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Exact Consequences of Broken O(4) Symmetry for Regge Trajectories.
II. Integer M )1*
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We obtain the complete set oi constraints imposed by broken O(4) symmetry on Regge-daughter se-
quences having integer M ~& 1. The constraints determine the pth derivative of all the daughter trajectories
at zero energy in terms of a finite number of constants. The conspiring daughters of natural and unnatural
parity are highly degenerate for large M; in particular, a+ (k, t) a(k—,t) =0(tu). Results are also obtained
for daughter residues.

I. INTRODUCTION

N a recent paper, the exact consequences of broken
O(4) symmetry were derived for Regge-daughter

sequences corresponding to Toiler poles with M=O. '
In the present paper we apply the methods developed
in I to processes involving particles with spin. Specifi-
cally, we study boson-boson scattering of a sufficiently
general kind so that daughter sequences corresponding
to Toiler poles of arbitrary integer M can contribute.
We then isolate the contribution for a definite value of
3f and analyze it as in I. The results of this paper and
I, taken together, display the constraints imposed by
broken 0 (4) symmetry on any boson-daughter sequence.
Presumably the general fermion sequence (half-integer
M) can be analyzed by our methods, but we do not
do so here. We refer the reader to the Introduction of I
for a discussion of the background of our work, and
the relation of our results to those of other people.

Our procedure is to analyze the elastic, unequal-ma, ss
t-channel process

5+T(s) —+ T(s)+5.

Here S is a scalar meson of mass tt and T(s) is a tensor
meson of integer spin s, natural parity (—1)', and mass
m. For convenience the t-channel scattering angle is
measured between the initial-scalar a,nd final-tensor
mesons. ' As in I, the contribution of a single t-channel
Regge pole to any of the full helicity amplitudes for
process (1) violates Mandelstam analyticity at t=0.
The contradiction between the Regge representation
and the Mandelstam representation is repaired by
introducing daughter trajectories which are spaced at
integer steps below the parent at t=0. A systematic
reduction of the conditions imposed by analyticity
leads to constraints among the daughter trajectories at
/&0. For reasons which are outlined in the Introduction
of I, we term these constraints as being imposed by
broken 0(4) symmetry.

* Work supported in part by the U. S. Atomic Energy Commis-
sion under Contract Xo. AT (30-1)-2098.

' J. B. Bronzan, Phys. Rev. 180, 1423 (1969).This paper, and
equations contained in it, are referred to as I.' With this choice one can directly use the kinematic discussion
in E. Leader, Phys. Rev. 166, 1399 (1967).
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The most delicate point of the calculation is to
isolate the contribution of a Toiler pole of given 3f to
the unequal-mass process (1). For equal-mass processes
of type (1), group theory asserts that only Toiler poles
with M~(s can contribute, and specifies how a given
Toiler pole enters. ' As far as the matter has been studied
explicitly (s=0 and 1), only Toiler poles with M&s
occur in unequal-mass processes. 4 In addition, the
general manner in which analyticity is restored to
unequal-mass process (1) strongly supports the con-
jecture that Toiler poles with 3f(~s can contribute,
and also suggests how they enter.

To spell this out, we review the insights gained from
Ref. 4 and similar papers, and how they generalize
for high-spin tensor mesons in process (1). We shall
study modified t-channel helicity amplitudes Fq.q(t, l),
which are known on general grounds to be analytic
in a neighborhood of t =0 for all N. If neither X' nor ) is
zero, Regge poles of both natural and unnatural
parity can contribute; otherwise only natural-parity
Regge poles can contribute. We now consider the leading
contribution to F~.q at large I, which for finite t is due
to the parent t-channel Regge pole. For M=O, only a
natural or unnatural parent is present, and its appropri-
ately defined reduced residue must therefore be analytic
at t=0. For M~& 1, there are conspiring parents which
are degenerate at t =0. In this case, the reduced parent
residues need not be analytic at t =0 when both parents
contribute, i.e., when A.'&0 and P«0. They can have
cancelling singularities, and in fact they must have
cancelling singularities if there is to be a real conspiracy
and not just a linear superposition of nonconspiring
daughter sequences. For s= i, a cancellation of simple
poles can occur in FII, and when we restore the analy-
ticity of F11 and FI 1 we verify explicitly in Ref. 4 that
we are dealing with an M= 1 Toiler pole as it couples
to these helicity amplitudes in unequal-mass vector-
scalar scattering. For s=2, we have the new-possibility
of a cancellation of double poles at t =0 in the reduced
residues in F». In this case, when we restore the analy-
ticity we find new, more restrictive constraints on the

'D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560
(1967).

4 J. B. Bronzan, Phys. Rev. 178, 2302 (1969).
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daughter trajectories. We cannot be dealing with M =0
or M = 1 sequences here, since we have already analyzed
such sequences and found less restrictive constraints.
We conjecture that we are dealing with an BE=2
sequence. Note that, according to our conjecture,
Toiler poles with M &~s contribute to process (1), just
as for equal-mass scattering. The conclusion of this
discussion is that we determine the constraints of
broken 0(4) symmetry on a Regge-daughter sequence
of quantum number M by restoring the analyticity of
F~'~ and F~, ~ with the parent residues of natural

(+) and unnatural (—) parity having the maximum
allowed singularity t ~ at t =0.' We also determine the
constraints imposed by broken 0(4) symmetry on the
reduced residues y~M+, but of course these results
pertain to only two of the helicity amplitudes involved
in the particular process (1). The constraints on the
trajectories are guaranteed by factorization to be
universally valid for sequences of the given M. In
particular, they will apply to equal-mass scattering,
where 0(4) is a symmetry group at t=0, and the
symmetry is broken by 3&0.

The constraint we 6nd on the Regge-daughter
sequence is that the trajectories can be written as a
power series about t=0 in the form

oo 1 rl" ( oo»
n~(k, t) =np —k+ Q I 2 t»Z A"+

-p (»s+1)!Bno" k» r=
k!I'(2no —k+2) ao q—M

X + P«gA, »-

(k —i)!I'(2u, —k —i+2)
k!I'(2uo —k j2)I'(uo —k+M+1) ) "+'

X i
. (2)

(k —i)!r(2,—k —i+2)1 (n, —k —M+ 1))
Here np is the intercept of the conspiring parents at t =0,
k=0, 1, , is the daughter index, and the A;q+ are
independent of np. Equation (2) is valid for M &~ 1.As in

I, Eq. (2) can be expanded in t on both sides to obtain
constraints on the derivatives of the trajectories.
When Eq. (2) is used in this way as a generator of
constraints on the derivatives, the strong restrictions
imposed by broken 0(4) symmetry are striking. For
example, for M =1 we find, after an appropriate
redefinition of A.~+ that

ol (k) =A ~++A r+k(2np —k+1)
aAo' —

(n —k+1) (no —k), (3)
u i»i (k) =2Ao'++2AP+k(2uo —k+1)

+2A»'+k(k —1) (2no —k+1) (2uo —k)
~2A os

—
(n, —k+1) (ao —k)

~2Ars (np —k+1)(np k)k(2no k+1)
+4k (A rr+~ A pr )[Ap ++A r +k (2np —k+ 1)

aApr —
(no —k+1) (ao —k)],

~ If the residues are allowed to be less singular that t ~, the
corresponding Toiler pole has M'&J!t/I. The identification of Jtt/I

with the degree of singularity of reduced residues has been
suggested by others; for example, A. Capella, A. P. Contogouris
and J. Tran Thanh Van, Orsay Report, 1968 (unpubhshedl.

which is also a reQection of conspiracy.

II. ANALYTICITY CONDITIONS

A. Step I
We follow I closely in reducing the analyticity con-

ditions, and present in detail only the new features
occasioned by spin and conspiracy. The analysis
presented in Ref. 4 can be used to show that t-channel
helicity amplitudes F&, z(t,u) which are analytic in a
neighborhood of t=0 for all I are related to ordinary
helicity amplitudes Tz.z(t,u) by

F, ,(t,u) =2, ,(t,u)/[-', (1—.,)]~ '+ ~n,

where

s) ——cose) ———1—u/2 p',
p' =[t—(nz+u)'][t —(nz —u)']/4t.

(6)

It can also be shown by the methods given in Ref. 4
that the contributions of Regge poles of natural and
unnatural parity to the amplitudes of interest are

PMM (t)u) YMM (t)u
XP( n+. (t)+ALII, —n+(t)+—M, —2n~(t), 4p'/u)—
+ rMM (t)u F(—n (t)+M) n(t)+M)—

—2n (t), —4p'/u),

(—1) FM M (t,u) = [yMM+(t)u +'"/(4p') ]
XP( u+(t)+M, —u+(t) ——M, 2n+(t), —4p'/u—)

&VMM (t)u '"/'(4P') ]P(——n-(t)+M)-
(t) —M, —2 (t), —4P'/u).

Here yMM+(t) are reduced residues for Regge poles of
natural and unnatural parity. When Regge poles of
both parities are present and there is conspiracy,
u+(0) =n (0) =np, the leading contributions to these

which are equivalent to the results of Ref. 4. A syste-
matic prescription for expanding the right side of
Eq. (2) in t is given in I.

According to Eq. (2), there is a high degree of
degeneracy of the conspiring daughter sequences near
t=0, and this degeneracy increases with M:

n+(k, t) —n (k,t) =0(tM).

The degeneracy is needed to assure the cancellation of
the singular reduced residues, and clearly shows that 3f
should be regarded as an index of the degree of con-
spiracy. It is interesting that this simple physical
meaning is not evident until one breaks 0(4) symmetry
by t/0. However, even Eq. (4) does not display the full
consequences of conspiracy. When M=O, n"'(0) and
u&" (1) can be regarded as independent. When M=1,
Eqs. (3) states that only three of the four slopes n~ "& (0)
and nz "&(1) are independent. They are related by the
equation

Qp —1
u+"'(1)—u-"'(1) = Lu+"'(o) —u-"'(o)] (3)

no+1
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amplitudes for large u are analytic at t=0 if yMpr+(t)
+yprpr (t) and t~$y~pr+(t) y—pr~ (t)j are analytic
at t=0 T.herefore, 7~~+(t) may be as singular as
I ~ at 3=0, as stated in the Introduction. Of course,
the subasymptotic terms in u are not analytic at t =0
because of p' in the arguments of the hypergeornetric

functions. To obtain analyticity at t=0 for all I, we
introduce daughter trajectories n~(k, t), k=0, 1, 2,
with n~(k, 0) =np k—T. he daughter reduced residues
must behave like t ~ ~ at t=0 to restore analyticity.
YVe sum over the contributions of the daughters and
find that the amplitudes become

u~o ~~(lnu)'
~~pr(t, u) =P P —(4tp')" P Lu~(k, t) —np+k)'Eg+(k, n„(k,t))

r=0 s=o S!P+~ IpM

F(2n~(k, t) —r+k+ 1)
+ (term with subscripts+ —+ —)

(r —k)!LF(u+(k, t) —r+k —M+1)g'

stPr=0 s=0

u"' "(lnu)' f
(—1)~J"~, ~(t,u)=P Q (4tp') Q ~ Lnp(k, t) —uo+k]'Ro(k, n+(k, t))

where

I'(2n+(k, t) —r+4+1)
X —(term with subscripts+ —& —)

(r —k)!F(n~(k, t) —r+k —M+ 1)F(n+(k,t) —r+k+M+1)

t'+ V~~'(k, t) (4tp') 'LF(n+(k t) —M+1)3'
Eg+(k, np (k,t)) =

F(2' (k, t) +1)

F(nL(k, t)+M+1)
Ro+(k,n~ (k,t)) =Eg+(k, np (k, t))

F(~(k,t) —M+1)

(10)

As in I, we have written the R s as functions of n~(k, t) rather than t, and they are analytic at t=0. In writing

Eq. (9) we have used the expansions

(lnu)'
u~'~' '~ =u o—' Q Ln~(k, t) —uo+k j'.

JI

In order that the amplitudes in Eq. (9) be analytic at t =0, we require

Qg

Q —Rg+(k, u~(k, t))Ln+(k, t) —np+k j'
k=0 QP

F(2n+(k, t) —r+k+ 1)
X +(+~ —) ~

=0 (q(r+M, 0&s),
(r—k)!LF(n+(k,t) —r+k —M+1)g' ~ ~=o

(12)
apt

P —
~

Rp+(k, ny(k, t))Ln+(k, t) —up+k j'
&=p a«&

F(2u~(k, t) —r+k+ 1)
X —(+ -+ —)

~

=0 (q(r, 0&~s).
(r k)!F(n~—(k, t) —r+k —M'+1)F(n+(k, t) r+k+M+1—) f~ o

Equations (12) are analogous to Eq. (I11).The rest of the analysis of step I in I can be repeated, starting with

Eq. (12). The analyticity conditions emerge in the form analogous to Eq. (I24):

r oo ao (—1)~
Q M,o(no) Q Q LRg+'"'(k, up —k)f~(k, no, q, w+u+s)+(+ ~ —)j=0(q(r+M, 0~&s~&q),
km um u, =o ~!Nt

(13)
r ( 1)u So

M, (pn)oZ Q P4+'"&(k, kn) fo+(k, np, q, u+u+s) —(+—o —)j=0(q(r, 0&~s&~q).
Ir~ ~~ tt~ ~Igl
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Here we have introduced the symbols

R+~"&(k, up —k) = R+(k,u~(k, &!))I, p, M„&(up) =F (2up —r —0+1)/(r —k)!,
at ug(k, t)]

p 1 u (~)(k) m;

f+(k,up an) =v!n 2" II
m&, . -,m, i=l yg ! jI

(n)

and p" means sum over all sets of q non-negative Rp+(k, up —k)I —sp+(k, &,up)]'
integers {m,} subject to the restrictions —(+~ —)

~u+(»~ up)/~up I.o+*o"&p

q

P m, =n, P im, =q.

fy(k up tt n)/g! is the coeff&cient of t' in the expansion
of Lu~(k, t) —up+k]". We write f~ as a function of up

rather than the trajectory derivatives in anticipation
that the result of our study will be to express the deriva-
tives u~"&(k) in terms of up and parameters, as in
Eq. (3). In step II we shall write u~(k, t,up), recognizing
that the trajectories as a whole share this property.

B. St@p II

We use the inverse of M„p(up), 4

(—1)~ '(2up —k+1)
M 'p, (up) =

(k i)!I"(2u—p —k —i+2)

to invert the analyticity conditions, Eqs. (13). After
manipulations similar to those in I, we obtain the
analyticity conditions in a form analogous to Eq. (I32):

Ri+(k, up —k) L sp+(k, k,u—p)]
+(+~ —)

~u+(k, &)up)/ f!up
I ~p~*p'(p&~ p&,

= P tp P 8„«&M—'„(u,). (17b)
i=0

In Eqs. (17), the 8's are functions of up with sufficient
analyticity to permit the derivation of Eq. (17). The
coefficient of tp in Eq. (17a) is zero for q(M. The z's

are solutions of the equations

u~(k, t, up+sp+(k, t,up)) =up —k,

lim zp+(k, t,up) =0.
t~0

Using Eq. (10), we can eliminate Ri and write the
analyticity conditions in the form

Rp+ (k, up —k) L
—sp+(k, t,up)]'

c&u~(k, f)up)/p&up
I op+'p (p & ~p&

p—+ F (up —k+M+1)—i P p P gi, (p, 8& —M—
'&„(up)

q=~ '=p F(up —k —M+1)

a-', Q Vg &„«&M—'„(u,). (19)
i=0

We next use Eq. (19) with s=0 and s=1 to derive
equations for z0+. It is convenient to introduce

=Q V P Bi;«'&M—
'p;(up)

i=0

y+(k, t,up) = —-', sp+(k, t,up) W-', sp
—

(k,t,up) .

Then, Eq. (19) for s=0 and s= 1 shows that

(20)

F (up —k+M+1)
y+(k, &,',u, ) P tp P 8„«'& f ip (up) P ]P—P P, (P,P&M—i„(up)

I'(up —k M+1) — p=p

F (u, —k+M+1) q
p-»i I'(u, —k+M+1)

'p (up)
I Q &' Q &i,"" — 'p ( p)i ir(,—k —M+1) i,= '=o r(,—k —M+1)

Pao q oo q—
~

Et xp„""~''( &'x&'rp'""~''(
&)q=0 i =0 q=i i=0

In I we required that the 8 s be entire functions of n0. However, the discussion of Sec. III of I shows that this requirement
is overly stringent. It is only necessary that there exist a point n0* such that the 8 s are analytic within a circle of radius greater
than one about n0*. Equation (17) can be derived at no* and then continued arbitrarily close to any singularity of the B's. We further
stated in I that it can be shown that the parameters in the final equations, (2) and (28), can be assumed to be independent of no
without loss of generality.
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I'(np —k+M+1) ' »

y-(k, t,no) p t» g Bi »o) —M—'o(n) —g t» +8 «o)M ' (n),=o *~ F(uo —k —M+1)»=o
I'(np —k+M+1)»

P t» P ft . (»,P) M 'p, (no) P «P & ""M ')„(no)
~F (np —k —M+1)»=i

» ) t' ~ » ~ I'(up —k+M+1)
& '""M "'(u ) II 2 t' & & '"" M ';(,)). (21)

»=o '=o J 4»=& '=o F(np —k M+1)

If we expand y+ in power series in t, we can obtain the
coefficients from Eqs. (21). These coe&cients have a
known dependence upon k because of the lemmas

and d's are polynomials in np. We use Eqs. (21) and
(22) and find, for M& 1,

M 'i (np)
y+(k, t,u.) = Z t Z A.'+(-I)

M ') o(no)

»-M I'(n, k+—M+1)
y (k, t-,np)= P «P A„'— — (23)

I'(np —k —M+1)
M 'p, (uo)

X(—1)'
Io &o

M 'o;(np) ' M 'p»~„(uo)
cq, p clo —

)
M '),o(np)»=o M 'i~(no)

(22a)

r(,—k+M+1) M 'o (np)= P d, , pr(no) —.(22b)
I'(no —k —M+1)»=o M 'io(uo)

Equation (22a) is derived in the Appendix of I, and
Eq. (22b) is derived in the Appendix below. The c's where the A's are functions of np. Hence,

» M—')„(no) ~ » ))» -' r(no —k+M+1) M 'I, ;(np)—so+(k, t,no)=Q t» Q A,»+( —1)* -+ Q «Q A,'-(—1)'
'=o M—'„,(u,)»=)a '=o F(n, —k —M+1) M '),p(np)

(24)

In this equation we can see why it is convenient to intro-
duce the y's. Without the y's, one can easily use Eq.
(22b) once too often and find the second term in Eq.
(24) to be

» Mi, ; '(np)+ P «PA, '-(—1)'
'=o M—i„,(uo)

However, the A's are not linearly independent. If one
is careless and assumes that they are, Eq. (5) is missing,
in disagreement with Ref. 4. Hence the y's help keep
straight the number of independent parameters in the
expressions for the s's. We also point out that Eq.

(22b) assures that the expressions for us. (k,t) in Eq. (2)
are the same as those for n(k, t) in I. This is required by
factorization, since in I we have actually calculated the
constraints on Fpp(t »t). Of course, in Fpp only one of the
conspiring sequences contributes )natural parity for the
external particles in (1)].

Equation (24) is necessary for analyticity. On the
other hand, Eqs. (24) and (19) for s=0 imply Eq. (19)
for s)0. We omit the proof, which consists of the use
of Eqs. (20), (22), (23), and the binomial theorem to
calculate I

—so+(k, t,np)]'. Hence necessary and suflicient
conditions for analyticity are

Ep+(k, np —k)

~u+(k&tin»)/~np
l no+op+(kt, ao),

r (no —k+M+1)»
M 'i;(uo)~-', Q t' Q J3»»M ')„(np),

I'(n, k M+—1)—

k!r(2u, —k+2) . .—v k!r(2u, —k+2)r(u, —k+M+1)—so+(k, t,no) = P t' P A,»+ agt»QA, »——

(k —i)!F(2n, —k —i+2)»=)or '=o (k i)!F(2n ——k —i+2)F (n, —k —M+1)

By analogy with I, we compute the sums

C. Step III

1 8
S~= g — (—sp (k, t,np)]"

n=o ~1 go n

R,+(k, np —k)

&~(k,t,no)(&no ~.,~„.i~, o .,)
(26)

1 c)so"(k, t,no)-
8~ ——Q — P —sp" (k,t,np)] "+' 1+

n=o yzf Bno ()Ac
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Using the methods of I, we find

S~=R,+(k,~(k, t,no)), 8~=n~(k, t,no) n—p+k. (27)

On the other hand, we can evaluate the sums from Eqs. (25). We then obtain explicit expressions for the residues
and trajectories':

w 1 8" -( ~ ~—~ I'(np —k+M+1)
z,«(a, «)

=-', r. —
( p «" p o„" —!!!''«;( )+z «" z 8;"«o '«;( ))~~ I!Bno kr=)(r g=o I'(np —k —M+1) r=o;=o

( o k!I'(2n, —0+2) p—)(i k!I'(n —k+M+1) I'(2n, —k+2)
X! gV+A;+o+Q tp g A,o-

(!,—«)!I'(2,—k —!+2) =«« = (k —«)!I'( «
—(,'—)1+1)1'(2 «

—k —«+2))

1 8" ~ q k 11'(2np —k+2)
n~(k, t) =n() —k+ g Q V + A,o+ =

=o (I+1)!Bnp o=»=o (k —i)!I'(2no —k —i+2)
o—)(i' k!I'(no —k+M+1)1'(2np —k+2) ~

o+'

p Q g,.o-
~

~

(k —i)!r(n, —k —M+ 1)r (2n, —k —z+2))

(28)

Equations (28) are necessary for analyticity. However, , M —1. These equations are
a method is outlined in I—which can be generalized to
the present calculation —by which one can derive 0 + d ( ) ( 1),( M+k +2)Eq. (17) from Eqs. (28). Therefore, Eqs. (28) are both
necessary and suKcient for analyticity, and express the
full constraints imposed by broken O(4) symmetry on
conspiririg R.egge-daughter sequences which correspond, Now compute
at t=o, to Toiler poles having integer 3f~& I. 3f

X (np+M —k —q+I), (0&~k ~& M —1) . (A3)

I(np+M —k) = P d, , )(r (np) (—1)o(np —M+k —q+2),
APPENDIX

X(np+M —k —q+I), =0 (0&k&M —1). (A4)Using the notation I'(x+n)/I (x) = (x)„, we have

M-' (n )/M
—' (n ) =(—1)'(k —+1) Hence I(k) is the unique polynomial which behaves

like k' at infinity and vanishes at the 2M points
k =np —M+I+1, /=0, 1, , 2M —1. Thus

Consider the linear combination

I(k) = Z do. ~(no) (—1)'(k —V+I).

X (2np+2 —k —q), . (A2)

I is a polynomial of degree 2M in k. We fix the M+I
coeKcients do, or(no) by doI, )(r(np) =1 and the M linear
inhomogeneous equations I(np M+k+1) =0, k —=0, 1,

I'(np —k+M+1) ~ M 'k, (np)= Q d, , )(i(np) ——.(A5)
I'(no-k -M+I) .~ M—

'po(no)

The left side of this equation is a polynomial in 0,0. The
only singularities d, ,~(np) can have are poles cancelled
by the zeros of (2np+2 k g), Ho—wev—er, .these
zeros move with k, and d, M(np) is independent of k.
Hence d, ,~(np) is a polynomial in np.


