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Localized Orbitals for Molecular Quantum Theory. I. The Huckel Theory
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An equation for calculating localized orbitals for use in molecular and solid-state chemical
bonding problems is applied to a typical conjugated system to obtain an estimate of the one-
electron Huckel parameter and a partial justification of Huckel theory and of methods in-
volving linear combinations of atomic orbitals.

I. INTRODUCTION

Some of the simple theories of molecular elec-
tronic structure proposed in the early years of
quantum mechanics have been more successful
than the sophisticated attempts at exact solutions
which followed them, at least until the present
era of giant computer calculations which virtually
reproduce nature's solutions of Schrodinger&s
equation. This is particularly true in the case
of large, chemically interesting molecules (any-
thing containing more than ten atoms or 10' elec-
trons), for which even a correct one-electron
theory should in principle involve wave functions
and interactions extending over the entire mole-
cule, and a properly correlated theory would be
even worse. As a result, attempts at exact calcu-
lation tend to get bogged down in large numbers
of "many-center integrals" involving several wave
functions or atomic potentials.

All of this contradicts the empirical fact that
the chemistry of covalently bonded compounds is,
on the whole, a science in which action at a dis-
tance does not play any great role. Correspond-
ingly, the most successful semiempirical theories
of chemical bonding have a surprisingly local as-
pect to them. Saturated covalent bonds, for in-
stance, are described very well by Pauling's va-
lence-bond theory' using hybridized bond orbitals,
an approximation which appears meaningful a
Priori only if correlation effects for such mole-
cules are much larger than they really are. They
are in fact much smaller than in metals and semi-
conductors, where band theory, which is equiva-
lent to the method of molecular orbitals, has its
greatest successes. The correlation energy it-
self is known to be about half as big in molecules
as in metals, and is to be compared to greater
binding energies.

The Pauling theory will be the subject of a later
paper using similar methods to this one'; but for
the time being we concentrate on the other success-
ful theory, the Huckel theory of m electrons in un-
saturated molecules. ' Here undoubtedly great

tx. .-zn. . I =o.
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Justifications of (2) which are, within their
frames of reference, undoubtedly correct, have
appeared in the literature. For a sufficiently
small molecule one can simply use a sufficiently
complete basis set of wave functions and calculate
energy dependences of matrix elements and next-
nearest-neighbor effects, and show that they all
tend to cancel out leaving (2).4 Even more naively,
the validity of LCAO is assumed a priori ignoring
the possibility of its providing an insufficient basis
set, and numerical cancellation is demonstrated.
So far as I know, no critical general discussion
of why LCAO has tended to give correct answers
for the HGckel theory —though it is known to fail
in many metal and semiconductor band structures
—has ever appeared. ' This is the general prob-
lem which we attack here. We will show that (1)
There is a set of wave functions which represent
the exact solution of the one-electron problem
and for which (2) is correct; (2) A definite pre-
scription can be found for constructing these wave

successes have been achieved by treating the g
orbitals as running throughout the molecule, and
nonlocal effects are observed and well predicted.
The strange fact, however, is that the Hamiltonian
matrix elements which are used are unexpectedly
local and simple: nearest-neighbor matrix ele-
ments only are used and are usually in rough cor-
respondence with those calculated from the sim-
plest treatment of linear combinations of atomic
orbitals (LCAO); and even more surprisingly, the
undoubtedly large overlap elements that should
appear in the secular equation using nonorthogonal
atomic orbitals:

I X-E(1+S)i =0

cannot successfully be included, even though all
estimates agree that, for benzene, for instance,
S»- 0. 25 for nearest-neighbor m orbitals, 0.04-
0. 05 for next-nearest neighbors. The secular
equation which zoozks is then
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functions; (3) This prescription converges to func-
tions which are for practical purposes the w atomic
orbitals in the Huckel problem, but in any case
converges and can be followed through by use of
rather simple perturbation- theory techniques.
(4) Using this prescription it is possible to calcu-
late the one-electron approximations to the Huckel
parameters and total ionization energy. What we
find is a value of 2. 43 eV for the HGckel param-
eter P (sometimes called "y") in fair agreement
with accepted semiempirical estimates. In our
opinion, our treatment of correlation corrections
to this parameter is adequate, so that this numer-
ical agreement is to be expected. Discussion of
the rather full literature on this subject we leave
until we can discuss our numerical treatment as
well. In any case, the basic point is that the
method is feasible and can be carried to a reason-
ably successful numerical conclusion.

We should emphasize that our method makes no

attempt to treat the many-electron correlation prob-
lem with any sophistication at all, and that the
w-electron problem, and benzene in particular,
are cases in which correlation effects are non-
negligible energetically, as well as of controlling
importance to the spectrum. The so-called
"extended Huckel" theory' has had some success
in treating these effects, and it may be hoped that
our methods wiQ also provide a stronger basis
for that theory eventually. Our method does not
at all obviate present arguments for it, at least.

Unfortunately, it is not as common or as easy
in the case of these molecules as it is in many
solid-state problems, especially metals, to sepa-
rate the two problems of solution of a one-electron
potential to obtain a correct set of wave functions
and energy parameters, and of solution of the
correlation problem for electrons in this potential.
I would like to emphasize here the great advantages
of doing the two separately: of solving the one-
electron problem well, once for all, for some suit-
ably chosen mean potential (which with our method
is extremely simple) and then treating correlation
corrections and configurational changes in the self-
consistent field on an identical basis (the so-called
"Fermi liquid" point of view, that is). Our method
contributes not at all to this second problem, but
merely sets the stage properly for it.

Our method is a cousin of the pseudopotential
method which has been successful in the quantita-
tive theory of electronic structure of metals and
semiconductors. ' The new feature is that it is a
"self-consistent" pseudopotential theory. (To
avoid confusion: not self-consistent in the sense
of being a Hartree-Fock theory, but self-consistent
in the sense that the wave functions for a given,
fixed Physical potential are determined from a
psendayotential which depends on the wave functions
themselves. ) Some of the formal basis of the
theory has been given in a previous publication. '

A series of papers'~ " have appeared on the formal
construction of localized orbitals using a self-con-
sistent pseudopotential equation. The se authors
have confined themselves unnecessarily —and
fatally for the case of conjugated molecules —to
recombining the constituents of a single Hartree-
Fock determinant, using the density matrix as a
projector for their pseudopotential. By the usual
Wannier function theorems, ' in the case of the
p-electron "band" no such local function can be
found: only if the band is treated as a whole, empty
and full states together, will the technique work.
The much greater simplicity of our approach may
also recommend itself. As far as we can see, it
also appears that the use of p as a projector leads
to nonlocalities almost as severe as does the use
of Wannier functions.

II. FORMAL PSEUDOPOTENTIAL
THEORY FOR LOCALIZED ORBITALS

Consider any grouping of atoms: ring, chain,
solid, or molecule; the same formalism is ayyli-
cable to all systems from diatomic molecules to
solids. For simplicity in presenting the theory
we proceed on the assumption that the atomic po-
tentials are additive:

(3)

[but V~ need not be local or nonoverlapping; T is
the kinetic energy = —V in our units (energy in
Ry and distances in units of are). If any Madelung-
type long-range Coulomb potentials due to charged
groups are important, they probably should not be
included in V~ so that the latter can be treated as
fairly short-range] .

Perhaps it would be well to discuss (3) a bit.
Of course any potential may be written in this
form, but our further development really assumes
that the Vz are pretty similar to the atomic po-
tentials, and in fact that any change to them in
achieving self-consistency could be treated per-
turbationally. There are two aspects to our work
here: First we are trying to show that the effect
of neighbor potentials on the localized orbitals is
very small and easily handled by perturbation
theory. For this, the most important aspect, it
is adequate to use any model potentials and AO's
which are reasonably close to the real ones, in
that we are merely testing convergences, not
seriously calculating. But actually it is amusing,
if not as important, to try to achieve some realism
in the calculation, and the actual choice of the Vz
was dictated by this. It is convenient, and makes
the result far less sensitive to detailed assumptions
about V~ and yz, to use the identity ( 7+ V„)y~
=E~y~, where Ez is the atomic eigenvalue. The
innate flexibility of the pseudopotential method al-
lows us to do this for each atom in turn, even
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though we know the potential —if only because of
exchange terms —is quite far from the sum of
atomic potentials. In particular, the atomic po-
tential at large radii goes as —2/x, while the
electron actually sees neutral atoms at all dis-
tant sites in the molecule. But it is perfectly with-
in our power to choose V & to be the difference,
whatever it may be, from the atomic potential V~
due to the presence of m. We feel this "Wigner
trick" is a highly accurate device, unused so far
as we know in molecular physics, which at a stroke
makes the entire calculation sensitive only to the
overlap regions of the wave functions (for which
Slater functions are quite accurate) and insensitive
to fine details of the potential. Thus our actual
treatment is considerably better than (3).

Let me assume that there is an isolated "energy
band" of this system. This appears to be the cru-
cial assumption of the method, and restricts it
entirely to nonmetallic binding. By "energy band"
we mean a well-defined group of energy levels
per atom, such as the o bonds in a carbon frame-
work. We define localized orbitals on each atom
representing this "band" by means of an effective
Hamiltonian containing a non-Hermitian yseudo-
potential term:

cp (r) =(X+V ) y (~)+Z '[V (~) p„(~)(n)

—J y (~')x "'„(z')y (~') d r'q (~) j

(4)

gC t is for the moment completely arbitrary,(n, m).
formally, though we should like it to depend on the
difference n —m for simplicity in a regular system.
No matter what the choice of Hout we can make
up eigenfunctions of X from the qz.

=Z n.qi ~ nn'
then (for generality we insert formally a diagonal
matrix element for Hout, which will in most appli-
cations be zero)

Xq. =g~z q +Q (mls ' In)q n(n, m)
i ~ ~ n out m n

rE spm

if 6'i satisfies the secular equation

i(Z -'.)~ +a ' I=o.(n, m)
n i nm out

(This is just the set of linear equations for the
nn. ) If Hout is the full Hamiltonian then yn are
the Wannier functions (symmetry orbitals) and
this is the usual Wannier equation. If Hout 0

(nm)
( )out

in which case

(s)

na =7+V +Q V (r')

x[6(y-y')-y (~')y (~)j, (9)

and the effective Hamiltonian is still of the Huckel
form, with En=nn and (nlVmIm) =Pnm. Note
that although in every case but Hout

——0 or the
Wannier case, the orbitals are nonorthogonal,
the secular equation is not of the form (I):

I x-Z(I+S) i=0,
b«of the Mckel form. This is the basic reason
for the success of that theory. In fact, the secular
equation is necessarily always just the %annier
equation.

The orbitals, at least for the special choice
above, are more localized than Wannier functions,
and in fact considerably so; they approximate
atomic orbitals. The reason for this is that the
pseudopotential term as written here is rather a
strong repulsive term localized on all the atoms
other than the one n under consideration. To see
that it is repulsive, note that the total pseudopo-
tential due to atom m obeys:

( IV I )( IVI )p ~ q

—(mim)(y IV Icp )=0
m m m

so that the potential energy cancels approximately
for a wave function y localized on atom m. Thus
the pseudo-Hamiltonian has actually a net positive
value for ym, from the kinetic energy. Another
way to estimate the strength of the repulsive term
is to sum all the energies over the band:

the y„are eigenfunctions: molecular orbitals.
In both of these cases we can see that an itera-

tive procedure for the solution of (4) starting
from atomic orbitals would fail, to converge. This
is evident if Hout=0, since the whole assumption
of localization breaks down there; but also in the
Wannier case we know that the Wannier functions
are not unique, because of the possibility of arbi-
trary phase factors for each k in their expansion
in Bloch functions. Thus (4) has in that case no
unique solution, since any set of Wannier functions
no matter how nonlocalized would solve it. It can,
however, be shown that if we use the full generality
of H("~m), and in particular if this operator is local

out
to the neighborhood of m, uniqueness of the solu-
tions is at least possible.

A much more useful choice of the pseudopotential
is
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Z, e,.=Z„&„=Z„(m„I&"Iq„) .

If cp is approximately an atomic orbital, this isn
then

(q IT+V Iq )

(nlV Im)+ Q (nlV In),
nm m m

n7 Pl

= Q E '+ Q (nI V In) —Q 8 (nl v Im).
n 027 n n7 sz

consistently but the perturbation there is so negli-
gible it has not been previously noticed. It is the
fact that this self-consistency can be handled even
here by perturbation methods which now allows us
to reduce molecular chemistry to perturbation

. theory starting from atomic orbitals, as those
methods have reduced metallic chemistry to per-
turbation theory starting from plane waves.

We will not discuss here the more complicated
procedures which are necessary in case pn is a
bond function (as for v bonds) not an atomic one.

III. COMPUTATIONAL METHOD AND
RESULTS

7 is negative; thus the second term is the mean
potential of each atom on other wave functions,
the last the overlap repulsion term which we know
predominates for filled-shell situations. The de-
gree to which it predominates may be estimated by
approximating pn by an exponential e . It is
easy to show that the last term is approximately
of order (vR) relative to the second, because the
integrand of 8 extends over the volume between
the atoms with roughly constant value, whereas
Vm(t') falls off rapidly with distance at a rate - g
or faster. (We assume that long-range Coulomb
potentials are either absent or treated separately. )
Thus in the limit of mell-separated atoms repul-
sion dominates.

Thus the situation is not quite the same as for
the metallic pseudopotential where the two terms
roughly cancel; the repulsive term here can pre-
dominate. However, we shall see that the actual
effect on the wave function is very small; in deter-
mining the wave function the usual "cancellation
theorem" holds. "

Because of the form of the pseudopotential, the
equation contains an intrinsically small term
and may be solved by perturbation theory based on
the atomic eigenfunctions and eigenvalues. That
is, the pseudopotential is finite only where V~
or y~ are finite, and thus acting on a localized
function pn at n its effect is intrinsically small.
The pseudopotential depends on the functions y~
which we are to calculate. Thus the computation
procedure is intrinsically a self-consistent itera-
tion, in which one approximates p~ by y~', the
unperturbed atomic function, in the pseudopotential
equation for pn7' this enters only a small term, so
including the perturbation on p~' should have little
effect, etc. The convergence of this procedure is
quite fast, as we shall show; in practice probably
no iteration is actually necessary.

This self-consistency feature is the new feature
of our method relative to previous pseudoyotential
methods. They in general are concerned with core
functions which do not change in bonded situations;
in principle of course they too are to be found self-

I et us then consider m electrons on a ring or
infinite chain of carbon atoms. Here every V,
yn7 and E is the same, and the eigenfunctions

g. =Q e' "q (r)

have eigenenergies

E =Z+Q e (nI V Im) .i k ~ (n —m)
rn rn

What we hope to do is to calculate pn and E by
solving the pseudopotential equation

n
sc

and thus to calculate (nl Vln+l), which is the
Huckel parameter, as well as E, the mean energy
of the m band. The equation to be solved, then is
(let n =0 for simplicity)

Eq (r)=[r+v (~)]q (r)+v qps O'

where

V y =Q V (x) yo(x) —f V

x q (r) . (13)

This term is small, we argue, both because V~
is centered at another atom, and because the two
parts roughly cancel. Thus it is correct to treat
( VpspO) as a perturbation, so we do perturbation
theory using the eigenfunctions of (T+ V, ) —the
atomic eigenfunctions —as an unperturbed theory.
We set p~ = y~o, the appropriate atomic eigen-
function, in the perturbation term. Having made
that assumption, our scheme is to solve the re-
sulting linear equation for y,. That solution might
then have to be corrected by reinserting the cor-
rection to op~' on the right, etc. ; in fact far from
the atoms such corrections are probably not terri-
bly small. But the parameters are all determined
by behavior near the atoms, where actual computa-
tion will show the corrections are indeed very
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where

+ 5+0

& 00
j+0

(14)

(15)

j labels the different eigenstates of the atomic
potential. Thus 5y is orthogonal to y; and to first
order in 5y we may neglect all normalization cor-
rections, in which case the contributions of all neigh-
bors are additive, and we may treat them one at a
time. The workability of the method depends on the
fact that V~ is chosen to be reasonably well localized
near atom m. Any long-range potentials such as
Madelung terms should, as stated below (3), be
left in the unperturbed part of 3'-, "T". Then the
perturbation &pp due to V~~~ is localized near m,
also, and we see that terms in 5y are unimpor-
tant because 5p~ is localized away from V~.
For instance, the most important correction is
that to the Huckel parameter:

(ml V !0)=fp op oV

small. Let us carry out the whole computation
schematically in order to sort out what is essential,
and then do a very rough sample calculation to dem-
onstrate that corrections are indeed small.

Write

(19)

Our actual calculation depends on the well-known
fact that outside of the core region of the atom the
wave functions and energies for the single free-
atom problem can be approximated extremely well
by plane waves, so that for the corrections near
atom m we can simply use the plane wave G

0 free
(4 ), —~lr —r'

I/~

ik (r —r')/( 2 2) (20)

xZ [V (r')q 0o(r)- V 0q o(r')1.(21)

We now outline the specific calculation we car-
ried out, which was meant to apply to the case of
benzene and similar aromatic ring molecules.
Simple Slater orbitals were used for the p elec-
trons:

where K'= —E. To very high accuracy, (19) could
be approximated by orthogonalizing Gfree to 'pp'.
but that degree of accuracy is unnecessary here
and we use (20). Thus our final expression for

pp ls
—el&-r' t6yo(r) =- (x/4v) fd r'(e /tr r'

I )-

= V P+&V (16)
y ' =Nzexp[- 1.625(r —8 )],Pl rn

(22)

It is 5V~0 we use as a measure of the perturbation;
note that it is an average of V~& y0, which is the
non-negligible first-order effect in the first term
of the pseudopotential.

Also resolving Vpey0 into components according
to the atomic potential eigenstates

0 0 j
jg0

where z is the coordinate perpendicular to the
molecular plane. For V~ we used the core
Coulomb potential screened a la Hartree and in-
cluding exchange and correlation corrections as
discussed in the introduction (the Wigner approxi-
mation). That is the effective potential Vm, which
is the change in potential relative to V~ which an
electron in pn sees, is the fully (4-electron)
screened V~ when the electron is near atom n,
but

we see that our first-order estimate of 5@p is

5%o= ~ &o @j~0 j

V =-'. (V ) +e'/r
pl sc reened

—(exchange-correlation hole on atom n)

when the electron is on atom m, which is to say
for virtually the whole of all integrals we do. Using
this potential,

x fd 'q) r~ (r')[V y0 (r')]

= fG '(r, r' )d'r' [V y0'(r' )] ~ (16)

Here G,' is the "Green's function" of the Hamil-
tonian T + V, with the state yp' projected out of it:

V '=P'= —0. 177 Ry= —2. 43 eV
Om

at R = 1.40 A.

~ pp could be easily programmed by expanding
G ee in spherical harmonics, as well as q',
using the standard spherical Bessel function series



pHILIP W. ANDDERSON

04

181

for imaginary argument:

G r, ~, ')= — Z (2I+IbI('

Xfz ih (i n')"P (cos8). (24)
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0
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used; the final result of our refined procedures
is to show conclusively that they were unnecessary
in this case.

IV. CONCLUSIONS

The purpose of this paper has been to justify,
rather than to recompute the parameters for, the
Huckel method, which has been very successful
in understanding thy electronic structure of g-
bonded molecules. In every case our prescrip-
tions for calculation of physical parameters—
bond orders, wave functions, etc. , —would be
identical with those already being used, and
which work.

Our energy shift was rather small, and our
Huckel parameter agrees with present estimates.
That is a bit surprising; the "Huckel band" is
comparable in width with the d band of transition
metals, where "mass renormalizations, "due to
Coulomb effects, of 1.5 are not unheard of, and
we would expect similar changes here. But the
situation with regard to experimental comparison
is quite different: the semiempirical value of P'
comes from a Goeppert-Mayer-Sklar configura-
tion interaction treatment for the excited states,
which is already perhaps as good as a random
phase approximation (RPA) treatment of corre-
lation —i. e. , we are not simply comparing with
the lowest one-electron excitation but with the
centroid of the whole singly excited configuration.
For the moment, the point here is that the one-
electron result is essentially exact and that, there-
fore, we can arrive at a fairly precise empirical
estimate of the effect of higher correlations on P.
It is clear that the large effects estimated by
Linderberg' cannot be correct.

The one approximation we have made which re-
quires discussion is the "Wigner" approximation
of using a potential including an exchange and

correlation hole of one full electron, which means
the potential is slightly more attractive than a
Hartree-Fock SCF would be, i. e. , slightly over
correlated if anything. This is in the opposite
direction from any discrepancy from Linderberg
and Clhrn, but is I suspect the reason for the good
experimental agreement, since the potential makes
good physical sense.

As for actually doing the correlation problem,
the usual argument for "neglect of differential
overlap" which makes it manageable and seems
to work reasonably well rests on using Wannier
(orthogonalized) functions to calculate Coulomb
integrals; then the overlap charge pzy& is a
rapidly varying, though not small, quantity, and
the integrals do tend to be small. In spite of the
fact that our pseudopotential equation is for highly
localized nonorthogonal functions, the secular
equation —which is quite distinct in principle-
is that appropriate to orthogonalized, Wannier
functions. Thus it is in fact correct to insert
interaction terms appropriate to Wannier func-
tions: the true Hamiltonian is

3'=Z»+ Z V C*C
n n n1n n pl

n np m

+ Q (nmilp)C *C *C C
nmlP

n m 2 p'

where (nm ~ Zp) are calculated with orthogonalized
functions.

It is clear that we can go ahead to do similar
calculations for heteropolar systems, getting one-
electron n values, for instance, and so on through
the whole apparatus of the Huckel theory. Spin
densities and effects on structure and spectra
must await further improvements: correlation,
especially, and a good treatment of the v bonds,
which last is now in progress.
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The application of transition operators (Pm m~ (t) = exp(i&t) I m) (m'I exp(-i') is studied
for the problem of an atomic system S with eigenstates (m) interacting with one or more
damping reservoirs R. The average value of these operators gives the reduced density
matrix pm~ m

) (t) for S. If R consists of broad-band distributions of harmonic oscilla-
tors, (e. g. , radiative damping), then damped equations of motion can be derived for all
(Pm m~(t), even if S is a multilevel system. One need not specify the initial states of R,
nor restrict the treatment to second order in the S-R coupling. The formalism is illus-
trated for the case where S consists of (i) a four-level atom in a resonant cavity (withbroad-
band modes also present), and (ii) a collection of atoms that can be treated as a multilevel
spin system. Density-matrix equations are obtained for the case where no damping
radiation is present initially. In (ii), the formalism is used to derive a two-time correla-
tion function without the aid of the fluctuation-regression theorem.

I. INTRODUCTION

Dissipation is ordinarily treated quantum mechan-
ically by coupling the appropriate atomic or spin
system S to a loss mechanism or damping reser-
voir R. Most treatments assume that (i) A has
a broad continuum of modes coupled more or less
uniformly to S; (ii) the initial density operator
can be written as p( )(0)p(+)(0), where p( )(0)
describes the initial states of S, and p(&)(0) is
a thermal equilibrium distribution for R; (iii) 8
is only slightly affected by its interaction with S.
The usual procedure is to write equations of mo-
tion for the reduced density operator p(S)(t ) '~ '
(or for reservoir-averaged amplitude operators')
to second order in the coupling constant. Assump-
tion (iii) is then implemented by an approximation
equivalent to replacing the actual density operator
p(t') in the second-order terms by the factored ex-
pression p(S )( t')p(&)(0) .

If R is a collection of harmonic oscillators, then
one can derive damped equations of motion for the
amplitude operators of S, without explicitly using
assumptions (ii) or (iii). Only the unperturbed
reservoir coordinates appear in these equations,
the perturbation due to S being entirely absorbed

in the damping constant and frequency shift. (A
well-known example of this would be the case
where S is itself a harmonic oscillator. ') If
similar damped equations could be derived for
the reduced density-matrix elements of a multi-
level atom, it would provide a convenient and
nearly exact starting point for studying its i.nter-
action with a known radiation field. These can,
in principle, be obtained from the amplitude oper-
ator equations s ' however, the procedure is rather
tedious to apply to multilevel atoms.

In this article, we define a set of operators that
enable one to obtain the reduced density-matrix
equations by a straightforward, yet rigorous; der-
ivation. Two examples will be presented. In
the first, the system S consists of a four-level
atom in a resonant cavity; in the second, S is a
collection of atoms that can be treated as a multi-
level spin system. We show in the second example
that the formalism can be used to calculate two
time correlation functions, without using the fluc-
tua, tion-regression theorem — required in an or-
dinary density operator treatment.

If If and p(t) are the complete Hamiltonian and
density operator, respectively, and S is described
by basis states Im), then the components of the
reduced density operator can be written as


