is almost spherically
symmetric in velocity space, and therefore, can be adequately represented by the first two terms of an
expansion in spherical harmonics involving the direction of the electron velocity. That is, f(r, v, f ) can
be written as"

f(r, v, f) =f '(r, v, f) + f'(r, v) ~ v,

where v is the unit velocity vector. The second approximation is that in the case of elastic collisions, to
which the present Paper (I) is restricted, the fractional energy gain or loss by an electron upon colliding
with a gas atom is small. This assumption is justified because of the small electron to atom mass ratio.
With these approximations, the Boltzmann equation reduces to two partial differential equations for f' and
f' that can be expressed as"

1 1
4m (2 )~ ~ Bf 16' B

2q fo kT f 87
p 8veE

(ek ~ f')
m 8t mM 86 8q 312 3' 8 6 (15)
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and
Qfo ~f'=- Vf'+eE k (16)

A A
where the electric field has been taken to be uniform and given by E =-Ek, with k as a unit vector along
the z axis, and where k is the Boltzmann constant.

The equation that f' must satisfy is obtained by substituting f' from Eq. (16) into Eq. (15) and is

Ne' '+kT& + — —eE& + +, —eE& +V' ' . ll

The electron current density and the electron density, can be expressed in terms of f' as"

~ s j. oO

I"(r, f) = —
2

— Vfo+eZk de, and n(r, t) =—— J e'~2f ode.
3m'N Q Pl 0

0

By multiplying Eq. (1V) by de and integrating from 0 to ~, we obtain the equation of continuity in position
space, i.e. , V ~ P+&n/st=0. It is to be noted that f0 can be expressed as f'=n(r, t)F (e, r, t), where F
is the electron energy distribution as introduced in Sec. II, which now may be a function of r and t in ad-
dition to e.

It is useful to briefly describe the physical meaning of the various terms in Eq. (17), and thereby ob-
tain some insight into the physical processes that are neglected under the assumption that I is indepen-
dent of r and t. Equation (17) is an equation of continuity for electrons in energy and position space.
After being multiplied by dedr, it describes the net rate at which electrons enter dedr at (e, r). This rate
is associated with either electrons gaining or losing energy within dr or electrons entering dr with energy
e from points outside dr. The first and second terms on the right side of Eq. (17) represent electrons
gaining or losing energy due to collisions with the gas atoms. The third term represents the electrons
gaining or losing energy due to the field acting on the electron drift current while the fourth term is as-
sociated with the energy gain or loss due to the field acting on the electron diffusion current. These last
two terms show that the electrons can gain energy from the field when more electrons flow against the
field than with it and that this net flow is associated with both the drift and diffusion of the electrons.
These first four terms represent the electrons gaining or losing energy within d, i. e. , a divergence in
energy space. The fifth and sixth terms represent the electron flow into dr, and, therefore, represent
a divergence in x space. The fifth term represents the net flux into dr that is associated with electron
drift, and the sixth term is associated with electron diffusion. The assumption in conventj. onal transport
theory that F is independent of r and t implies that (1) the fourth, fifth, and sixth terms are small in com-
parison to the first three terms, and (2) that the electron energy distribution is in steady state, i. e. ,
SF/&t-0. The first assumption is correct only when electron diffusion can be neglected in comparison
with electron drift. This condition does not hold in the TOF experiments. The second assumption is cor-
rect for the TOF experiments in that drift times of electrons in the experiments are ordinarily long in
comparison to energy relaxation times with the resuIt that the initial energy distribution has had sufficient
time to relax to almost a steady-state distribution.

(1) One Dimensional Pulse

In order to go beyond the simple model developed in Sec. III, it is necessary to find a solution of Eq.
(1V) which is appropriate for the TOF experiment. It is clear that the proper approach would be to obtain
a solution that would describe the complete evolution in time of a one-dimensional 5-function pulse of
electrons introduced at e =0, t =0 with initial energy of ef, i. e. , to find the Green's function for Eq. (1V).
This solution would describe the motion and spreading of the pulse as well as the relaxation of the initial
energy into the final steady-state distribution. In turn, this solution could be used to build up other solu-
tions for different initial energy distributions and pulse shapes. However, this approach would lead to
mathematical complexity and to a more detailed description of the TOF experiment than is needed for
comparison with the presently available results from experiment. While certain aspects of this general
approach will be developed in the Appendix for completeness and where they are pertinent to the TOF ex-
periment, the object of the present section is to obtain the part of the general solution which is applicable
when the pulse is far enough from the point of injection such that the energy distribution is essentially in
steady state.

%'e will start by assuming a solution of the form

f (e s f)=e e H(e s).
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This is simply one Fourier component in z of the complete solution that we seek. When fs is substituted
into Eq. (1V), the resulting equation for H can be written as

8v(eE)' pH sH . 8veE e eH e sH . , 8w eH 4m 2e
32NsQ(1 +kTp)

1 kT+6+zs3,NeQ+Qe-+(ss)'3, NQ +a(s) —— H= 0, (19)

where P is given by p = (6m/M)(NQ/eZ)'e . Equation (19) can be considered as an eigenvalue problem with
~ the eigenvalue and H the corresponding eigenfunction. Both ~ and H are functions of the parameter s,
which is a direct measure of the fractional change in fs' associated with a change in z, i.e. , (f ') 'af'/ez
=is. It would be expected that for each value of s there would exist a series of eigenvalues for . For
s =0, the solution of Eq. (19) that is finite at &=0 and corresponds to ~=0, which is the lowest eigen-
value, is

E

H, (e, 0) =constxexp[ —f deP/(I+kTP)] . (20)

This is the spatially independent energy distribution used in conventional transport theory, and reduces to
Eq. (3) when kT =0. The higher energy functions (» 0) for the case of s =0 give the additional functions
required for expanding an arbitrary initial energy distribution that eventually decays to that given by Eq.
(20). Likewise, for s 0 0, the higher functions would be needed to describe the decay of the initial energy
distribution for cases where f' depends on z.

In the present case, we are concerned only with the energy function H, (e, s) which is associated with the
electron distribution function far from the source point where the higher energy modes are negligible. It
is clear that as s deviates from zero, H, (z, s) begins to deviate from the conventional energy distribution
given in Eq. (20). We will expand H, (e, s) and ~,(s) as a power series in s, i. e. ,

H, (e, s) =E,(e) + is E„(e) + (is )'E,(e) + ~ ~ ~, (21)

and (u, (s) =is (o, —(is)'u), + ~ ~ ~ . (22)

It is to be noted that Eq. (22) gives & (0) = 0 and this implies that E,( )weill be equal to H, (e, 0) as given by
Eq. (20). A set of differential equations is obtained when the expansions for Ho(e, s) and &,(s) are sub-
stituted into Eq. (19), and the coefficients of powers in (is) are equated to zero. The first three equations
of this set are

pEO eEo
Q

(1+kTp)
1 kT + s

—-0, (23)

E)' 6 ~e
1 kT ~F, eF, 8vsE 6 eF, e BF, 4~ 2

3m'N ee Q 1+kTp ee g 3m'N ee Q Q ee ' m m
(24)

and

8v(eE)' e "e
( )

pE, BE, 8veE e eE, z sE, 8v qE,
3m'N ee Q 1+kTP ee 3m'N e e Q Q s e 3m2N Q

4g 2e
+ (&dg y

—(d2FO) = 0.
(25)

These equations determine, in succession, the functions Ei(z) and the values for ~i for i & 0 starting from
E, given by Eq. (20). We will take F, to be normalized according to Eq. (4). Multiplying Eq. (24) by de
and integrating from 0 to ~ gives

u), = —(8veE/3m'N) J (e/Q)(BF, /s&)d& = p, p, (26)

where p, , is the usual mobility coefficient given by Eq. (5). It is evident that ~, is the usual drift velocity.
The solution of Eq. (24) that is finite at e = 0 is
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F,(z
x[1 + kTp(x)]F, (x) Q(x)

(2V)

where F,(0) has been set equal to zero
The quantity (d, is obtained by integrating Eq.. (25) over energy from 0 to ~ and is

p
2 ' 3m'N Q &e m m ~(&

0

(28)

where Do is the usual diffusion coefficient given by Eq. (6). The higher-order Fi's and (di's can be ob-
tained in a similar manner.

We can now express fso as

f (e, z, t)=e ' e ' [F,+isF, +(is)'F, +(is)'(F, +(d,tF, ) ~ ],0 is(z —(g,t) —s2(g~t
(29)

where the function exp(- (is) (d&t) has been expanded in a power series in (is) for P & 3. We now form a
Fourier integral, using fs given in Eq. (29), i. e. ,

f'(e, z, t) = (2m) 'f dsf '(e, z, t).
S

If we note that

is (z —(d, t) —s'~, t).. .m & ~ is (z —+,t) —s'~, t)f ds e e (zs) = ds e ' e
88

and that"

(2m) f dse ' e ' = exp[- (z —(g,t)'/4~, t]/(4m(d, t)'~',

then f' can be expressed as

8 8 83f'(t, t, t)=(P, +P, t +P, t, +(P, +tttP )t, + ~ ~ .) P(t), (30)

where P(z) = exp[- (z —~,t)'/4 (dt ] /(4m&v, t)'~'.

It will be shown in the Appendix that this solution is the far distance part of the Green's function for Eq.
(1V) for electrons that are initially injected with zero energy. This solution should, therefore, be appro-
priate for describing the one-dimensional electron pulse of a TOF experiment far from the source point.

The electron density corresponding to f' as given by Eq. (30) can be obtained by using Eq. (18). The
density can be written as

8 82
tt(z, t) ((+4, t +A, t, =+ ~ ~ .

) P(t),

l/2
where A, = (4w/m)(2/m) f t'~'F, de,

(31)

(32)

andAi, with i & i, are given by similar expressions.
The two quantities that are measured in a TOF experiment are the position of the center of the pulse as

a function of time and the width of the pulse as a function of time. We will consider the average distance
zav, and the average square of the deviation from zav, (z -zav)a ', as corresponding to the experimen-
tally measured quantities, where

z = J zn(z, t)dz, and (z —z )
' = f (z —z )'n(z, t)dz.

Using the properties of the Gaussian function, it is easily shown that
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= 4ggt Ag~
RV

and (z —z ) '=2~, t-A, '+2A, .
RV RV

It is to be noted that in calculating the above parameters which characterize the position Rnd the width of
the pulse, it is only necessary to consider terms in Eq. (31) up to the second derivative in z. The higher
terms are necessary only in describing higher-order shape characteristics of the pulse.

It follows from Eqs. (23), (24), and (25) that F, is independent of N, and F, and F~ are proportional to
1/N and 1/N', respectively. Therefore, ~, is independent of N, ~, and A, are proportional to 1/N, and
A2 is proportional to 1/N . Thus in the limit of high gas 'density, za and (z )av can be expressed as

z =(o,t= p,Pt, and (z —z ) '=2(o~t=2D f,
RV RV RV I

where DI has been set equal to &,. The electron density in this limit can be written as

n(z, f) =exp[- (z —p, Et)'/4D t]/(4' t)'/'.

We, therefore, have found a solution of Eq. (IV), which in the limit of high gas density yields an electron-
density pulse which has the conventional Gaussian shape of Eq. (8). While the usual mobility coefficient
characterizes the motion of the pulse, the width of the pulse in the field direction is given in terms of a
new longitudinal diffusion coefficient given by Dl =+2, where &2 is given by Eq. (28).

(c) A Simple Application of the Theory

We will now consider the application of the
theory in the case of a momentum transfer cross
section that varies as,

2Dl.t in Eqs. (33) and (34), were also calculated.
These quantities have the dimensions of cm and
cm' and are proportional to 1/N and 1/N', re-
spectively. Using D,/p, E as a normalization
factor, the normalized quantities were found to
approach a definite limit at high E/N. Table I
gives values for these quantities at high E/N for

where Qo is the cross section at the arbitrary ref-
erence energy e, and I is an integer. The quantity
DI /D0 has been calculated" along with the pa-
rameters which characterize the deviation of zav
and (z —zav)av' from their high-pressure limits.
This calculation was carried out by first deter-
mining F„F„and F, from Eqs. (23)-(25) and
evaluating &„A„and A, from Eqs. (28) and (32).
It was found thatDI /D0 approaches a definite limit
at high E/N which is consistent with the results of
Sec. ID.

Table I gives values of Df /D0 as a function of I
in the limit of high E/N. 2' The results for I = —1
(constant collision frequency) and I = 0 (constant
cross section) are in qualitative agreement with
the results of Sec. III. Figure 1 illustrates the
variation of DI, /D0 as a function of E/N for the
various values of l . As is expected, Dl /D0
approaches unity in the limit of low E/N, where
the electron diffusion is governed primarily by the
thermal motion of the gas atoms, rather than the
electric field.

Figure 2 shows the functions E„NF„Rnd N'F,
for the case of constant cross section (I =0). The
function Eo is a Druyvesteyn distribution as is
expected for this case at high E/N.

The quantities A, Rnd RA, -&,', which are pres-
sure-dependent correction terms to pPt and
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FIG. 1. Dl/DZ as a function of 8/N for various
values of the parameter E . The molecular weight is
taken as 4.
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FIG. 2. Fp NFg and S Fq as a function of electron
energy for the case of constant cross section in the high
E/N limit. The units of I"o,

I"
~, and I"2 are cm sec,

cm sec, and cm sec, respectively. The molecular
weight is taken as 4.

various values of /.
Since it can be shown" that Do/poE-de, it is

evident from Table I that the correction terms to

poEf and (4DI t)'~' are almost of order de. Thus
provided Do/poE «zav and (DO/p, OE)'
«(z —b'av)av', the corrections involved in the in-
terpretation of measured transit times and pulse
widths are small, and thus the pulse can be
characterized by a mobility and diffusion coeffi-
cient which is proportional to 1/N.

That the correction terms to poEt and(4D&t)'~'
are of the order of d~ is a reflection of the fact
that the "far distance" solution is affected by the
initial electron distribution, and the effects are
associated with the relaxation of the initial elec-
tron energy distribution to its steady-state form.
Since the higher energy modes decay at least as
fast as exp(-b'av/de), the corrections represented
by A, and A, in the lowest mode should be accurate
when b'av - 10 dz. It will be shown in the Appendix
that the magnitude of A, and A, depend on the ini-
tial energy distribution. Since the values of Table
I are for the case of an initial energy of zero,
they can only be taken as a semiquantitative mea-
sure for the corrections in real experiments. The
serious application of these corrections to actual
experiments involves a calculation of A, and A,
using the initial energy distribution of the electrons
at the point of injection.

(d) Extension to Three Dimensions

In Sec. IV(b), a, one-dimensional solution of Eq. (17) was obtained which in the limit of high gas density,
a limit which is appropriate to actual TOP experiments, gives an electron pulse which is characterized
by a new longitudinal diffusion coefficient DJ . In the present section, this solution will be generalized to
three dimensions in order to show that in the high-gas-density limit the transverse diffusion is still given
by the usual coefficient D,.

We will consider a cylindrically symmetric case, and the V term in Eq. (15) will now include the term

Now f '(e, p, z, f) can be written as

f '=exp[- isz —co(s, K')tj J (Kp)H(e, s, K'),

where J,(Kp) is the zero-order Bessel function of the first kind. On substituting f given by Eq. (35) into
Eq. (17), we obtain an equation similar to Eq. (19) with the additional term —K'(8v/3m'N)(e/Q)H. Because
there are two parameters Ka and s, we will expand H(e, s, Ka) and ~(s, Ka) in a double power series in
(is) and K', i.e. ,

H(e, s, K') =F«+F»(is) +F»K'+F„(is)'+F»(is)K'+F,+'+ ~ ~,
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and ~(s, K ) = ~~0('Ls) +(go~K —(g»(zs) +(g~~1sK + ~ ~ ~

When these expressions are substituted into the equation analogous to Eq. (19), a series of differential
equations analogous to Eqs. (23), etc. , are obtained corresponding to various orders of (is) and K .
These equations can be solved in succession to give Fzj s and Mzj s starting from F„=F,. In this way it
can be shown that

10 1' 20 2 10 1 0 ' 01 0 20 2 L,
'

Then using fs' given in Eq. (35), a Fourier-Bessel integral for f' can be written as

x [F„+isF„+(is)'F„+K'Fo, +isK'(F„—(u „tFOO) +K~(FO, —(uo, tF,O) + ~ ] .

This can be expressed as

where"

Q(z, p) =(exp[- {z—p Et)2/4D t]/(4wD t)'~'] exp(- p'/4D t)//4' t . {36)

In turn the electron density is given by

8 8
n(z, p, t)=(A +A —+A, -A V '+ ~ ~ ~ )Q(p, z),

where Az& are defined in the same way as Ai in Sec. IV(b).
We can again calculate the quantities zav, (z —zav)av', and in addition pav', where

p
' = f f p'n{z, p, t)2mpdpdz .

Using the properties of the Gaussian function and noting that f, pVp'Qdp =0, the above averages are

z = p, Et —A, (z —z ) '=2D t —A '+2A, and pa
' ——4Dot —4A01.

av 0 10 ' av av

Since A,o is proportional to 1/N, and A» and A„are proportional to I/N, in the limit of high gas densi-
ties the motion of the pulse and the width parallel to the field can be described in terms of p, , and DL,
while the width in the transverse direction is characterized by the conventional diffusion coefficient Do.
In this limit the density is given by Q(z, p) of Eq. (36).
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APPENDIX

It was stated without proof in Sec. IV(b) that the magnitude of A, and A, depends on the initial energy
distribution of the electrons. It is the purpose of this Appendix to demonstrate this dependence by means
of the Green's function for Eq. (17).

We wish to find the solution of Eq. (17) when a source term of the form —5(z)5(t)5(e —si) is included on

the left-hand side of the equation. This term represents one electron being introduced at z =0 with ener-

gy ei at t=0. The solution G(z, t, ee )tean be expressed as

G = (m/4n')(m/2e. )'~' f™ds e [g S(t) e I r(e , s)H (e., s).H (e, s)], (Al)

where the sum is taken over the complete set of eigenfunctions HI(e, s), each of which corresponds to an

eigenvalue QI(s), and which are generated by the differential equation
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3m'N se Q I+kTp se 3m'N se Q Q se

ea)
3m'N Q

The functions Hi(e, s) are orthogonal to each other with respect to the density-function r(e, s), i. ee T

1
oQ 2e ' 3mN Te p 2z8rE(E.de=4! , wher. e r(e, el=

2( E) eEE') 1 EET
r E(1 22T) ) de .

In Eq, (Al), S(t) is the unit or step function.
It is clear that Q, (0) is zero and H, (e, 0) is equal to E,. The functions HI(e, s) and QI(s) for I and s

greater than zero cannot be expressed as known functions for a general Q(e). However, in the special
case of constant collision frequency, these functions can be represented by known functions, and this
special case can serve as a qualitative representation of the more general case. For constant collision
frequency OI(s) is given by

2reeI2
(

. 4MeEe)
(

. 4MeEe)

rWe see that for s =0, Q, is zero and the higher eigenvalues are

n (0) = 2m vf/~ = I/~I

That is, AI(0) is given as a multiple of the reciprocal of the energy relaxation time for the electrons.
When s differs from zero, the real part of AI(s) for any I is positive and greater than Qf(0). Therefore,
after a time of the order of v &, the contribution to the Green's function by the higher modes (I &1) be-
comes small in comparison to the lowest mode (l =0). The pulse can then accurately be described in
terms of H, (e, s) alone. It is this part of the Green s function that was obtained in Sec. IV(b) and which
is appropriate to actual TOF experiments. We will assume that the magnitude of the eigenvalues AI(s),
as obtained for the case of a constant collision frequency, gives a reasonable representation of the magni-
tude for the general case with any Q(e).

We now return to Eq. (AI) and consider only I =0 terms. We proceed as in the text and expand
H, (s, s), Q,(s), and x(s, s) in power series in (is). When these expansions are substituted into Eq. (Al),
the form of r(ei, s)H, (ei, s)H, (e, s) carried out to order (is)' can be written as

E (e)E (e.) 2E (e) e; ( E (e)F (s.) ~ F (s.)E (s)
1 z 0 dc 0 2 z 2 1 z 0+Is E (e)+ F ( )

+
H 1 y7ep

+ (~s) E (e)+ F ( )
+

H
E (e) + E ( )0 z 0 0 z 0 z

(A2)

where the functions E„E„and E, are the same as those in the text." The coefficients of is and (is)' are
now functions of ez, and therefore the magnitude of the constants that correspond to A, and A, will now be
functions of the initial energy. When ei is zero, the expression in (A2) reduces to that given in Eq. (21)
and, therefore, the solution of Eq. (17) as obtained in the text corresponds to zero initial energy. It is
to be noted that (4), and (d, are still defined by Eqs. (26) and (28). The Green's function (I =0) could now be
used to evaluate the constants corresponding to A. , and A, for any initial energy distribution.
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