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Does the Electromagnetic Current Have a Unitary Singlet Component' ?*
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A possibility that the electromagnetic current may have a unitary singlet component has been investigated
in connection with V9 —+ ll decays. The Maki-Hara model of elementary particles seems to be experimentally
ruled out. As for the three-triplet model, it has been pointed out that we must have additional 1 vector
mesons p', co', and p' with nonzero charm quantum numbers in order to saturate a new sum rule.

KCENTLY, there has been a great deal of theoret-
ical and experimental interest in the leptonic

decays of the vector mesons. Especially the validity of
the sum rule'2

-',mal'(p —+ lt) =m„l" (&d
—+ &', l)+mal'(g ~ ll) (1)

is of great interest. Although the experimental analysis
of the DESY group' shows that this relation is fairly
well satisfied, the Orsay data4 seem to suggest a possible
violation. Hence, it would be worthwhile to reexamine
its validity from a theoretical standpoint. The sum rule
Eq. (1) has been obtained under the following three
conditions: (i) the validity of the first Weinberg sum
rule' with respect to the SU(3) group, (ii) the vector-
dominance approximation, and (iii) the octet nature
of the electromagnetic current without any unitary
singlet component. Although any violation of these
conditions can modify' the sum rule Eq. (1), we shall
restrict ourselves in this paper for a possible modifica-
tion of condition (iii) together with some remarks on
(ii). Specifically, we shall ask the following questions:

(a) Does the electromagnetic current of hadrons
contain a piece that transforms as a singlet under
SU(3)?

(b) To what extent can one differentiate between
various types of quark models'

A study of the leptonic decays of vector mesons may
settle" a questions (a) and (b) by means of the sum
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mission.' T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).' R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967).' U. Becker et al. , Phys. Rev. Letters 21, 1504 (1968).

4 J. E. Augustin et al. , Phys. Letters 288, 503 (1969); also the
CERN-Bologna data indicate a possible violation in the same
direction. See A. Zichichi in Proceedings of the Ii'ourteenth Inter-
national Conference on High Energy Physics, Vienna, 196h', edited
by J. Prentki and J. Steinberger (CERN, Geneva, 1968), pp. 70,
71.

~ S. Weinberg, Phys. Rev. Letters 18, 507 (1967); T. Das,
V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18, 761 (1967).' H. Sugawara, Phys. Rev. Letters 21, 772 (1968) has proposed
to modify the first Weinberg sum rule on the basis of his model
and derived a diferent sum rule. However, an extra assumption
with regard to SU(3) invariance is used.

~ The possibility of detecting the unitary singlet component in
electromagnetic current in U~ —+ ll decay was originally suggested
by A. Salam, in Proceedings of the Twelfth Annual Conference on
Bigh-Energy Physics, Dlbna, 1964 (Atomizdat, Moscow, 1965).

S. Okubo, Progr. Theoret. Phys. (Kyoto) Suppl. 37, 114
(1966).

rule Eq. (1).A great deal of interest is also attached to
question (b), particularly in view of the fact that the
three-triplet quark model of Han and Nambu seems
to be preferred over the usual quark model from
considerations of finiteness' of the lowest-order radia-
tive corrections to P decays, from an analysis of the
decay" z' —+ 2p, and from the possibility of achieving a
symmetric S-wave configuration for the nucleon as a
bound state of three quarks.

We first discuss questions (a) and (b), using only
the first Weinberg sum rule. Towards the end, we shall
use the second sum rule as modified in Ref. 1, and list
some detailed predictions for the leptonic vector boson
decays.

Weinberg's first sum rule' may be written

G 2/m 2—G 2/m 2+G 2/m 2

&r„G„/m„'+0 eGp/me' 0, ——
(3)

(4)

where the various coupling constants are dined by
the matrix elements

(0~ V„"'(0)tp'(k))=G, e„'&'(k)(2keV) '" (5a)

(0
~

U„&8& (0)
~

&0,$(k))=G„pe„&"4'
(,k) (2ke U) 'I', (5b)

(0~ U„&'&(0) ~&e,g(k))=&r„,@e„& &&(k)(2keU) '&'. (5c)

In terms of the ordinary quark field &J(x), the vector
currents are defined by

U„& &(x)=-',ig(x)y„), q(x), (6)

where n=0, 1, , 8, with Re=+a as usual, although
we need not assume the explicit form Eq. (6) in what
follows.

~ M. V. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965)."K. Johnson, F. E. Low, and H. Suura, Phys. Rev. Letters
18, 1224 (1967); N. Cabibbo, L. Maiani, and G. Preparata,
Phys. Letters 25$, 31; 25B, 132 (1967)."S.L. Adler, Phys. Rev. 177, 2426 (1969); S. Okubo, ibid.
(to be published).

"Here we remark that if the so-called p' meson exists, Eq. (3)
will not be valid in general. However, if the mass of p' is much
larger than that of p, its contribution to Eq. (3) will be negligible.
Similar remarks apply also to possible contributions from anal-
ogous co and Q .
2148

00 —p p&" (m')dm'=ah p+bb„pbpp
m2

(-, l =0, 1, , 8), (2)

which, under the usual assumption of pole dominance
leads, "among other results, to the relations
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4~ e' ' fv'- mt)'-
r(V Ei) =—— 1+0

3 47I mir mir)—
(8)

where fu's are expressed as"

fo Go, ——f„=y'/3G„+eo.„, f@='sv3Gt+ert, (9).

For the usual Gell-Mann-Zweig quark model, we have
&=0, while the Maki-Hara model'4 corresponding to
the charge assignment of (1,0,0,0) for the four quarks
gives e=Q—', . As for the three-triplet model, the situa-
tion is a bit more complicated, and we shall discuss it
separately.

Using Eqs. (3) and (4), we obtain from Eqs. (8) and
(9) the following modification to Eq. (1):

—',(1+Z)m, r(p —+ li) =m„r(to ~ ll)ym, r Q —+ tl), (1O)

where Z is given by

/ o. 2 o. 2 m 2 m 2 o. 2

Z= 3e
~ + =3e +~ 0.
km' m' Gs msG'

Note that the linear term proportional to o.„and f7@ has
disappeared because of Eq. (4). Thus, if the electro-
magnetic current has a unitary singlet term, one
expects to have a departure from Kq. (1) given by

'm„r (p ~-El) —m„r (&o ~ tl) —mar Q ~ ti), (12)

so that
Z= —tsZm, r(& ~ tl) &0.

This negative sign for Z agrees with the analysis of
the Orsay group. 4 However, since the experimental
error is fairly large, it would be premature to conclude
at present that a unitary singlet piece exists in the
electromagnetic current. It will certainly be of great
interest to have more accurate experimental data.

We remark that if the ordinary limiting procedure to
obtain the Schwinger term for the equal-time com-
mutator )V4& '(x), V„'P&(y)j„=» is used, then we get"
one more condition b= 0 in Eq. (2) for the quark model
as well as for the Maki-Hara model. This corresponds
to the case of the exact nonet model, and leads to the
following additional relation:

G,'/mo' o„'/m '+——tr t,'/me', (14)

which in turn gives Z=3es from Zq. (11).Hence, the

I'The notation used in Refs. 3 and 4 is related to ours as
follows: yg= &gv =my'/2 fv.

r4 Z. Maki, Progr. Theoret. Phys. (Kyoto) 31, 331 (1964);
Y. Hara, Phys. Rev. 134, 3701 (1964).

~5 S. Okubo, lecture notes at the University of Islamabad, 1967
(unpublished); also, in Proeeedengs of the Internott'onot Conference
on Particles and Fields, Rochester, 1967 (Wiley-Interscience, Inc.,
New York, 1967).

Now, if the electromagnetic current has a unitary
singlet term

j„™(x)= V„&'&(x)+-',v3 V„&'&(x)+eV„to& (x), (7)

then the decay rate for U ~ l/ is given by

Maki-Hara model gives Z=2, so that Eq. (10) is now
written

mor(p —+ EE) =m„r(co ~ El)+mt, r (rtr ~ El), (15)

which is ruled out by the experimental data already
available.

Next, let us proceed to a discussion of the three-
triplet model. Using the SU(3)SSU(3) notation, "
one has in this case

j„' (x) = V„@' (x)+-'s&3V„"'!(x)+-',v3 V„'"(x), (16)

with
V,' "(x)=~(s)"V(x)v.) -ppV(x),

where X and pp (n, P=o, 1, , 8) refer" to two
independent sets of 3)&3 matrices corresponding to
the ordinary SU(3) and to the charm SU(3) space,
respectively. Since the commutation relations among
Vst Pi(x) now form an algebra corresponding to the
SU(9) group rather than SU(3)SU(3), one can use
the method of Glashow, Schnitzer, Weinberg" to obtain
an extension of the first Weinberg sum rule Zq. (2):

j.—po~~ ppI"' (m')dm' =otb~po~~ p~+boooop po~~ ptop~o, (18)
m2

where the unprimed and primed indices refer to the
ordinary and charm SU(3) spaces, respectively. Note
that the asymptotic SU(9) formula Eq. (18) can also
be derived" from the standard limiting procedure of
obtaining the Schwinger term.

Dehning the coupling constants for the couplings of
p, co, and P to the three pieces of electromagnetic current
in Eq. (16) analogously to Eq. (5), we obtain the
following results:

(i) If we have exact invariance with respect to the
charm SU(3), the charm current V„&"&(x) could not
couple to co and g (which are assumed as usual to belong
to charm singlet states), so that from Eq. 11 we would
have Z= 0, and the original sum rule Eq. (1) would be
valid. However, the sum rule Eq. (18) for tr'=P'Wo
in this case cannot be saturated unless one has a total
set of 81 vector mesons.

(ii) If we do not assume invariance under the charm
SU(3), we inay avoid the introduction of extra, vector
mesons, and the sum rule Eq. (18) can be saturated by
the usual p, to, and @ alone. However, in this case, one
gets Eq. (14) again from Eq. (18). Since e=2/v3 in
this case, we get Z= 4 from Eq. (11).But the sum rule
Eq. (10) for Z=4 is badly violated experimentally.

(iii) If we give up the literal identification Eq. (17),
then Kq. (18) may not be valid. In that case, one can
avoid all difficulties mentioned above. We may, for

' Here we follow the notation given in J. Otokozawa and
H. Suura, Phys. Rev. Letters 21, 1295 (1968).Our SU(3)QxSU(3)
should not be confused with the chiral SW(3) group. Also, we
shall denote the erst and second SU(3)'s as the ordinary and
charm SU(3) groups, respectively."S.L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967).
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I"(y ~ IIt) 1 G,q'(m, qs
I
EI-(4-:) 7, (24 )

I'(pelt) 3 Gvl krrseJ

I'(co —+ll) 1 G„)' m 'G ' '
1+(V'5)e . (24b)

I'(p ~ lt) 3 Gv) mgsG„'We shall now consider the second Weinberg sum rule
for asymptotically broken SU(3) and revert to the
notation used before: For the Maki-Hara model, we have e=gss so that

I'(&~l/)=0, in contradiction to experiment. This
result Ltogether with Eq. (15)j has been previously
obtained' by assuming the validity of SU(6), and it is
also obtainable from the naive quark-model considera-
tions where the @meson is taken to be a bound state of
the qaq3 system. However, here we have obtained this
result from a more general consideration. Together with
Eq. (15), this would imply that the Maki-Hara model
is experimentally ruled out in our approach.

Finally, we shall briefly corrnnent about the deter-
mination of the parameter b introduced by Schnitzer
and Weinberg" from the formula"

p e
' (m')dm'=c8 e+d6 o5po+eds e .(19)

In principle, we could add" a term proportional to
ds ~dsev to the right-hand side of Eq. (19). However,
we adopt the atitude that such a second-order SU(3)-
violating effect is small, if it exists at all, in the asymp-
totic sum rule, so that Eq. (19) would still be valid to
a good approximation. Also, we assume in a similar
spirit that there is no cross-term proportional to 80 58p

+&s ~op in Eq. (19).
Now the sum rules Eqs. (2) and (19) give us the

following relations for G„and G~.
I"(p ~ 2~)I'(p v )t)

mp 2

1 (e' '(3 —5q' 2m,)'
'&'

36(4s- k 4 ) mv
(25)tÃ SPY~*

G„s, (20a)
5$$ S2(g

instance, select a suitable subset of the currents in gets"
Eq. (17) and invoke asymptotic SU(3)SU(3) rather
than SU(9) without any contradiction in the saturation
of the resulting sum rule. But we have no way to
calculate o-„, and hence Z will be a free parameter.

wag (Ã1s —ts(P) 4 ts@ tjsrr'

m, '(me' m„')— 3 mp' —nz '

yg 2 —L(4ygK~2 g~ 2) (20c)

Using the experimental value given by Ting, "one finds
8= —1.0I&0.24. Note that 8= —1 implies that the
electromagnetic form factor of the pion satisfies an
unsubtracted dispersion relation.

Similarly, if we define the parameter x by

Equations (20) reduce to those obtained in Ref. 1
when we set G,=O. For simplicity in further analysis,
we set tn„=mp which is experimentally correct with
high accuracy. One then gets two solutions involving
o-„and o~.

(22)

or

~,= —-',%2G~,
m„' Gp'

o- =-'V2
%SAN G(e

(23)

The first solution Eq. (22) gives sI'(p —+ ll) = I'(~ —+ 1l)
irrespective of the value of the parameter e. This being
in apparent contradiction with the experimental result,
we discuss only the second solution, Eq. (23). Then one

"Several modifications of Eq. (19) have been proposed. See
Refs. 6 and 15; also, I. Kimel, Phys. Rev. Letters 21, 177 (1968);
T. Akiba and K. Kang, Phys. Rev. 172, 1551 (1968); K. Kang,
ibid. 177, 2439 (1969).

where G„denotes the coupling of the scalar a to the
vector current defined by

(0~ V„&'—"&(0)~lr+(k))=&2G„(2l'roV) '"k . (21)

x= Gv/m, f., (26)

where f is the decay constant for n. —+ pv (fs.=130
MeV), the value @=1 corresponds to the exact validity
of the KSRF relation. "We may determine x experi-
mentally from the relation

4s e'q' 1
r(p ri) =——

~

3 4~)m,
(27)

Using the experimental value, "one finds x= 1.I2~0.07.
"Note that if we assume moreover the validity of Eq. (14)

together with Eqs. (20) and (23), then one can compute G„' to
be given by m&+'G„'= (1/4mps) (4mx~s mp2 ms —2m''—)Gv'—
=—0.03G,'. Hence we have a contradiction unless we have
G,=O, so that 4~n~*'=m, '+m„'+2m~' which is the familiar
formula (see Ref. 15) and is not so badly satisfied. If we do not
assume Eq. (14), we can obtain from Eq. (20b) onlyan upper limit
rIi~+'G '((1/4m ') (4mIt-. +'—m '—3m ')G,~O 33G ' or G '(0.24
f 2. The result of S. L. Glashow and S. Weinberg, Phys. Rev.
Letters 20, 224 (1968) in our notation is G„2=0.17 f 2 and is
consistent with our upper limit.

"H. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).
'8 is defined here by Gpgp ~ wp )&4(3 B)p so that our formula

Eq. (25) does not depend upon the validity of the KSRF relation.
22 S. C. C. Ting, in Proceedings of the Fourteenth InternationaL

Conference on High-Energy Physics, Vienna, 1968, edited by
J. Prentki and J. Steinberger (CERN, Geneva, 1968)."K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966); Riazuddin and Fayazuddin, Phys. Rev. 144, 1071 (1966).


