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Pomeranchuk Exchange and Low-Energy Theorems in Compton Scattering*
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The method, introduced in a previous work, of deriving the kinematical properties of zero-mass bosons
from the limit of a theory with massive particles is here applied to the problem of Compton scattering. It is
shown that the same mechanism that eliminates the factor of n (t) from the nonsense amplitude in pion
photoproduction processes and allows the pion pole to occur in such amplitudes also removes the nonsense
factor of nJ —1 from the residue of the Pomeranchuk trajectory in Compton scattering. This allows the
Pomeranchuk exchange to contribute to the photoabsorption total cross section. The connection of this
result with the vector-dominance model is discussed. A short derivation of the low-energy theorems for
Compton scattering using this limiting procedure is also given.

I. INTRODUCTION
' 'N a recent paper, ' the authors presented a discussion
~ - of zero-mass bosons in S-matrix theory, based on the
assumption that the properties of the amplitudes for
reactions containing one zero-mass boson could be
derived by taking a smooth limit of a theory with
massive bosons. Since in this approach we worked
entirely with helicity amplitudes, the usual discussion
of gauge invariance was avoided, even though the final
amplitudes had all the properties usually derived from
the principle of gauge invariance. In particular, using
this method, we proved that charge, which is defined
as the soft coupling of a zero-mass vector particle, is
conserved. In the present work. , we extend this treat-
ment of the photon to the study of Compton scattering.

The main new result presented here is connected with
the description of the Pomeranchuk exchange in Com-
pton-scattering amplitudes, but for the sak.e of com-
pleteness, we have also given a derivation of low-energy
theorerns for such processes. Our primary purpose is to
demonstrate that both the low-energy theorems and the
Pomeranchuk exchange can be smoothly related to the
"kinematical properties" of hadronic amplitudes. More-
over, it is hoped that the approximate extension of these
results to the p' considered as a small-mass boson may
give some insight into the p dominance model for Comp-
ton scattering. We shall first briefly review the problem
of Pomeranchuk exchange, since it presents the greatest
difhculty in any model using the p-photon analogy.

More than Ave years ago, Mur' pointed out that the
usual treatment of Regge exchange for Compton
scattering yields a Pomeranchuk trajectory that does
not contribute to the forward direction (t=0) of the

* Work supported, in part, by the U. S. Atomic Energy
Commission.' F. Arbab and R. C. Brower, Phys. Rev. 178, 2470 (1969).

~ V. D. Mur, Zh. Eksperim. i Teor. Fiz. 17, 1458 (1963); 18,
727 (1964) LEnglish transls. : Soviet Phys. —JETP 44, 2173
(1963); 45, 1031 (1964)]; H. D. I. Abarbanel and S. Nussinov,
Phys. Rev. 158, 1462 (1967); H. K. Shepard, ibid. 159, 1331
(1968);165, 1934(E) (1968).

elastic (non-spin-flip in the s channel) amplitude. This is
due to the special properties of the crossing matrix for
zero-mass particles whereby a helicity-fiip t channel
amplitude is crossed into the s-channel elastic amplitude.
In the usual treatment of nonsense vertices, such an
amplitude would be proportional to a factor of ctr (t) 1—
(we consider the Comption scattering of the pions for
simplicity), and therefore it would vanish at t=0 if
crt (0)= 1.Such a, zero in the Pomeranchuk exchange for
forward elastic Compton scattering is in conQict with a
vector-dominance model, since the corresponding ampli-
tudes for transverse p' in elastic scattering oG any
target T (ptg+T~ pt, '+T), and for photoproduction
of transverse ps (7+T—+ p&,'+T) are not required to
have this zero. More important, the zero in the Compton
amplitude implies, by the optical theorem, that the
total photoabsorption cross section goes to zero with
the power of the next lower trajectory (P'), and this is
in contradiction with the contribution of the photo-
production of p'. In order to get a constant high-energy
photoabsorption cross section, models for Compton
scattering have been devised with singular residues
arising directly from the left-hand cut or indirectly
from fixed poles at wrong-signature nonsense points. ' 4

As pointed out by Sakurai, ' this suggests, by the
p-photon analogy, that singular residues or Axed poles
exist for the hadronic amplitudes, p'+ T~ p'+ T.
While such a situation cannot be ruled out, we show in
this paper that it is not necessary. Indeed, the ampli-
tudes involving the p without fixed poles or singular
residues can be "smoothly" related to amplitudes involv-
ing the photon, with a total photoabsorption cross
section which approaches a constant at high energies.
Hence, our description of the photon may place the
application of vector dominance to Compton scattering

' H. D. I. Abarbanel, F. E. Low, I. J. Muzinich, S. Nussinov,
and J. H. Schwarz, Phys. Rev. 160, 1329 (1967); A. H. Mueller
and T. L. Trueman, ibid. 160, 1306 (1967).

4 S. Mandelstam and L.-L. Wang, Phys. Rev. 160, 1490 (1967).' J. J. Sakurai, Stanford Report No. SLAC-TX-68-11, 196g
(unpublished).
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on the same basis as in processes involving only a single
photon.

Before delving into the problem of Pomeranchuk
exchange in detail, we erst give a short Reggeized ver-
sion of our treatment of amplitudes containing one
photon in Sec. II. This will serve to remind the reader
of the fact that certain nonsense factors, such as the
factor of zr (t) in the contribution of the pion trajectory
to the helicity-1 amplitude in the photoproduction of
pions, are absent when we consider reactions containing
zero-mass particles. The absence of the nz (t) 1 f—actor
in the Compton-scattering amplitude is closely related
to this phenomenon as will be seen in detail in Sec.
III B.Section III A is devoted to the derivation of low-

energy theorems.
As was discussed in Ref. 1, our basic assumption,

apart from the usual Lorentz invariance, analyticity,
and crossing properties, is the assumption of smooth-
ness in the mass of the external vector particle. In the
case of photoproduction this property takes the form
of the requirement that m~MO should vanish as m~
goes to zero, where Mo is the amplitude for a zero-
helicity massive vector particle. This condition is
necessary and sufficient to obtain, in the limit m7=0,
the correct transformation properties of the photon
amplitude under the Lorentz group. Thus, the assump-
tion of smoothness in mass seems to be intimately
connected with the fact that the photon is an external
particle transforming according to a one-dimensional
representation of the Lorentz group. If one accepts the
condition on ns~3fo as a physical requirement for
Lorentz-invariant photon amplitudes, this limiting
process presents a rigorous approach to the peculiar
kinematical properties of zero-mass particles. Note
that the unitarity condition has not been used in our
discussion of the kinematics of zero-mass bosons. This
condition will no doubt give further information about
SIO. For example, if we assume a convergent perturba-
tion expansion in e and require that the unitarity con-
dition for the zero-mass case be obtained from the
unitarity equation for the massive case in each order,
then the condition that Mp —+ const (or Ms~0) as
m~ —z 0 corresponds to a unitary theory with (or
without) a final zero-spin zero-mass particle. It is
important to note that these stronger conditions do not
invalidate any of the results presented in Ref. 1 or in
this paper. (See Appendix and Ref. 6.)

Y. Hara, Phys. Letters 23, 696 (1966). Although we do not
nse the stronger condition Le.g. , MQ p O(m~z) as nz~ —z 0), dis-
cussed in the Introduction, its implementation generally has no
effect on our arguments. However, here it implies that Hara's
theorem [i.e., zzz z&(mzz) =0] cannot hold as m„~ 0, ii the
Pomeranchuk is to contribute in leading order to M1, 1'(/ =0) for
m~=0. Indeed to lowest order in w~' and t, one can easily
demonstrate from 3/Ip p' O(ez„') and 3IIpp'(t&0)~O(m ') that
+1—1 (tlat~')~ (t—2m~')b1 1~ for any trajectory k. Work. presently
underway, indicates that for arbitrary masses w» and ez», the
zero is located at t=nzzzz+m„zz+O(mz, p, mzzzzn, zz, nz~zz). Note that
the t-channel amplitudes are nonuniform for t=t~, hence 3fppb
~O(myys2yg) does not hold for t =0, 4m~1, or 4m~~'. The non-

II. NONSENSE FACTOR IN PHOTOPRODUCTION
AMPLITUDES

Let us consider the photoproduction of charged pions
from spinless targets (the nucleon target has been
treated elsewherer). The Reggeized t-channel amplitudes
(t: yzr+ —+ ttb), when the photon has a finite mass m~,
are written as

1 1
3Epz g ——— yp'(t)(1ae ' ")(s/sp) &,

~ slrlm(x(c

g = L(t—t+)(t—t-)j't',
t+= (m.+m, )s. (3)

The factor e~ in 3fj is due to the fact that JIj' is a
sense-nonsense amplitude and, for example, in the case
of even signature it has no poles as ns —+ 0. (Note that
we are considering massive photons at this point. )
As m, —+0, the factor V' '~ (t—m ') ', which as we
will now show removes the factor of eA, only when k
denotes the pion trajectory and normalizes the residue
of the pion pole in M~ in the limit m~=0. The two
residues y~~ and go~ are related through threshold and
pseudothreshold relations at I+ and t, respectively:

ans(t+)yi'(t+) = —yp" (t+)/(V2m sp).

The quantity ps'(m s) is known in terms of the charge
of the pion e„, and the coupling at the nab vertex g:

yp~(m ') =-,'zru'(m. ')e.gm, (4m„'—mr' ).
Equation (5) is the definition of the charge of the pion
and is equivalent to Eq. (1.6) of Ref. 1.

We now expand the residues around the point
3=5$~

lysi (t) zips+

boy�

(t m 2)+
ns(t)yi'(t) =uzi+ bi'(t —m.')+ (6)

Note that, for the pion, ap is given by Eq. (5) and ai'
is equal to zero. Substituting this in Eq. (4), with the
assumption that the parameters a;~, b,~, etc. , remain
bounded as m7~0, we obtain'

zti' —— 2 vbmp"/sp+—0( m)

ap' ———2v2m 'm, spbi'+O(m ') .

(7)

(8)

uniformity of 31& 1' can be understood as due to t6e factor
(t—m ' —nz, ')/H.' R. C. Brower and J.W. Dash, Phys. Rev. 175, 2014 (1968).

8 Here we are using the symbol O(m~ ) to mean m~e(18') y
where

e(m~) is a quantity that goes to zero as m~ —+ 0,

where k labels the diGerent trajectories with reduced
kinematic-singularity-free residues gpss and pic, p is the
Kibble boundary function, and V is given by
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For the pion, these two equations imply that bp kinematic-singularity-free amplitudes llfppg.
goes to zero as m~~ 0 (a1 =0) and that, for t=m ',

Z/2

n, (t)71 (t)/(t —m.') = —pm'(m. ') ge./(esp) . (9) Mgg — 3f]]
t —4m72

Mgp' —— —Mgp')
t —4m~'

For other trajectories, Eq. (8) implies that
a1o=O(m ), so that y1o(t) ~ (t—m ') when m~=0. This
factor of (t—m ') is cancelled with the 1/K, so that the
factor of no(t) remains in the expression for M1' for all
k except the pion:

~w(t) s )a~—1

M t yl/o (1+e—isa~)
sinn. n, (t) spi

Afar g'= M1—1', Moo' = —M oo' ~

t(t —4m, ') t 4m—,'
(13)

For the proof of the low-energy theorems, it is also
necessary to write the s-channel amplitudes M&., &' and
3fj. &' in terms of the kinematic-singularity-free parity-
conserving amplitudes Ii+ L% refers to the j parity of
the leading order poles, P = & (—1)~j:

where

and

no(t)y'(t) s
+Q (1~e—imap)

Sln7RX1 (t) sp

y~(m ') = mn'—(m ')ge /(v2sp)

(10) 1
M1., 1' ———P++ F—

ts 8' )
1

31g,. g'=t F+——F
$2

(14)

yp(t) = (t—m ')yp(t).

The general lesson that will carry over from the dis-
cussion of this section to the Pomeranchuk exchange in
Compton scattering is that certain nonsense factors
may not occur in amplitudes involving zero-mass
particles.

We further note that at threshold the factor (kp)
in the full residue requires that the Regge expansion in
terms of 1 = 2kps, be given exactly by the leading term.
For the pion, threshold coincides with the pole
Lk=o (t—m ')j so that the exact s dependence of the
residue of the pole is determined by the Regge expan-
sion. Using charge conservation e =e —e~ and the
kinematical fact that 1 = (s—m, ') = —(u —moo) when
t=m ', we see that our Regge expansion Eq. (10) is
consistent with the decomposition of M~' of Ref. 1:

qF" age, age o
M, = —

i

'y i+
t —m, 'ks —m.' u —moo1

We mention this because Eq. (12) contains the low-

energy theorem (Kroll-Ruderman theorem) which is
analogous to the low-energy theorem for Cornpton
scattering derived in the next section. In Ref. 1, we
proved Eq. (12) as well as charge conservation by the
use of crossing, but these arguments need not be
repeated here.

A. Low-Energy Theorems

Just as in the case of photoproduction, the low-energy
theorerns require the introduction of pole terms into
the s- and u-channel amplitudes. As in Ref. 1, we define
charge through the sense amplitudes by the limits

lim (s —m ')Mpp' ———(4m ' m~')e'—,
e~m &

(15)

lim (u —m. ')Moo" ———(4m.'—m, ')e'.
'g~ 7' sr 2

Kith the use of the helicity crossing matrix, the residues
of these poles in &~+i' and Mi.,+~' are calculated.
M&+&' contain both the s and the n pole, while only the
n pole contributes to Mi, +~'.

1 -2e'Ltm. '+O(m, ')j
t —4@x~2 s—m '3fgj'=

2e'Ltm '-+O(m, ')j+— +&11', (1&)I—SZ~

where S is dined similar to the factor 1 of the previous
section. In general there is a conspiracy relation at
s=0 of the form F+= —(1/8')F . Notice that M1,.~1'
are nonsense-nonsense amplitudes at the pion pole, but
the factor 1/8' will enable the pion pole to occur in
F /8' in the limit m, =0.

III. COMPTON SCATTERING

In order to simplify the kinematics, we consider
Compton scattering on a spinless target (pions;
ym. —+ ym) with a massive photon. The t-channel
helicity amplitudes M1„&,,'(yp~vrm) have the sym-
metry, M1„&,'= (—1)~'+~'M &„1„' due to parity, and

due to statistics. There are four inde-
pendent amplitudes, which we given in terms of the

Mg g' ——

y-2e'fs —m '+O(m, ')j
8JV

t 8'(u —m.')

1 1

s 8'

2e'
+— +&1—1'

t(t —4m, ') s —m ' u —m ' (18)
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2e'm 'ts —m '+O(m, ')g

S'(u —m ')

8+ B
g2

(20)

B. Pomeranchuk Exchange

We Reggeize our t-channel amplitudes according to
the standard procedure:

]~g
—ixegg

-s ~~ "~. (25)
SlnKGy

1
~11 " ~+ ~—

p

(s —m ')'
(21)

Bi i'=- B '+
s (s—m.')' )

(22)

Assuming that the background terms actually do not
become infinite as mv ~ 0, from Eqs. (21) and (22) we
can de6ne the new kinematic-singularity-free back-
ground terms B by

811'=PB11', 8+'——B+',
(23)

Bi i——tBi i, B '= (s—m ')'B ',
with the conspiracy relation B+' (s=0)= B' (s=O)—.
The resultant expression for the Compton amplitudes
have the full content of the low-energy theorems:

As in Ref. i, we assume that we can pass smoothly
to the limit ns~~ 0, and apply the crossing relations
~11'=Wl 1', Ml—1'=&11' for ms~=0. We find that the
pole terms satisfy crossing by themselves (charge con-
servation has been assumed this time), and the back-
ground terms are constrained by

The residue of the Pomeranchuk trajectory in the sense-
nonsense amplitude, pi i"(/), contains a factor of
L(xi'(&) —1)—one Lnz(/) —1j'" from the if function
combined with a (nI (t) 1)'~'—from the nonsense yyP
vertex. The full set of pseudothreshold and threshold
(PT) relations lead to the following constraints on the
residues:

y„(0)—y, , (0)+'roo(0) =0,
y„(4m, ') =yi i(4m, '),
%2m&bio(4m„') =yi—i(4m, '),
goo(4m )= 2yi i(4m ),

y, ,( 4m)+2m7 E y»'—(4 mv) +4v2 mv, 'o( 4m, ')
+goo (4m, 2) yi i (4m, 2)j=0 ~

(26)

The primes denote the derivative of the residues with
respect to t.

Sy expanding the Trueman-Wick crossing matrix
for large s and substituting the expression for a t-channel
Regge pole, we can compute the leading contribution to
the s-channel amplitudes. The results for all the s-chan-
nel amplitudes are given in the Appendix. Here we are
primarily interested in the asymptotic behavior of
Ml,.l' at 1=0:

~1;—1 ~11
—2e2m~9

+~Bii',
S—tPS~ I—SS~

28
(24)

-s f(n)
Mi, i'= L

—2m~'yii+2V2m, trio
(~—4m, ')'

+2m, 'goo —(t —2m, ')yi i$, (27)

~1;1 ~l—1 + Bi—i
t (s—m ')(u —m ')

For example, it is usually stated that the Born term
gives the zeroth- and erst-order contributions in the
momentum of the photon k(s) for Mi. i' at fixed angle.
We see this by the expression g/t= —2k's(1+cos8, ).

This derivation again emphasizes the point made by
Abarbanel and Goldberger' that the low-energy
theorems can be derived from kinematical considera-
tions and that the asymptotic behavior of the amplitude
is irrelevant to the theorems. The important condition
is that, for example, Bi i'(k, cos8,) be bounded as
k —+ 0, which is of course true in lowest-order perturba-
tion theory. However, the infinite set of cuts at k=0
may invalidate the theorem as an exact statement in
zeroth and first order in k."

'H. D. I. Abarbanel and M. C. Goldberger, Phys. Rev. 165,
1594 (1968).

'~ S. M. Roy and Virendra Singh, Phys. Rev. Letters 21, 861
(1968); T. P. Cheng, Rockefeller Report, 1969 (unpublished).

v- (~)
lim lim Mi, i'(/) =s "if(n(0)) lim —, (28)
t-&0 mg-+0 5-+0

hm Mi,.i'((=(+=4m ') =s "&f(u(0)) lim yi i'(4m ')
m~ 0 mp 0

Ke will show that the PT relations imply that these
three expressions are all equivalent. Note that the
last expression contains the derivative of the residue
and, barring accidents, is apparently finite for all
trajectories, including the Pomeranchuk with yi i (i)
= Pn~(/) —1jyi i~(t). To calculate these limits, we first
expand the above residues about 1,=0,

y„„,(t) =ai„i,+ bi„)„ty (29)

where f(n)= (1&e ' ")/sinatra. From Eq. (27) we see
that the asymptotic expression for Mi, i'(t=O) with
zero-mass photons can be obtained by taking a number
of different limits:

zoo(0)
lim Mi. i'(1,=0)= —s &"'f(n(0)) lim-
m~ 0 my~0 4~ 2



2128 F. ARBAB AN D R. C. B R0%ER

and substitute into the PT relations. With the smooth-
ness assumption that aq, q, (m~), bq, q, (mr), , are
bounded as m~-+0, we obtain the following set of
constraints on these coefficients:

all+ass at—1 )

btt ——O(m, ),
ar t= —2m, '(bpp+br t)+O(m, '),

app
—— 4m—,'br t+O(m, '),

atp= —&2m~( —br r+bpp)+0(m7 ).

(30)

Kith the help of these threshold conditions we 6nd
that the different limits given in Eq. (28) are indeed the
same and that when m~ =0 we have

g~ g-inn(0)

~ (o)Mr, t'(t=0) =br r
sins.n (0)

(31)

We may thus say that the nonsense factor nr (t) 1has-
been canceled by a kinematical pole just as in the case
of the nonsense factor n (t) in pion photoproduction.
On the other hand, an important distinction between
the two results is that in the x exchange, the constant
b& is determined by the charge of the pion, while there
is no easy determination of b» . In this discussion
b& z~ can accidentally be zero but this is not required

by any of the kinematical constraints (PT relations and
nonsense factors). However, the smooth dependence of
3I~.~' on the mass suggests the application of the vector
dominance model. This application has already been
discussed by other authors, ' and we expect the vector-
dominance value which is clearly nonzero to give an
approximate value for bi ~.

IV. CONCLUSIONS

Ke have presented an alternative method of dealing
with the kinematics and gauge invariance of the zero-
mass photon, which clearly can be extended to more
complex processes involving higher-spin hadrons. In the
Reggeized form, this includes the elimination of the
nonsense factors associated with the pion pole of x
photoproduction. In this light, it is significant that this
same procedure apparently eliminates the nonsense
factor from the Pomeranchuk residue to Compton
scattering.

This result is independent of whether or not the trajec-
tory actually goes through J= 1 at $= 0, so that the
nonsense factor (at r~=0) in no way forces the con-
tribution of the Pomeranchuk trajectory to vanish.
Moreover, the full set of PT relations are satisfied in
the final limit with no constraints on b~ ~. In other words
in the limit of zero mass, the first two terms in the ex-
pansion of yr r(t) around 3=0, at r+bt rt, go into a
constant so tha, t

Yl—1(/)
yt r(/)—= hm =br r+—0(t).

my~0 ( 4~ 2

Clearly some dynamical scheme is necessary to
determine the actual strength of the coupling of the
Pomeranchuk trajectory. The most obvious scheme is
the vector dominance model. Abarbanel et ul. ' give a
different estimate in terms of an 1V/D model that
unitarizes in the t channel the contribution of the s-, and
I-channel pole terms. This singular-residue model has
the feature of relating the Pomeranchuk coupling to the
charge of the target particle. We suggest that a more
realistic model wouM consider direct-channel unitarity
as in the multiperipheral model, particularly since this
unitarity condition requires, as pointed out in the Intro-
duction, that the Pomeranchuk exchange couple to
forward elastic Compton scattering amplitudes, unless
the sense amplitudes for p photoproduction vanish.

As to the application of the p-dominance model to
the determination of bi ~, we note that a smooth connec-
tion in the mass between a photon process and an
analogous p process is only indirectly related to vector
dominance. For example, both Mr, t'(ps~~ pps. ) and
Mt t'(p'p' —+ s.7r) go over smoothly to Mr., t'(ps ~ pm)
as the mass m, is taken to zero, but Mt, t'(pP7r ~ pss)
is a more suitable amplitude for high-energy com-
parison with Mr., r'(ps —+ ym. ) because it lacks the
threshold singularity at t=4m, 2. The important point
is that our smoothness assumption gives M~., ~'

(ys ~ ys ) and Mr., t' (p's. ~ p'rr) more nearly the same
t dependence for the Pomeranchuk exchange. Similar
remarks can be made in the experimentally more
interesting comparison of pP —+ pPP and pP ~ yP by
repeating our analysis for the nucleon target.

On the other hand, there are amplitudes in which
vector dominance is expected to fail. For example, if
there is a more massive pion x', then the comparison
of p,Pp —+ s.'+e and yp —+ s.'+e will run into difficulties,
since only the amplitude with p' has a pion pole. At high
energies, the amplitudes for zero helicity p in the I

channel will contribute a pole term proportional to
Pm„( t)'~'/(3 m')—]I,„'g „—„Unless th-is . exchange
accidentally decouples, we see that the ratio m, /m
causes there to be an appreciable contribution in the
region —m„2( —t& —m ' in only one of the processes.
We feel that it is generally true that the validity of
vector dominance is dependent on the smallness of the
p mass compared to an appropriate scale based on
nearby singularities.

Finally we note that the fixed-pole models due to
Abarbanel et al.' and to Mandelstam4 presently give
no estimates of the Pomeranchuk coupling at 1=0.
However, as we emphasized in the Introduction, our

results are consistent with fixed poles" and our analysis

"The only effect on the physical amplitude of a fixed pole at a
wrong-signature nonsense point (J=1; I& ——0, 2; I&——1 cannot
contribute to chargeless photons in p~ —+ p~) is to cancel to non-
sense factor by introducing a singularity 1/La(t) —1j in a Regge
residue. ",.The identical result is achieved here by the cancellation
of the nonsense factor against a kinematic singularity.
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may suggest that they are only important when zero- My;y and M'0;0 ar' e
inass particles are involved.
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W; '=-—
LY (0)—Yoo(0) —Y.- (0)jf()"

Sm '

,L»i(0)+Yi i(0)1f(n)~,
4m~'

and for the Pomeranchuk trajectory

Vi—i(o) = En~(0) —1jvi-i(0) =o.

(A2)

APPENDIX

Here we give the expressions for the contribution of
a Regge pole to all the s-channel amplitudes for the
process y~ —+ ym. It is the behavior of these s-channel
amplitudes at t= 4m~' and t= 0 that gives the PT rela-
tions of Eq. (26). We also give a short discussion of the
more general limiting procedure, namely, one in which
the masses of the two photons are different and taken
to zero independently.

The full set of crossing relations result in the following
set of equations:

—f(n)s
iV &,. i' L

—2m——[,'Yii+2v2m, tulip
(t—4m, ')'

+2m~oYQQ —(t—2m, o)Yi

. ( ')'"f()'I'„o"——— (—V2m, Y„+2tYio
(t—4m, ')'

+@2m,YQQ
—v2m, Yi i),

o| s~
/M i, i' —— L(t —2m~')Yu —2&2m, tYio

(t —4m, ')'
—2m, 'Ypp+2m, 'Yi ii,

/)II Q, p' = (4m, 'Yii —4&2m„tYip
(t—4m, ')p

t Y Q0+4m' Y1 1)q—
f(n) = (1+e '-)/sin7rn

As the reader may verify, the condition at t=0 in
Eq. (26) is a pseudothreshold relation necessary to
allow M~. i' to vanish like t in the forward direction,
and the threshold conditions at t=4m, ' are necessary
to remove the double pole from the s-channel ampli-
tudes. The Regge contributions at the point t=0 to

(4t,&/p) I
& i-&2

It-
iYx $]$2

(t—t+)(t —t )

Y/„x,"(t)
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X (1~e *'3~a)&mI I
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where the y~ are free of kinematic singularities, the PT
relations at t+= (m»&m~, ) can be written as"

$1/2[xi—xP[Y& & (t) ~ (t t )2+ repro

with

Note that in the limit m~, =ns„, these relations imply the
additional factors of t present in the kinematical
singularities of the equal-mass case, Eq. (13), and that
they also reduce to the set of relations given in Eq. (26).

Using these relations we find that the results of
Sec. III 3 hold in general when m» and m» go to zero
simultaneously with an arbitrary nonzero ratio. How-
ever, in the special case of m»/m7, —+0 the nonsense
factor n~(0) —1 is not automatically eliminated. More
specifically, if we consider the process px ~ p'x where
m~= 0 and m„/0 and then take the limit m, ~ 0, we
find that the factor ni (0)—1 will remain in the final
zero-mass limit if it exists in the ym ~ px amplitude.
Thus the over-all consistency of our scheme requires
the nonsense factor to be absent in both Compton
scattering and photoproduction of vector particles. This
fact may prove beneficial to the comparison of px —& pz
and ym —+ p'm. by the vector-dominance model.

"G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. Y.) 46, 239 (1968).

Note that at t=0 the pseudothreshoM relation yields
Hara's theorem, (3fi, i'/Mo, o')~=o-+ 1 as s~~.

We have also studied the more general case with
m»~m» in order to understand the over-all consistency
of our scheme. If the helicity amplitudes are Reggeized
by


