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In a series of papers, of which this is the first, the calculation of the total cross section
oI(&) for the process H +H(ls) 2H (E')+e (e), for initial relative energies E&500 eV, is
described and performed. Here E is the relative energy of the final protons. This paper
(I) describes the theory used, and paper II describes the calculation and results for the elec-
tronic part of the problem (wave functions and transition matrix elements). Work is being
completed on the trajectory integrals which form the last part of the calculation. OI(E) is a total
cross section with respect to scattering angles, but is differential in the final electron energy.
The principle upon which the calculation is based is the approximate separability of electron and

heavy-particle dynamics for both initial and final states, due to the mass disparity. The theory
is an extension of that developed earlier by Thorson for transitions to discrete states.

A. INTRODUCTION

We describe here the calculation of the total
cross section ol(e) for the impact ionization pro-
cess H++H(ls) 2H+(E')+ e (e) for initial rela-
tive energies E& 500 eV. We have calculated ol(e)
for the entire significant range of electron ener. ..

gies, with a resolution of better than 1 eV; the
approximations made in the theory are such (Sec.
C) that differential cross sections with respect to
angle cannot be accurately obtained. (For the di-
rect impact mechanism of which this system is
the prototype we do not, of course, expect fine
structure of the order of our resolution or less. )

At c.m. energies below 500 eV, the collision of
two protons is "slow" in the sense that proton
speeds are significantly lower than that of an elec-
tron with energy of 1 a. u. Under these conditions
a suitable adiabatic approximation may provide a
reasonable zero-order description of the bound
electronic states of the system, bearing in mind
that a "molecular" description of the electronic
subsystem will be necessary for these low ener-
gies (during collision a valence electron will make
many circuits around the "molecule" ). However,
it has long been known' that the Born-Qppenheimer
or perturbed-stationary-states approximation is
not an adequate description, because it ignores a
kinematic factor describing electron motion with
respect to the collision center, due to motion of
the heavy particles to which electrons are asymp-
totically bound. Inclusion of this factor signifi-
cantly alters the transition operators for inelastic
scattering. An adiabatic formulation including this
factor, yet retaining a fully molecular description
of electronic states, has been given by Thorson'
for "tightly-bound" electronic states of the H++H

system; a first-order perturbative theory of in-
elastic scattering to discrete final states was pre-
sented and formulas derived for the necessary
transition matrix elements. Although this formu-
lation can easily be extended to many-electron
heteronuclear diatomic systems, its usefulness is
essentially limited to one-electron systems; when
two or more electrons are present in a diatomic
system, the possibility of competition between
different spin and orbital configurations leads to
the crossing or pseudo-crossing of adiabatic po-
tential curves. At such crossing points the prob-
ability of transition from one state to another may
become quite large, and adiabatic separations of
the two states become invalid. A careful study of
the primitive one-electron case may be justified,
nevertheless, on the ground that it provides a back-
ground framework, within which the problem of
curve-crossing can be placed; it is also a system
for which the electronic solutions can be easily
and exactly computed.

Impact ionization presents a further problem:
the description of the continuum states of an elec-
tron in the field of two moving heavy particles.
The continuum states are not adiabatic in the
sense of a fo/fcuing of the nuclear configuration, .
as occurs in discrete states; indeed, this is
specifically excluded by the nature of continuum
states. Very little is known about practical solu-
tions to the general three-body problem. How-
ever, again by taking advantage of t. .e small elec-
tron-proton mass ratio, we have been able to find
an approximate solution to the problem, valid for
our purposes. This solution is developed in Sec. D.

The sort of description used here for the elec-
tronic continuum of tl.e system H++H can be ex-
tended in principle to more general systems. How-
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ever, many-electron systems exhibit a variety of
complex mechanisms for impact ionization. Many
of these are basically a sort of collisional auto-
ionization: Suppose a discrete state, either arising
from the ground manifold, or easily accessible by
some strong coupling from it, has a potential
curve which extends into the continuum at smaller
internuclear distances [if we may consider it to
"cross" curves corresponding to other configura-
tions (a so-called "diabatic" potential curve')].
In a violent collision the system may penetrate to
internuclear distances where autoionization in
effect may occur. The collision energy at which
such a process can become effective has nothing
to do with the adiabatic criteria we have applied
to the one-electron system, but is determined by
the energy required to bring the diatomic system
into the autoionizing region. Since this energy is
of the same order of magnitude as the ionization
threshold, efficient impact ionization can be and
is observed down to energies not far from thresh-
old. Also, because of the nature of the mecha-
nism, such impact ionization cross sections will
possess considerable structure, as function of
both collision energy E and electron energy e.

This mechanism cannot exist in the proton-H-
atom system, however, and although there is
strong coupling from the ground manifold in H2+ to
the 2Pm~+ molecular state, ' this state is "tightly
bound"- throughout the low-energy region of inter-
est to us. We may call the mechanism we treat
here "direct impact ionization. " Since classically
only a hard collision between a fast electron and
a slow proton would permit much momentum
transfer, the name seems especially appropriate.
For the direct impact mechanism, ionization is
relatively inefficient in the adiabatic region (non-
adiabatic interactions are small perturbations) and
the cross section does not exhibit much structure
as a function of energy. An accurate calculation
is of value because no such study has ever been
made, even for this prototype system, at low
energies. It may also become experimentally
feasible to measure low-energy impact ionization
in the proton-H-atom system.

In Sec. 8 the physical ideas behind the calcu-
lation are discussed. Section C describes the
electronic basis set and the "fast electron" ap-
proximation for the continuum; Section D deals
with the problem of three-body final states, and
indicates how the scattering amplitude can be cal-
culated. Sections E and F describe the initial
state, the transition operator, and the trajectory
integrals which must be evaluated to find the cross
section. In the second paper of the series (II;
Ref. 5) the details of computation of electronic
wave functions and transition elements are pre-
sented. Subsequent work will present the calcu-
lation of trajectory integrals and the final cross
section.

B. PHYSICAL ASSUMPTIONS

1. Nature of Electronic States

We begin by recalling a point made in Ref. 2:
For the colliding system an adiabatic description
is reasonable only for "tightly-bound" states.
These are states whose static binding energies
substantially exceed the kinetic energy

= —,'(m/ p. )E,

which a bound electron possesses due to heavy
particle motion relative to the collision center
(ec is also the critical binding energy for which
the classical electron speed is comparable to that
of the protons). It is easy to see why states less
tightly bound than e~ interact strongly with the
continuum. Because of the strong attraction of
the second proton, an electron in any state has a
high probability of resonant charge transfer, for
static protons. However, if the static binding
energy is less than c, an electron "jumping" from
one moving proton to the other will not remain
bound, since it possesses more than the escape
momentum with respect to the second proton. As
a result, for the dynamical system we must rec-
ognize that such loosely bound states mix strongly
with the continuum during collision, and indeed
are indistinguishable from it. Effectively there
is a finite number of discrete states in the dynam-
ical system, plus a continuum.

How does this continuum differ from that of the
static H,+ system? A qualitative answer is sug-
gested by noting that a gauge transformation to
remove the "electron translation factor" from the
wave function introduces a fictitious vector poten-
tial in the electronic Hamiltonian. The effects of
this vector potential are not fully analogous to
changes of the scalar potential, but one effect is
similar to the screening of the Coulomb field at a
distance for which the potential is - e . A Yukawa-

C
type potential with such a range mill possess the
appropriate number of bound states. But for the
case of the Yukawa potential, the effect of screen-
ing on the continuum is important, primarily for
those states with positive energies c less than or
comparable to e . These are states which corre-
spond to an electron moving slowly beyond the
screening range, and therefore having dynamical
characteristics similar to the corresponding Ryd-
berg levels. For continuum states of higher ener-
gy, the change from an unscreened to a screened
potential is unimportant to the wave function at
reasonable distances, and appears only asymp-
totically, in the logarithmic term in the phase
shift; "fast" electrons are less affected by screen-
ing than are slow ones. Though we do not strictly
have Yukawa-type screening, the general line of
reasoning is also applicable to the dynamical ef-
fects of interest to us.
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This point is essential to our solution of the im-
pact ionization problem. For the dynamical sys-
tem we can divide electronic states into three
types: (a) Discrete, "tightly-bound" states, which
can be described by an adiabatic approximation as
in Ref. 2. (b) Continuum states of energy e sub-
stantially greater than e . Electrons in such
states are moving rapidly in comparison to the
protons, but their motion is not periodic as in the
discrete states. The fact that they are "fast elec-
trons" will be the basis for a discussion of such
states below. (c) A band of complicated non-
adiabatic states, corresponding asymptotically to
static electron energies between —ez and + e~.
We have no quantitative description of such states.
The impact ionization problem can be treated be-
cause for collision energies E below 0.5 keV, e'~

is less than 0.2 eV, and the band of states of type
(c) is quite narrow. Since the density of continuum
states decreases as e-0, these states constitute
a negligible fraction of the states to mhich transi-
tions may occur. The only way in which even just
ignoring them could cause trouble would be if for
some reason the transition matrix elements for
direct impact ionization near threshold„or exci-
tation of high Rydberg levels, mere abnormally
large, but this is not the case. Only if the initial
state were highly excited itself would a "ladder"
process of excitations through Rydberg levels be
important. A classical argument which suggests
the same answer is the following: A direct im-
pact excitation corresponds to a single, very im-
pulsive collision between electron and proton,
not to a succession of small ones; the probability
of such a collision is small owing to the relative
speeds of electron and proton, but when such a
violent event occurs there are no restrictions on
the amount of momentum transferred, related to
threshold considerations for the electron; the
protons have energy and momentum substantially
in excess of threshold. In short, an event in
which an electron receives several times the
threshold energy and escape momentum is nearly
as likely as one in which it receives precisely the
threshold requirements, and statistically there
are more mays the former can happen.

Accordingly, we ignore the fact that states of
type (c) exist, on the justifiable assumption that
transitions to them make no significant contribu-
tion to the total cross section, and proceed to the
discussion of the "fast-electron" states, type (b).

2. The "Fast-Electron" Approximation

For e» z, an electron is moving much faster
than the protons. If at some point in the collision
process an excitation to a continuum state of ener-
gy e occurs, the resulting unbound electron will
move out "to infinity" essentially instantaneously,
on the time scale of the proton motion. In effect,
just as in the case of the adiabatic approximation

for the bound states, electron dynamics in the
interaction region is determined mainly by the
field of the protons at rest; the electron "sees
the protons as if they were stationary. "

But there is an important difference between the
discrete, adiabatic, "tightly bound" states, and
these "fast electron" continuum states. In the
adiabatic approximation, the validity of the scheme
requires that discrete levels be separated by he' s
such that the periodic motion associated classi-
cally with a given level can be clearly resolved
from that of neighboring levels (deb f »8), in the
period of interaction; to achieve this, electrons
must carry out many cycles of their periodic mo-
tion as the nuclei move slowly. This feature
builds in an "adiabatic following" of the nuclei by
the electronic states; as nuclear configuration R'
-R, we expect the discrete state P~(r; R') to map
into P„(r;R). But in the case of a "fast electron" in
the continuum the classical motion is aperiodic,
The extent to which an electron's dynamical be-
havior in the interaction region is influenced by
nuclear motion is determined primarily by the
time it takes the electron to reach "infinity",
i.e. , a distance so far amay that subsequent mo-
tion of the protons cannot perturb the electron
further. A simple classical estimate shows
that for e' » c~ this time is so short that we
can say the electron "moves out to infinity" in a
way determined by the static proton configuration
R' at the time of excitation, and the contribution
to the amplitude for c at much later times which
such excitation makes does not depend on subse-
quent proton configurations R. This fact will have
important consequences for the form of the three-
body Green's function (Sec. D).

There is one exception to the idea that the "fast
electron" solutions depend only on the static con-
figuration of the protons: The protons are at rest
in a rotating frame. As a result, regardless of the
speed of an electron, there are long-range Coriolis
forces which will affect it, even at "infinity"; and
these must be taken into account in determining the
asymptotic characteristics of the continuum states,
and, from these as boundary conditions, the con-
tinuum eigenfunctions themselves. The approxi-
mate solution to this problem appears in Sec. C.

In a fully quantum-mechanical treatment of the
theory, a corollary to the "fast electron" approxi-
mation for continuum states will be that in the
final states the protons are not screened or coupled
to the electron system, but propagate with only the
Coulomb repulsion, for energy E'[-E+e(ls) —s]
and rotational angular momentum N. However, we
have chosen to treat the heavy-particle motion
classically in this paper.

3. Classical versus Quantum Trajectory Integrals

In Ref. 2 the theory for the proton-H-atom
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system is developed in completely quantum-
mechanical terms, although the semiclassical ay-
yroximation for the heavy-particle wave functions
is certainly valid. The coupling of nuclear rota-
tion and electronic orbital angular momentum is
treated explicitly in a representation diagonal in
the total angular momentum.

An analogous treatment can easily be made for
the problem of impact ionization, in principle.
Such a stationary-state formulation requires the
knowledge of the three-body Green's function for
the continuum, which (as we show in Sec. D) can
be constructed from suitable electronic and asso-
ciated heavy-particle wave functions. The asymp-
totic amplitude for impact ionization at energy e
involves an integral of suitable electronic transi-
tion matrix elements associated with each proton
configuration, with the semiclassical initial- and
final-state heavy-particle wave functions. Such
"trajectory integrals", as we call them in analogy
with the classical treatment, control the efficiency
of energy and momentum transfer to the electron
system. The transfer leads to change in the de
Broglie wavelength of the protons; the difference
wavelength may be as short as 0.05a, or as long
as the interaction region, deyending on the amount
of momentum transfer, and this oscillating effi-
ciency factor modulates the electronic transition
matrix elements severely. Indeed, for low-energy
E it is this factor, rather than the decrease in the
electronic transition elements, which cuts off the
cross section for increasing e at fixed E.

Many of the same physical features are retained
in a classical treatment of the heavy-particle mo-

tion. Mittleman' has given a discussion of the
proton-H-atom system, and argues for the validity
of such an "impact-parameter" treatment of the
general scattering problem (not necessarily as-
suming straight-line trajectories). If it be sup-
posed that the internuclear vector R is a known
function of time (given initial conditions on the in-
ternal states, the impact parameter, etc. ), the
problem becomes that of solving the time-depen-
dent Schrodinger equation for the electron, In
this formulation the transition amplitudes contain
tr ajectory integr als, integrals over time along a
(specified) classical trajectory for each set of
initial conditions. These integrals also contain
an oscillatory efficiency factor, which arises in
this case from the time integral of the energy
difference of the initial and final states. In the
limit that the energy transfer e —s(1s) is a small
fraction of the collision energy E, this factor is
identical to the oscillatory factor in the quantum
trajectory integral, and they are always closely
related. The two trajectory integrals differ main-
ly in their treatment of the probability distribution
(the second term in WKB expansion, in the quan-
tum case). In principle the quantum-mechanical,
stationary-state method gives a full account not

only of the action transfer to the electron system
but also of the reaction of the protons; the clas-
sical, time-dependent approach accounts only for
action on the electronic system by a specified non-
conservative Hamiltonian, and takes no account
of the detailed reaction of the heavy particles.
But both methods take essentially identical account
of the crucial transfer-efficiency factor, implying
that in some sense it is associated with the inter-
face between the subsystems. It appears that such
an oscillatory factor appears when action in any
form is transferred from one system to another
(cf. Sec. F, where such a factor arises from
angular momentum transfer, as well as from ener-
gy transfer).

For reasons of computational simplicity we have
elected to yerform the impact ionization calculation
using the classical, time-dependent formulation,
and the theory is mainly so presented in this paper.
At a few points where it is instructive, we have
indicated the corresponding quantum-mechanical
formulation, (as for example in Sec. D where the
solution of the three-body final-state Green's
function problem is given).

There is ambiguity in the classical approach:
the prescription of the "specified" classical
trajectories. In Mittleman's paper' it appears
that this may be determined by a probability-
weighted average over the effective potentials for
the various internal states; i.e. , if the probability
to be in the ground electronic state is dominant,
one should use the elastic scattering potential for
that state to calculate the classical trajectory.
This is an appealing and reasonably consistent
approach for a nondegenerate ground state, at
least in the limit of small inelastic transition
yr obabilities. Recently Chen and %atson' have
used the eikonal approximation (essentially a
three-dimensional WKB approximation) to calcu-
late semiclassical wave functions for the heavy
particles, and attempt the reduction of the resulting
three-dimensional integrals for elastic and in-
elastic transitions by the use of stationary phase
approximations for integrals over the surfaces
normal to a specifiable family of curves. The
method is rigorously justifiable for elastic scat-
tering because of the asymptotic character of the
important contributions in that case. If the
stationary phase approximation for the surface
integrals were equally justifiable for the more
complex case of inelastic scattering, the calcula-
tion would then reduce to a "trajectory integral"
once again; but the "trajectory" is neither the
classical trajectory for initial or final states,
nor an average of them, but a curve which can be
constructed from these. ' It should be stressed,
however, that there is no continuous chain of rea-
soning connecting this essentially quantum-
mechanical formulation to any classical formula-
tion; one cannot simply interpret the prescription
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of the Chen-Watson curves of integration as a
specification of R(t) in a classical sense. Ac-
cordingly, we have specified R(t) along the general
lines indicated by Mittleman. '

for computational advantages it gives.

C. IONIZED STATES AND THE FAST ELECTRON
APPROXIMATION

4. Strong&oupled Initial State

As is well known, '~4 collision of a proton with
a ground-state hydrogen atom involves a number
of internal states. The 1s atomic state is a super-
position of g and u molecular states, and using
the formulation of Ref. 2 it can be shown that
there is rigorously no interaction between states
of different centrosymmetric parity, for the exact
Hamiltonian. In the case of H,+, the cru molecular
state maps into the 2Pcru state of the He+ united
atom; as a result, at small R its increasing de-
generacy with the 2Pmu level leads to strong
Coriolis coupling between them, and substantial
probability for exciting the 2P level of the H atom
upon collision. The original solution of this
problem by Bates and Williams4 was modified
and improved slightly by F.J. Smith~; in this
laboratory we are also completing a slightly dif-
ferent study of the same process. ' Our calculation
differs from the one outlined in principle by F.J.
Smith4 in several respt.'cts. As electronic basis
functions we have used the functions X„introduced
in Ref. 2, obtained by diagonalizing the electronic
Hamiltonian, including Coriolis couplings, in the
2pou —2pm+ manifold. At A ~ our electronic
basis functions X& correlate with the 0„or m„
molecular states, and we shall use that notation
to distinguish them although it is only approxi-
mate at finite B.

Resulting from our strong-coupling solutions
will be amplitudes a&(t) associated with the in-
ternal states X (Iso, "ou", "wu") as functions of
time along specified classical trajectories. For
the 0& state, a0 is of course constant, and the
trajectory assumed is that determined for given
energy E and impact parameter by the potential
surface for the Iso& state; we call it R&(f). For
the strong-coupled u solutions, R„(t) is determined
by the elastic potential for the lower, asymptoti-
cally "o "-like state, even though some probability
for excitation of the "mu"-like state exists.

Our final prescription of classical trajectory
then differs from that implicit in a nondegenerate
ground manifold only by the choice of the distinct
trajectories for g and u states. Since the mech-
anism for direct impact ionization preserves
parity on excitation, the two problems can be
treated entirely separately.

Bates and Holt' have presented arguments to the
effect that the error involved in determining the
strong-coupling solutions via such classical pro-
cedures is not great. Since we are interested in
the strong-coupled system only as the initial state,
it seems appropriate to make the approximation

The notation of Ref. 2 is used, with some
changes and corrections, but we shall adapt the
definitions of electronic states given there to a
classical description of the proton motion; a
major change is a shift to a classical description
of nuclear rotation. Let R=%&' —Rg'be the in-
terproton coordinate (the reverse definition in
Ref. 2 is an error); its orientation in a space
fixed reference (SFR) frame is prescribed by
Euler angles 6,(. The quantity r is the electron
coordinate with respect to the center of mass of
the nuclei (CMN). In the SFR frame r has Carte-
sian components (x', y', z'), polar coordinates
(x, 8', p'), while in the MR (molecular reference)
frame these are (x,y, z) and (r, 8, y) (note change
from Ref. 2); the polar axis is along R. The
kinetic energy in the center-of-mass system is

T=P '/2p+p '/2m,

and the potential energy is

(2)

H (r;R) =P '/2m+ U(r R)

in the MR frame JI& depends parametrically on
ft, but not on 6, g. The eigenfunctions (P(nrA;
r; R)) of He are well known"; the discrete
states satisfy

H y(nrA) = e(nr A; ft) y(nrA), (4a)

where (nr) specifies principal quantum number
and other asymptotic symmetry, and Ah is the
component of orbital angular momentum on R:

The Hamiltonian is clearly centrosymmetric with
respect to r (and R); electronic solutions are
rigorously of g or u parity. A state initially
arising from a proton and a 1s H atom consists
of equal amounts of states of each parity, but
aside from phase relations imposed by the ini-
tial conditions the problem can be solved in-
dependently for each parity. For the calculation
of total cross section even the phase is irrelevant.
Since the elastic scattering potential associated
with the 1so state is quite different from that
for the lowest u state, we shall assume two
distinct classical trajectories R (f), R„(t) exist
for each energy E and impact parameter b. We
may now proceed to a description of electronic
states of given parity.

The Born-Oppenheimer (BO) Hamiltonian
He(r;0) is
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L Q(nI'A) = AS/(nl'A) . (4b)

Q (nl'A)} is an orthonormal discrete set for each
R. We shall also be concerned eventually with
the continuum eigenfunctions p(ep, A;r;R) which
satisfy

8 (r; R)P(ep A; r; R) = eP(c p A; r; R),

L, P(epA)=AS'(epA),

and are normalized with respect to energy, for
each R,

f d'r P*(e'p'A';r;R)g(ep, A r;R)
all r

(5c)

H =H (r;R) —BL
MR e '

y

where I& is the electronic orbital angular mo-
mentum perpendicular to the collision plane.

1. Discrete States

As in Ref. 2, instead of the BO states Q(nI'A)
it is useful to employ a set of states (X.), ob-
tained from the BO states by a unitary transfor-
mation which renders an important part of H&
diagonal. The asymptotic Coriolis interaction
between components in orbitally degenerate
atomic manifolds ylays no part in the problem
and is ignored. (See Ref. 11.) However, the
Coriolis interaction also mixes BO levels strong-
ly at small R values if they belong to an orbitally
degenerate level of the united atom. For H,+

this is the case with the 180u state from the
ground components and 2p~u~ excited states:
These belong to the 2p level of the united atom.
For the ground manifold we therefore define

X1g
—= $(iso&), and a set of functions (Xi+,i

=1,2, 3j as the eigenfunctions of PMR in the

p, is an index associated with the variable sepa-
ration possible in prolate spheroidal coordinates.

In the MR frame additional terms must be in-
cluded in the electronic Hamiltonian, repre-
senting Coriolis couplings and the angular kinetic
energy of the electron due to rotation of the
frame. The latter plays no role in the problem
(except formally) and we shall ignore it. Classi-
cally a collision is confined to a plane, and we
take /=0. For f- —~, B-O and R-~. The
collision energy is E = p, V,'/2, the impact parame-
ter is b, the angular momentum is pV,b, and
the angular velocity, B=b V, /R'. The (time-
dependent) electronic Hamiltonian we shall em-
ploy is therefore

space spanned by the 1sou and 2Pmu* states. We
need not specify the functions fXi j. for higher
discrete components; those specified are orthog-
onal to all other BO states including continuum
components.

2. Electron Translation Factor

Dynamical description of the electron is not
complete without a factor representing radial
translation of an electron bound to moving pro-
tons. In Ref. 2 we used the form

exp[+ (im/2S) V„(R)r],

where VR(R) is the radial speed of the protons,
and the sign indicates outgoing or incoming mo-
tions. Generalizations of this form have been
considered by K. Smith and by S.B. Schneider-
man. " A definite improvement is introduced by
the choice'1'

This weights the velocity by the ratio of the
difference between the attraction forces of the
protons divided by their sum. As x ~ for
fixed R, the velocity realistically then tends to
zero.

In Ref. 2 VR(R) depends on the electronic
state and introduces some small nonorthogonality;
but in our classical treatment R and the transla-
tion factor are the same for all components. The
discrete adiabatic basis functions we employ are
thus given by

C. (r;R(f)) =X.(r;R(f ))

fS 2 g 2
zm' A Bxexp + —R ~ 2 g

A 8
(7)

these form an orthonormal set for given E, b,
and R.

3. Continuum Components

In the fast electron approximation, a continu-
um electron is assumed to Inove so rapidly rela-
tive to the protons that its probability amplitude
is distributed over a region of syace arbitrarily
large compared to the interaction region near
the protons. The energy, density of states,
etc. for the electron then do not depend at all
upon the proton configuration, but are those of a
free particle. " In the interaction region the
static configuration of the yrotons, not their
motion, is the major influence on the wave func-
tion. In principle, we want to obtain the continu-
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P(epA;r, R)=F(epA;$; R)k(y. ;Ay;rl)

1

x (2m) 'e (6)

where y = eR'/4. The quantity h(p, A;y;'q) can be
expanded in Legendre functions and satisfies the
orthogonality relation

f @(W 'A; X; n)&(p A; S; n)dn = 6

E(sp, A; g;R) is the regular solution to the $ equa-

um eigenfunctions of BMR [Eq. (6)]. The Coriolis
interaction due to rotation of the MR frame is
important even outside the interaction region,
and must be included. Asymptotically it guaran-
tees that continuum states are characterized by
free-particle properties in the SFR, rather than
MR, frame.

It is not computationally practical to obtain the
true continuum eigenstates of BMR, since as
many as twenty coupled equations could be in-
volved for each energy. Instead reasonably good
ayyroximate solutions are obtained as follows.
Let all electron configuration space be divided in-
to two regions, divided by a spherical (or ellip-
soidal) boundary at xc. Assume that in the in-
ternal or interaction region near the yrotoDs,
the BO Hamiltonian, especially the bipolar
terms, is the dominant part of HMR and that the
Coriolis interaction is negligible; inthe outer or
asymptotic region, on the other hand, the non-
spherical terms in the BO Hamiltonian are as-
sumed negligible in comyarison to the Coriolis
interaction. In the internal region the BO con-
tinuum states P(ep, A) form a complete set of
continuum components; in the external region
solutions are characterized by energy (in a
Coulombic spherically symmetric field), and
the orbital angular momentum L and its com-
ponent ML. A solution of the problem with cor-
rect asymptotic characteristics e, L, j/IL is ob-
tained by choosing a linear combination of BO
components which match the wave function and
its derivative at x~ with the external wave func-
tion having the desired boundary conditions.
Finally, the "hoice of x~ must be made. A study
of the relative magnitudes of bipolar terms in
the potential and the Coriolis interaction suggests
that t'~ is 10-20 ~0 or more. It is in keeping
with the spirit of the fast electron approximation
to take x~ -~; the continuum wave functions are
then linear combinations of BO continuum com-
ponents, the expansion coefficients being func-
tions of R and the Euler angles e, g. (See Ref. 15.)

In detail: Using the well-known prolate
spheroidal coordinates (g, g, p), the BO problem
for H,+ is separable" and. continuum solutions
are of the form

tion, obtained by numerical integration. Here
we need only know the explicit form of P in the
asymptotic limit R fixed, x-~; in that case g

cos8, $ 2r/R, and

lim P(ep, A;r;R)
+~00

R fixed

=2(hv) "' ~ 'sin[k~+2k 'in~+6(epA;R)]

x Q B(pA; I;y)F (8, p),
L= tAl

(10)

(L,)( )
—iM1$]

AML

(f) (~)
AML MLA

is defined by Edmonds. " Define

X (~I.M;r;R, e)

-=Q Z {B(pA;I.;y)d (e)
P. A ' ' AML

x exp[-i6(epA;R)] jy(epA;r;R).

Asymptotically X+ has the form (recall that $
=0).

lim X (eI,M r R 8) = —i (hv) 'I'r
f'~ 00

R fixed

x exp[+i(br+2k 'in~)] F~M (8', p')
LML

+i(hv) 'I'~ 'exp[-i(k~+2k 'in')]

x P g {B(pA;I.;y)B(p, A;,f ';y)
P.A L'M'L

where e = I'k'/2m = mv'/2 .
Solutions to the problem are linear combina-

tions of the set {g(epA;r;R)] for fixed R, s which
correspond to certain asymptotic boundary con-
ditions. The boundary condition we shall impose
is that the outgoing parts of the continuum solu-
tions be characterized bv definite e, I, and ML,
where ML is the component of L on the SFR
axis ~'. Because of the bipolar field, the in-
coming parts will not be so characterized. To
transform to such a basis, we take advantage of
the orthogonality of the matrix 8 in Eq. (10), and
the unitary transformation
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x exp[- 2H(spA;R)]dAM (B)(L)
AMI

LIxd, (B)"fi'L,M, (8', q').

Although the incoming wave does not have an
unique angular momentum, its energy is asymp-
totically e. In Sec. D it will be shown that the
asymptotic properties of the incoming wave are
irrelevant since it can make no contribution to
the scattering amplitude. The error involved in
using linear combinations of BO components to
approximate solutions of HMR is essentially a
loss of resolution, since the Coriolis interaction,
if included, would mix components from BO ener-
gies e' in a band about e of width approximately
the magnitude of the Coriolis interaction. In the
most severe cases (small R, high E, large im-
pact parameter b), this interaction may amount
to about 1 eV; usually it is much smaller.

The set of fast electron continuum components
is defined by

C (eLM;r;R, B)=—X (eLM;r;R, B)

1. Model Problem: Nonadiabatic Ionization
of a Spherically Symmetric System

This derivation resembles Mott and Massey's
treatment of ionization of an atom by a time-de-
pendent perturbation. " Consider an electronic
system with a spherically symmetric Hamilto-
nian, H(r; t) which varies (slowly) with time in a
specified way; for large positive and negative t,
H(r, t) tends to H, (r), and

fd'r f dt IH(r t)-H, (r)l

is bounded. Suppose also that in the limit x- ~,
H, (r) [and H(r; t)] is Coulombic, with constant
effective charge +2e. At each t there exists a
set of discrete adiabatic states 4+ (angular mo-
mentum eigenfunctions) which are solutions of
the equation

H(r;t)e (r;t)=e (t)C (r;t), (i5)

and also a set of continuum components with ener-
gy ~&0,

fl 2 + 2
sm- A ax exp +- (i4)

A' 8

The reason for including the electron translation
factor in the continuum components is that they
are then rigorously orthogonal to the discrete
components Ct defined by Eq. (7). In the limit
x- ~,8 fixed, this factor tends to a constant and
therefore does not shift the energy e. More dis-
cussion of this point is given in Paper II.'

A set of discrete adiabatic electronic states,
and a set of fast electron continuum states or-
thogonal to them, have been defined. These
make a formally complete set describing elec-
tron states, although for a narrow band of states
with [s)(sc (states of type "c":cf. Sec. B.i) the
approximation is of no physical value; the suc-
cess of the theory rests upon the validity of the
assumption that transitions to such states are of
negligible probability. The only remaining
problem is to show how correct three-body final
states describing ionization can be generated
using such a set, and obtain the formula for the
cross section.

D. THREE-BODY FINAL STATES

In this section it is shown that correct final
states representing ioni:zation can be generated
using the basis set defined in Sec. C. Since the
actual problem is complicated by many details
not relevant to this question, it is clearer to
examine a simple model problem which retains
only the essentials.

H(r;t)e (r;t)=em (r;t); (16)

note that e does not depend on time, though C&
may do so in the interaction region. j4~) are
orthonormal and (C &) is so normalized that

fa're*, (r;t)e (r;t)=6(e' s). -
In the asymptotic limit r- ~ (for s waves)

C (r t)-(vhv) 'I'r

x sin[br+2k 'lnr+6 (t)],

where we take

@O=ao(t)co(r;t) exp[- (t/5) f so(t')dt']; (2O)

with e =mv'/2. As boundary condition we assume
the system is in the state C, at t —~, and Cp is
an s state.

II varies with time at a finite rate in the interac-
tion region, and as a result transitions from 4p to
other discrete states and the continuum can occur.
The same sorts of physical questions arise about
the description of fundamentally nonadiabatic levels
near e =0, the fast-electron states, the likelihood
of exciting states near a=0, etc. , as occur in the
actual impact ionization problem; we assume the
same conditions and assumptions to hold here. We
can write the solution 4 to the time-dependent
Schrodinger equation

%=4+4, +4,D c
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a,(- ~) = 1, and indeed a,(t) = 1 for all t because we
assume the total transition rate is small. The
definition of t =0 is arbitrary except that it occurs
during the finite period 7 when H(r;t) differs from
H, (r). 4, and @, are given by

a (t)C (r t)
1 n nn~o

8 c
et

iI' ——K(r t) 1

de[i@a (t)]e (r;t)e
0

—iet/h-f+ dec
0

xf dt'a (t')[(e —H(r;t)) C (r;t')] . (24)

x exp[- (i/h) f e (t')dt'], (2 la)

c ~ —iet/Id6' e
1 0

x f dt'a (t')C (r;t'). (21b)

8
H(r t) N —e-

at

= —ih ' exp[- (i/h )f e,(t ')dt '] .ae. t

(22)

The terms arising from 4', are

DN —-H(r t) e
et

an( —~) =0, and by definition we see that 0, = 0
as t- —. The reason for writing the contribu-
tion to the continuum at e at time t as an integral
over earlier contributions is that though 4&(r; t')
changes with t', its contribution at subsequent
time t to ionization does not follow the Hamilto-
nian adiabatically from t' to t, but appears asymp-
totically, with characteristics specified by H at
the time t' of excitation: the fast electron ap-
proximation. With this assumption we will de-
rive familiar expressions for an(t) and the formal
hz(t) (the latter is not a time derivative).

Since all components in 4, are small, C0 is the
source of excitations. This source term is

a, (t)=T, (t)

x exp{(i/5) f [e'- e,(t')]dt'), (25)

where

T, (t) =- —fd'r C *,(r; t) e(r; t) . —e'0 e' ' Bt 0 (26)

Substitution of Eq. (25) in Eq. (21b) permits
the calculation of 0, in the asymptotic limit t

From this yoint we follow the procedure of
Mott and Massey. " An ionized electron should
move to large r as t- ~, hence we can use Eq.
(11). 4', is the sum of outgoing and incoming
asymptotic parts 4y

e, (r; t) - [+i/r(4vh)' f «v

x exp[-iet/h ai(br+2k 'lnr)] C (e),
(27)

where

C (e)=f dt'T (t')exp{+i5 (t')

Note first that terms in (B4 /Bt) automatically do
not arise because of the definition of 0, ; secondly,
H(r; t)4&(r; t') is equal to eC e(r; t') for all (r, t),
except when r is in the interaction region. There-
fore, as long as we do not choose (r, t) so that
4',c(r;t) has amplitude in the interaction region,
we may neglect the last term in Eq. (24). Col-
lecting all terms in the Schrodinger equation and
selecting the component at e', we obtain

=+it Q a (t)e (r t)+a (t) —C (r;t)
Ã n n M nn~O-

I
+(i/h) f [e —~,(t")]dt "] . (28)

x exp[- (i/fi) f s (t')dt'] .

For truly adiabatic discrete states (those separated
from neighboring levels by be» [ BH/Bt (), (BCn/Bt)
can be shown to be small enough that the second
term in the sum on the right-hand side of Eq. (23)
is negligible. This is not true for the Rydberg
levels but for these we have assumed in advance
that transitions from C, into them are negligible.
Finally the terms arising from 4, are

Since I T&0(t') (-0 as t'-a ~, C+(e) is a constant
and it is permissible to use it in Eq. (28) as t

We shall assume C+(e) is a slowly-varying
function of c in comparison with the exyonential
in Eq. (28). Finally we convert the integral over
e to an integral over v, and use the stationary
phase approximation to evaluate it. 4, has no
stationary phase point, hence it vanishes. For
@, + the point of stationary phase occurs at v'(e ', 0 ')
such that r =v't. This is just the velocity which
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would classically bring an electron to r at time
t if it left the origin at t =0. Evaluation of the
integral gives

An approximate solution to the Schrodinger equa-
tion

4, (r;t) = —(e'/2m)' C (e')r

x exp[+i(k'x+2k' 'Inr —e't/5+v/4)]. is 4'0+4'„where ETotal E+e100 '0)

+,=-C„,(r;R)x„,(R, e, g), (S5a)

The probability of finding an electron between x
and v+dt at time t is 4vr' i4',c(r; t) i'dr; since r
and e' are related at t, this gives also the prob-
ability P(e')d»' that an electron with energy e' to

+d6 is ionized;

and pyoo meets the asymptotic boundary condi-
tions

y,«- exp[iK, 5]

P (e ')de ' = i C (e ')
i
' de ' .

+R 'exp[+i%,R] f,(e, p),

and is a solution to the equation

(3 5b)

The application to a collision system is clear;
P(e') is the ionization probability for a collision
of specified energy E and impact parameter b;
the ionization cross section is

o (s') =J 2n'bP(e')db, (sl)

2. Construction of Approximate Three-Body
Green's Function

The above treatment can be modified to give a
stationary-state, quantum mechanical account of
the collision process, with the result that an
approximation for the adiabatic Green's function
including correct three-body final states is ob-
tained. Again we disregard complicated details
and outline only the schematic procedure, for the
case of a system which has spherical symmetry
for the electron. The total Hamiltonian is

——H'0 (se)

satisfying the proper boundary conditions (out-
going waves only). If we can construct the
Green's function GE&(r, %;r ', 0'),

[H (r, R) —E ] G = 5(r —r')5(R —R') (3"t)

and having appropriate boundary conditions as R
-, then

~R 100 Total ~100

Transitions to other states occur because C„,(r;R)
varies with R. If we designate the source terms
due to this variation by the name K'0, , then 4,
can be found as the solution to the equation

=H (r;R)+Z'„+e2/R,
Total e

(32)
4 (r R)= —Jd'r'd'R'

where

I2 g 8 N

R 2p, aR eR 2pR' (33)

Z 1Z C (r;R)C* (r';R)
LM n

+ J de C (r R)C~ (r';R)]

=5(r'-r).

and N is the rotational angular momentum opera-
tor. Let C„l~(r;R),4&1M(r;R) be the discrete
adiabatic states and continuum components which
are the eigenfunctions of He(r;R) for given R;
except that they parametrically depend on R rather
than on t, they are just like the electronic eigen-
functions of Egs. (15)-(18); L, Mrefer to electron
orbital angular momentum. The set of states
(C) is complete:

x [G (r, R; r ', R ')H' 4 ] .gg (s8)

We can now exhibit an approximation to G& valid
for calculating the ionization cross section. It is
useful to define some heavgparticie Green's func-
tions G & +(R;R') and Ge +(R;R'), which satis-
fy the equations

[H (R) —E&+6 &(R)]G &
(R;R') =5(R —R'),

(sga)

(39b)[H (R) —E +e]G (R R') =5(R —R')

these are constructed in the usual way from the
regular and asymptotically outgoing solutions of

where

H (R) = —
2 R ——N(N+1) + —,N S2 d 2 e2

2p R' „dR
(39c)
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the corresponding homogeneous equations. The
Green's function G~ is then given by

G' (r, H;r', ll')
T

x [Q (C (r;R)C* (r';R'))

waves only, via energy conservation, at r values
classically correlated with R and the known
velocity ratio; a formula analogous to Eq. (30)
is obtained.

Conclusions of this section can be directly ex-
tended to the actual proton-H-atom system. In
the remaining sections we obtain the resulting
formulas.

x G (R, R')+ J de(C (r;R') E. THE INCIDENT CHANNEL AND TRANSITION
OPERATORS

x C + (r';R')]G +(R,R')] . (40)

H (r;R)C LM(r'R')=eC LM(r R') (41)

rigorously for 8'-8, while for R'0 R it holds
everywhere in r space except the neighborhood
of the protons. It is important that the latter con-
dition be met in the asymptotic limit, where we
wish to examine 4,(r;R). Note that this clearly
restricts the validity of our approximation to
those electrons for which we can be confident
that r»A in the asymptotic limit; this Green's
function cannot describe the complex intermediate
situation which occurs for a slow electron, or for
the finite interim period during which an ionized
electron "moves out to infinity. " In the other
crucial region, R-R', the limiting approxima-
tion to the singularity in Eq. (27) is accurate;
the only regions where false signals are produced
are those for which B—8' is finite and r remains
near the protons. Obviously we cannot use Gg
then, to consider secondary events, such as
recapture, deceleration, etc. , processes which
are improbable in the fast electron approximation.
This defect with respect to reverse processes is
also manifest in the asymmetry of GE (r, R;r', R')
with respect to primed and unprimed coordinates.

If Gg is used to find the asymptotic form for
via Eq. (38), a procedure analogous to that

of the preceding subsection (D. 1) shows that the
asymptotically outgoing properties of the heavy
particle force the appearance of outgoing electron

Note that the response at (r, R) to a continuum
component in the source at (r, H ') is not C &LM
x (r; R), but C LM(r; R'), just as in the time-
dependent formalism of Sec. D. 1 above. The proof
that GE& as defined by Eq. (40) satisfies Eq.
(37) proceeds as follows:

(a) Derivatives of the discrete components

C„LM (r; R) with respect to R are small and can
be neglected for the tightly bound adiabatic states,
while for the Rydberg levels we again ignore the
problem on the assumption that H'4, has negli-
gible components on these states.

(b) For the continuum no such derivatives occur,
and 4sLM (r; R ) satisfies

(r; t) = C', (r; t) + C, (r; t), (42)

where 0', (r, t) is the incident channel or initial
state solution, to be defined, and 0, is generated
from it in a perturbative fashion.

1. Incident Channel Solutions

For convenience assume the electron bound to
proton A before collision, though this is irrele-
vant to final results, and affects only the relative
phase of g and u solutions.

(a) Gerade State

For this case 4',&(r; t) is completely specified
by a single BO component:

(r;t) =al C (r;%(t))

x exp[- (ij8') 1 el (R(t'))dt'], (43)

where C 1 is defined by Eq. (7) and

X -=Q(iso; r; R(t));

al&= 1/v 2, and R&(t) is the trajectory (for E, b)
determined for elastic scattering on the potential
surface elg(R).

(b) Ungerade State

C," is more complicated because strong-cou-
pled inelastic scattering occurs. Three BO states

A

(1so„,2Pmm) are involved but the operator L& in
HMft [Eq. (6)]couples only 1so„and the "2pva~"
state, which has a node in the yz plane:

For a specified collision energy E and impact
parameter b, the probability of ionizing an elec-
tron with energy e is expressible as the sum of
probabilities Pf (E,b, s; e) for each of the separate
parities g, u. Pl(E, b, s; s) is obtained from the
solution 0 to a time-dependent Schrodinger equa-
tion controlled by the appropriate trajectory,
Re(&, b;t). The 4s is written
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y(2pv ) =-(i/v 2)[p(2pv ) —p(2pv )] . (44)
2. Transition Operators

Xl (r;R) =cosfp(iso )+sinC p(2pv ),1Q Q Q

X (r;R) = —sink/(iso )+cosfp(2pv );
2Q Q Q

g-0 at R

(46a)

(46b)

The eigenvalues el„(R),e2„(R) are associated
with these states. 90"(r;t) can now be defined:

(r; t) -=a (t)C (r; t)

x exp[- (i/I) f s (R(t'))dt']

+a (t)e (r; t)

x exp[- (i/I) f s (R(t'))dt'], (46)

where al„(- ~) =- 1/&2, a2„(- ~) = 0. Because
f(E, b, R) varies along the trajectory R„(t), the
states 4 1Q and C 2Q are coupled, and the coef-
ficients aalu. change with time. In the X repre-
sentation, however, the coupling is substantially
reduced in strength, in comparison with the BO
representation employed in Ref. 4. The solu-
tions for aiz(t) in the X representation are calcu-
lated in Ref. 8, and are assumed known here.
Because the coupling to 42Q is not usually strong,
we can prescribe the effective classical tra-
jectory Rz(t) for given E, b as that determined

by the potential surface al„(R).

The other mu component is not involved. Thus only
two components C1„,42„occur, defined by Eq. (7),
with X1u, X2Q the eige~nctions of HMH wlthiri
the two-dimensional sPace (isa+, 2Pva~). The
transformation from the BO states to Xzu is
characterized by an angle L(E,b, R), 0 & 0(v/4:

Transitions out of the incident channel arise
from nonzero source terms given by

(47)H (r; t) —ih —@ -=—H'@

Three important terms occur:
(a) Terms due to intrinsic R dependence,

hence t dependence, in the BO components
g(isa&), p(iso„), p(2pv„~) (solution of the strong-
coupling problem accounts for the time-variation
of 0 and the coefficients ai„(t). With respect to
BO components these terms are diagonal in A.

(b) Terms arising from action of the electron
Hamiltonian on products of BO components and
the electron translation factor,

exp[(im/25)Rz((r&' —r ')/(r&'+r '))];

2 f1 2

R ~R 2 „& y 2+g 2 '
y

Terms of type (c) are proportional to e(t) and
require knowledge of the BO matrix elements of

In Sec. F the formulas for the cross section
are given, in terms of BO matrix elements of
HRI and I.~.

these are also diagonal in A and are grouped with
the type (a) terms.

(c) Terms arising from matrix elements of
the Coriolis interaction between BO states in
the incident channel and excited components.
These link states A', A if A'=A+1.

The detailed derivation and calculation of these
terms is presented in Paper II.' Terms of types
(a) and (b) are proportional to R(t); we can sym-
bolically write them in terms of the BO matrix
elements of an operator H&, given by

F. TRAJECTORY INTEGRALS AND CROSS SECTION

In direct analogy to Sec. 0.1, the continuum part of 4, is defined

de e Z f dt'a(eLM t')4 [eLM r;R (t'), e (t')],
L, M

(49)

(60)

(51)

where 4 (eLM) is defined by Eqs. (14), (12). Substitution in the time-dependent Schrodinger equation,
after some tedious calculation, yields explicit expressions for a(eLM; t): (a) g parity (even L):

a(eIM;t) =(1/v 2) e g {R T (a-a;LM)+e T (o-v;LM)j,

where 4 (t) —= 1/5 f [e —e (t')]dt',
g o 1g
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and (L)T (o-o;LM) =-Q B(p0;L;y) exp[-i5(ep0;R)]d (6)(epOIP' I iso );
p.

' ' ' OM 8 g
(52a)

T (o-m;LM)=Q B(pl;L;y)exp[-i5(epl;R)] {—,'[d (8)+(-1) d — (8)]] (epllL /KI iso ) .(L) M (L)
p,

' ' ' ' 1M 1M + g
(52b)

(b) u parity (odd L) (the expression is complicated by strong coupling in the ground state):

a(eLM; t) ={a (t) e 1" cosf —a (t) e 2" sing jIQ 2Q

x[R T (o-o;LM)+8 T (o-~ LM)]
Q Q

+ {a (t) e sing+a (t) e " cosf j.i A 1„(t) iA2„(t)
1Q 2Q

x [R T (m-w;LM)+8 T (m-o" LM)+6 T (w 5;LM)],

where &. (t)=—1/5 J dt'[e —e. (R (t'))],
ZQ ZQ Q

and

(54)

(55a)

(m-m; LM) =is 2 g B(pl;L;y) exp[-i5(epl;R)] {—,'[dl (6)+(-1) dlM (6)]J(&pl I&RI2p& );Q (L) M (I.) +
p,

' ' ' 1M 1M R Q

(55c)

(o o; LM) =-Q B(p0; L;y) exp[ —i5(sp0;R)] d0M (8)(spOI BR I iso );u . (L)
p,

' ' ' OM 8 Q

T (o v;LM)=g B(pl;L;y)exp[-i5(apl;R)]{-, [d (6)+(-1) dl — (8)] (tali(L /S)l»o );
(55b)

T (m-o;LM)=(i/v2)Z B(p0;L;y)exp[-i5(ep0;R)]d M (8)(spOIL /II2pm );Q (L) +

T (~-5;LM) = —(i/W2)Q B(p2;L;y) exp[ —i5(ep2;R)] {—,[d2 (8)+ (—1) d — (6)]j

(55d)

x(ep2IL /KI2pv ) . (55e)

In the above we have used the fact that B(pA; L;y) and 5(epA;R) do not depend on the sign of A; also that

"AM ' '=' " "AM (55)

Explicit or implicit time dependence occurs in every factor inthese equations (e.g. , y = eR'/4); R (t),6 (t)
S Sare specified, if E, b are given. Note also that

a(eLM t) =(-1) a(sLM t) (57)

which guarantees the necessary symmetry with respect to the plane of collision.
Proceeding just as in Sec. D. 1, we substitute the expressions for a(eLM; t) in Eq. (49), and evaluate

(r;t) in the asymptotic limit t- ~, using the asymptotic form for X [eLM;r; R(t')] given by Eq.
(13). Since 4 [eLM; r; R(t')] is to be evaluated in the asymptotic limit for r, but for t' finite, the plane
wave factor does not contribute:

lim
00

R(t ') finite

exp[(im/2|I)R(t '){z(r&' —rB')/(r&' + r B'))] = 1 . (58)

The expression for 0', ~ (r;t) can then be evaluated by doing the integral over e by stationary phase;
only the outgoing portion contributes and the result is
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1 3

(r; f)=- (2e')'x 'exp[+i(k'r+2k Inc- s'f/5+m/4)] Q C (e'LM) I' (8', p'),
I., M

(59)

where a'is just such that e't=r, and

C (e'LM) =5 df'a(s'LM;f'). (60)

Integrating ) 4, ~ ( r dh over all scattering angles for the electron and summing over partial waves, we
find the total probability of ionization at e to a+de, per collision of specified E, b is

P (E,b;s)de = Z i C (s, LM)i'ds, (61)

and the impact ionization cross section is therefore

o (s) = 2m J P (E,b; s)bdb . (62)

e~[~f/ff f"g. (E ) - P (E )]d~ ],
where pf, pf are the classical initial and final radial momenta. If we recall that (pf' —py') /2p = sf —sf,
and approximate (pf +pf )/2p by the velocity 8 in the initial state, then (63) is the same factor as
efA(f). However, such an approximation is increasingly serious as the energy transfer sf —sf in-
creases. The classical cross section will as a result be too large as the energy transferred increases
relativg to fixed E.

In the second paper of this series (II) we present the details of the electronic calculations, and in sub-
sequent work the trajectory integrals and cross section are calculated.

(63)

The trajectory integrals [Eq. (60)] exhibit some interesting features. Generally speaking the BO ma-
trix elements of HR and I~, the expansioncoefficients 8'(pA; L; y) and phase shifts 5(sy A;If) are slowly-
varying functions of R~ and hence also of time; the same is true of the initial-state strong-coupling
parameters a@(t) and 4'. On the other hand the factors exp[i&(f)] rqay oscillate rapidly: This feature
is familiar in any study of inelastic scattering. The factors dAM( &(8) provide a novel element: This
process differs from many common types of excitation in that it is possible to excite angular momentum
states with L values significantly larger than usual (up to ten or twelve quanta). It is interesting to note
that the transfer of this angular momentum to the electron is hampered for increasing I by the oscilla-
tions in dAM(L)(e). This result suggests that when action in any form is transferred from one subsys-
tem to another during interaction, such an oscillatory "transfer efficiency" factor must appear (in our
treatment of the system this "angular" action is independent of the energy transfer).

The factor ef A( ) will exert a dominant influence on the cross section when s —s(ls) becomes a
significant fraction of the collision energy E. For example, for E =100 eV, at e =10 eV, 4 will execute
5 to 10 cycles during a collision, while at c = 50 eV, it will execute 30-50 cycles. It is this feature,
rather than the e dependence of the BO matrix elements, which will reduce the cross section as c' in-
creases at fixed E.

Finally, it may be pointed out that the possibility of transferring substantial amounts of energy to an
ionized electron provides the severest possible test of a classical trajectory theory. In the approxima-
tion to the quantum trajectory integral, the analog to the factor e'4A(t) in Eqs. (50), (53), is a factor
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Paper I of this series describes the calculation of the direct impact ionization cross section
O'I(&) for low-energy proton-hydrogen-atom collisions, where an adiabatic description is es-
sentially correct for the initial channel. To calculate this cross section it is necessary to
compute Born-Oppenheimer continuum wave functions and evaluate the matrix elements of the
transition operators connecting them to the ground-state components. Such electronic calcu-
lations and matrix elements are presented in this paper. The transition matrix elements are
quite sensitive to the form chosen for the "electron translation factor. " Present calculations
have removed most of the large error appearing in perturbed stationary states (pss) theory
due to neglect of this factor. The computed transition elements presented in this paper should
lead to values for O'I(e) accurate to perhaps 30%; estimated remaining error is due to spurious
long-range effects which can be removed by improvement of the translation factor. Further
computation making such improvements is in progress.

A. INTRODUCTION

In Paper I' it was shown that the total cross
section for the impact ionization process

H +H(ls)-2H (E')+e (e),

for initial relative energy E &500eV, can be cal-
culated if the Born-Oppenheimer (BO) states for
the incident (ground manifold) channel and the
continuum at energy & are known, and the matrix
elements of certain transition operators connect-


