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The continued partial-wave projection of the Veneziano formula is performed and the complex-/-plane
singularities are investigated. It is explicitly shown that in the ~m amplitudes given by the Veneziano-
Lovelace model there are an infinite series of Regge poles with parallel trajectories spaced by one unit and an
essential singularity as Rel —+ —~. For the even-signature amplitude, besides the singularities mentioned
above, additive fixed poles are shown to be present at nonsense wrong-signature points. The classification of
the Regge-pole family in terms of Lorentz poles and the positivity condition for the Regge-pole residues are
also discussed.

FORMULA for a scattering amplitude that obeys
the requirements of Regge asymptotics and cross-

ing symmetry in all channels in the case of linearly
rising trajectories has been proposed by Veneziano. ' We
study here the continued partial-wave projection of the
Veneziano formula.

Although in this paper we limit ourselves to the
Veneziano-Lovelace' model for m~ scattering, our
method can be quite generally extended to study any
scattering amplitude of the Veneziano type.

Our main results are the following:
(i) The only singularities in the complex ( plane for

the odd-signature amplitude are an infinite series of
Regge poles with parallel trajectories spaced by one
unit and an essential singularity as Ref —& —~. Be-
cause of the presence of this essential singularity, the
infinite series of Regge poles does not converge.

The explicit form of the residue functions shows that
they do satisfy the usual analyticity, reality, and thresh-
old properties. Furthermore, they decrease exponen-
tially for large positive Res, which is consistent with the
experimental rapid decrease of the elastic widths, but
they diverge exponentially as Res —+ —~.

For the even-signature amplitude, besides the singu-
larities mentioned above, additive fixed poles which
come from the A(t, u) term [see Eq. (2)j are present at
nonsense wrong-signature points.

(ii) At s=0, the Regge pole family is analyzed in
terms of Lorentz poles. ' An infinite number of Lorentz
poles spaced by one unit are shown to be present.

(iii) The partial-wave amplitude for physical / has
the correct analytic properties in s. The positivity con-
dition of the Regge residues at physical points on the
trajectories places strong restrictions on the intercepts
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of the trajectories. In the vr7f- case, the most stringent
condition that we found for the intercept of the degen-
erate p f' tr-ajectory is n(0))-, .' It is interesting to re-
mark that the lowest value of the p f' int-ercept con-
sistent with the positivity condition is just the value
required' in order to satisfy the Adler self-consistency
condition.

We define the amplitude'

A(s, t) = —y
I.'(1—n(s) )I'(1—n(t) )

I'(1—n(s) —n(t))

The ~sr amplitudes for the three isostates in the s
channel are given by

A'= -,s LA (s,t)+A (s,u)]——,'A (t,u),
A'= A (s, t) A(s,u),—
A'= A(t, u).

(2)

y in Eq. (1) is a constant, and n(s) are the degenerate

p f' trajectories -assumed to take the linear form

n(s) =as' b.

We wrote the Veneziano-Lovelace formula (1) with only
one term, since this has been shown to give a good theo-
retical description of the available experimental data. ' '

First we study the twocombinations/A(s, t)+A(s, u)).
The nn amplitudes given by Eq. (2) satisfy fixed-s
dispersion relations. Therefore, the partial-wave ampli-
tudes of LA (s, t)+A (s,u)j continued through the
Froissart-Gribov definition for even and odd signatures
are given by the single expression

n(s) F(n+n(s)+1) st+I h-
a(l,s)=y Q — Q, 1+— — . (4)

aq' ~=o I'(n(s)+1)n! 28g'

Clearly, the expression (4) defines a holomorphic func-
tion of / whenever it converges, i.e. , for Ret)Ren(s).
In order to investigate the I-plane singularities, we have
to perform the sum in (4). To this end, we use the fol-

This condition is exact in the limit of zero pion mass. For
physical pion mass, see Eq. (17).
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lowing integral representation':

Q)(s) = — dt(1 P—)'
2t+iI (l+ 1)

dx x'e—('+"
7

Re/) —1, Res& 1.

We carry out our summation in the region

(1-b)~
Rel)Ren(s), Re~ 1+ ~)1.

2aq')
(6)

Later, we shall analytically continue the final answer
in / and s.

Using the representation (5), we get

n(s) 1 1

a(l,s) =y
aq' 2'+'F(l+1)

dt(1 —t')' dx x'e "+')'

Xe—[(1—5) t2aq2) -(I e
—z) 2aq2) —a (s)—i (7)

Here we define a function f(y) by

f(y) —e
—&i—&)u[(1 e—p)/y)

— is)—i

Using Taylor's theorem, we can do the following
expansion:

the only singularities in l in the last term of (11) are due
to the divergence of the integral at the lower limit of
integration, where the behavior of the integrand is
0(x'+~ ~')). Thus, it is easily seen that the last term in

(11) is regular for Rel) Ren(s) X—1—.
Now, from the expression (11), the analytic structure

in / is apparent. By choosing X arbitrarily large, we
can conclude that in any 6nite region of the complex /

plane the only singularities are moving poles with
parallel trajectories spaced by one unit. There is also an
essential singularity as Re/ —+ —~, as can be seen from
the nonvanishing of E&~& when E goes to inanity. This
example strongly suggests that it is impossible to con-
struct an amplitude with the correct analytic properties
in s and t starting from an infinite sum of Regge poles. ~

The structure of our continued partial-wave amplitude
is such that the Mandelstam-Sommerfeld-Watson trans-
formation can be performed, leading to an asymptoti-
cally smooth Regge behavior for any t except on the real
axis. We stress once again that, although the back-
ground integral can be pushed back to the left as far
as we want, the infinite series of Regge poles does not
converge.

From the expression (11), it is easy to calculate the
residue P (s) of the Regge poles at l=n(s) —nz (no=0, 1,
2, . ), which are given by

with

~ f'" (0)
. fb) =Z y'+R~+i(y),

k=O

g

R~+i(y) =— (y —l)"f'"+"(l)«,
g+ I

(9)

(10)

f'"'(0)
P (s) (4aq2) a(8)—m P 2+n(s) (4aq2)m

—n

m=0

I'(n(s) —ii+1) (—1)"—"
X (12)

I'(2n(s) —m —m+2) (m —n)!

I'(n(s) —&+1)I'(l —n(s) +k) Qvr
X- +en(s)—

2"+'I'(l+-,')I'(l+n(s) —4+2)
QO x

&((2aq') ') dx x &') 'e ~Mo, &+&(2x)Re+i
0 20/

where Mo, i+;(2x) is the Whittaker function. ' The func-
tion [Mo, i+i(2x))/[I'(l+3~)) is regular in l Therefore, .

Bateman Manuscript Project, Higher Trunsceederlta/ Fuectioes,
edited by A. Erdelyi (McGraw-Hill Book Co. , New York, 1953).

where the non-negative integer X can be chosen arbi-
trarily large. Note, however, that R&+&(y) does not
vanish as 1V —+~ unless 0(y(2~. The function f'")(0)
is the 4th derivative of f(y) at y= 0 and is a polynomial
in n(s) and b.

Using the expansion (9), we can perform the inte-
gration in (7). The final answer is

f(k)(0)
a(l, s) =Q 2yn(s) (4aq') &' "

k=o kt

This expression of the residue functions does satisfy the
usual analyticity, reality, and threshold properties.

For large
~

s
~

with
) arg[n(s)) ) (x, the residue func-

tions P (s) behave like [n(s)) ' exp[ —(2 ln2 —1)n(s))
for m&1 and like exp[—(2 ln2 —1)n(s)) for m=0.
This exponential decrease for large positive Res is satis-
factory, being consistent with the experimental rapid
decrease of the elastic widths, while the exponential in-
crease as Res —+ —~ is not suggested by the phenom-
enological behavior of the residue functions and also
does not allow one to write a partial-wave dispersion
relation. It is also easily seen that the residue functions
have the symmetry properties implied by the Mandel-
stam symmetry at half-integers: When a trajectory goes
through a half-integer /0, either its residue vanishes or
a compensating trajectory goes through —/0 —1 in such
a way that no spurious singularities are introduced.

Let us now look at the Lorentz-pole content of the
Veneziano-Lovelace representation at s= 0. The resi-
dues of the members of a Regge-pole family generated

7 See, e.g. , X. N. Khuri, Phys. Rev. 176, 2026 (1968).
8 This point has been studied independently by R. Carlitz

(private communication).
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by a Lorentz pole are related by'

Ps„(0) (2n)! I'(n+1 —n) I'(o.+-', )

Pp(0) 2'"(n!)' I'(n+ 1) I'(n+ ', -n—)
(13)

where Ps„(0) is the residue of the pole at l= n —2n.
This expression, together with (11), shows that unless

very complicated cancellations do occur the representa-
tion studied contains an in6nite series of Lorentz poles
at n(0) —m, m= 0, 1, . That such cancellations do not
occur has been explicitly checked for the first few values
of m, and it appears extremely unlikely that they occur
for large m.

For physical values of l, the amplitude can be written
n(s) —8

a'"(l,s) = —y
aq' 2'+'I'(l+-,')

dx x'g(x'), (18)

checked' that, under the condition b&-,'for zero-mass
pions, no negative widths appear, at least up to k= 25.

As has already been remarked, it is an interesting
feature of the representation that the lowest value of
n(0) consistent with the positivity condition is just the
one required by the Adler self-consistency condition
and agrees rather well with the experimental results. '

Now we brieRy discuss the contribution of the A(l, u)
term. The same method used above gives the following
expression for the continued partial-wave amplitude of
A(l, N):

with

K(l,s; e) =r(1—n(s)) dl(1 —t')'

(aq') ' ( d'
at(s) = y(——1)'i Z(i, s;—e)

i

l! (de'
(14) where 8= 3b+4am '—1 and g(x') is deRned by

(x')=(2x) ' 'M (2x)(e*'""+e"") ~'&+' '
(19)

I'(e+2aq'(t+ 1))
X —.(15)

I'( —o.(s)+e+2aq'((+1) )
This expression is easily obtained from (7) and shows
that the partial-wave amplitudes are analytic functions
of s with a left-hand cut starting at q'= ——„'m,' and a
series of poles on the positive s axis, as expected.

Now, the residues of the poles at the non-negative
integers must be positive numbers, and this places
strong restrictions on the intercept of n(s). Let us see
how these conditions look. The positivity condition for
the residues on the second trajectory Ln(s) —1] turns
out to be

3b+4am '—1&0 (16)

i.e., b&~~ for massless pions. For the third trajectory,
the positivity condition is energy-dependent and the
strongest result is obtained from the residue of the first
recurrence on the trajectory. It is

(2b —1)[7b 2+5(4am '—)$+ (4am ')'&0) (17)

i.e., b&-,' for massless pions.
Similar conditions can be derived from the study of

the lower-lying trajectories. It has been explicitly
' P. Di. Vecchia and F. Drago, Phys. Rev. 178, 2329 (1969).

From the study of Eqs. (18) and (19), it is easily seen
that Axed poles are present at nonsense wrong-signature
points and the residue of the fixed pole at 1=—2k —1
is given by

&(&)—& (V'~) 2" Pg"'(0) j~=-»-~
7

aq' I'(—2k+-', )
(2o)

"J.K. Mandula (private communication). After this work was
completed, we received an unpublished report by J. Shapiro and
J. Yellin, where the positivity condition was also studied with
results similar to ours.

These fixed poles are additive in the full partial-wave
amplitude. It is well known that additive Axed poles
do not invalidate the usual dip mechanism at all. In
fact, in the Veneziano-Lovelace amplitude, one can still
expect dips at nonsense wrong-signature points.

Pote addedin manuscript. After submitting the manu-
script, one of us (S.M.) was informed that D. Sivers
and J. Yellin have also investigated the J-plane struc-
ture of the Veneziano formula (private communication
from J. Yellin).
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