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SHU —YUAN CHUt

Department of Physics, University of California, Riverside, California 9Z50Z

AND

CHUNG —I TAN

Palmer Physical Laboratory, Princeton University, Princeton, %em Jersey 08540

AND

PETER D. TING

Lawrence Radiation Laboratory, Vnioersity of CaHfornia, Berkeley, California 94720

(Received 29 January 1969)

A mirage trajectory is a Regge trajectory which has no physical particle lying on it. We discuss both its
possible dynamic origin and its peculiar properties. In particular, we consider the possibility that the
Pomeranchon is a mirage trajectory. This conjecture (1) simplifies .the structure of Mandelstam-type cuts,
(2) gives a simple physical interpretation of the Harari hypothesis, and (3) indicates a possible explanation
for the smallness of the Pomeranchon slope near t=0, while still allowing the Pomeranchon to be a moving
pole.

I. INTRODUCTION

HE existence of the Porneranchuk trajectory was
6rst conjectured by Chew and Frautschi' and

by Gribov. ' It is assumed to be an even-signatured
Regge trajectory with the quantum numbers of the
vacuum, which passes through the angular-momentum
value j=i at precisely zero energy. If no other j
singularities have these properties, one is able to readily
understand many features of high-energy scattering of
strongly interacting particles. However, both theo-
retical and experimental uncertainties' have kept
physicists from establishing the true nature of the
Pomeranchon. One particularly puzzling feature of the
Pomeranchuk trajectory is its unusually small slope as
indicated by fitting the high-energy mE and EiV scat-
tering data using Regge poles. 4 Recently, an interesting
observation on the difference between Pomeranchon
and other ordinary Regge trajectories has been made
by Harari. ' Within the context of finite-energy sum-rule
bootstrap, Harari conjectured that the Pomeranchon
is mostly built by the nonresonating background, while
the ordinary trajectories are built by the low-energy
resonances. Although this conjecture does not preclude
the dynamical equivalence of all hadrons, it does
indicate a special characteristic associated with the
Pomeranchon, not shared by most other trajectories.

*This work was supported in part by the U. S. Atomic Energy
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Another puzzling feature of hadron physics is the
existence of branch: points (cuts) in the j plane. They
were first shown to be present by Mandelstam' in a
perturbation-theory model; and they have the effect
of removing the Gribov-Pomeranchuk' essential singu-
larities. However, if the Pomeranchon has a zero-energy
intercept of 1, one finds that an accumulation of in-
definitely many cuts will occur. This occurrence does
not necessarily violate any obvious S-matrix principle,
yet it is considered by many' as a defect of the present
model.

Many attempts' in trying to understand and resolve
these and other related puzzling problems have been
made, with no satisfactory explanation having yet
been reached. Ke would like to suggest a new possi-
bility which (i) allows the possibility of simplifying the
structure of Mandelstam-type cuts, (ii) gives a simple
physical interpretation to the Harari conjecture, and
(iii) indicates why the slope of the Pomeranchuk tra-
jectory may be small near t (the total energy) =0, while
still allowing the Pomeranchon to be a moving pole.
We shall consider in this paper the possibility that the
Pomeranchon is a mirage Regge trajectory. A mirage
trajectory is a moving Regge pole in the j plane, which
"decouples" from all physical communicating channels
whenever the pole moves through a physical value
(j=0, 2, 4 in the case of the Pomeranchon). Con-
sequently, no "physical" particle poles (stable or

6 S. Mandelstam, Nuovo Cimento 30, 1148 (1963). See also
V. N. Gribov, I. Ya. Pomeranchuk, and K. A. TerMartirosyan,
Phys. Rev. 139, B184 (1965).' V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239
(1962).

See, for example, J. Schwarz, Phys. Rev. 167, 1342 (1968).
We shall not consider here the possibility that the Pomeranchon
intercept is less than one.

9 R. Oehme, Phys. Rev. Letters 18, 1222 (1967); J. Finkelstein
and C. I. Tan, ibid. 19, 1061 (1967). See also L. Van Hove, in
Proceedings of the Thirteenth Annua/ International Conference on
High-Energy Physics, Berkeley, 1966 (University of California
Press, Berkeley, 1967), p. 253.
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unstable) lie on a mirage trajectory. We shall show in
what follows how this possibility can greatly simplify
these mysteries surrounding the Pomeranchon.

In Sec. II, we discuss the dynamical nature of a
mirage trajectory. In particular, we shall construct a
model to exhibit the ingredients which are required
for a mirage trajectory to be present. We next turn to
the discussion on consequences of our conjectures. In
Sec. III, we review the argument for the necessity of
Mandelstam cuts. We show that there is an intimate
connection between the cuts of Mandelstam type and
the normal threshold singularities of scattering ampli-
tudes. As a consequence, we argue that it is possible
for a mirage trajectory not to participate in producing
Mandelstam cuts. In Sec. IV, we examine the conjecture
of Harari and show that it can have a simple physical
interpretation if the Pomeranchon is a mirage tra-
jectory. We add in Sec. V further remarks concerning
our conjecture including a possible explanation for the
smallness of the Pomeranchon slope near zero total
energy.

II. DYNAMICAL CONSIDERATIONS

When a mirage trajectory passes through a physical
value at s=so, the residue of a physical channel will
have the behavior P„=Cr'(s—ss) where Cr ——0 or
finite. Consequently, no physical particle with spin j
will be present at so. We know there are three kinds of
pole-elimination mechanisms that will give this kind
of behavior: Chew mechanism, Gell-Mann mechanism,
and noncompensation mechanism. "In order to be more
specific, let us construct a model based on the Gell-
Mann mechanism. As is well known in this case, the
residues behave in the following manner:

P„=Crs (s—ss),

(2 1)

ps. =CiCs(s so)". —
We shall erst explain how this is possible from the
dynamical point of view and then generalize to the
case of a mirage trajectory which chooses "nonsense"
at every physical j value (j=0, 2, 4, , for
Pomeranchon).

A. Gell-Mann Mechanism

Consider two spin-~ particles interacting with a local
spherically symmetric potential. The most general form
of potential V(r)" can be written as

V(r) = Vt(r)A &s'+ V, (r)A"'+ Vs(r)5», (2.2)

where A") and A. &" are projection operators on singlet-
and triplet-spin states, and S~& is the tensor operator.
The V&, V2, and V3 are functions of r only.

"See, for example, C. Chiu, S. Chu, and L. Wang, Phys. Rev.
161, 1563 (1967).

» See, for example, M. Goldberger and K. Watson, Collisg'og
Theory (Wiley-Interscience, Inc. , New York, 1964).

I.et us concentrate on the triplet states with parity
(—1)s+', and labeling states by

~ j, l= j&1), the
partial-wave analysis leads to a set of ordinary coupled
radial Schrodinger equations. Once the potential is
given, the Jost functions can be obtained from the
solution of this set of differential equations. Let us
assume that the solution contains Regge poles such that
the leading Regge trajectory n(s) passes through j=0
at s=so below threshold, and we shall investigate the
behavior of Regge residues associated with this pole.

At j=0, the state
~ j, l= j—1) has become "non-

sense. " The set of equations will decouple as j ap-
proaches this value. They have the form

(
d2

+vi+2v )r =s'ip,
d'f

(2.3)

2
+—+Vr —4Vs lf, =k'P (2 4)

where P, f, are wave functions for the nonsense and
sense states, respectively. The analytically continued
partial-wave amplitude a„(j,s) should then coincide,
at j=0, with that calculated from (2.4) alone. Now,
it is easy to see that in order for the pole to be absent
in a„(j,s) at j=0, s=ss, the potential (U,—4Vs) must
not produce a P-wave bound state there. This can
always be done by adjusting functions V&(r) and
Vs(r). For instance, by choosing —2Vs(r))&V, (r))0,
the combination (Vr—4Vs) will correspond to a re-
pulsive potential. Consequently the Regge pole n(s)
will remain only in the amplitude a (j,s), not in
a„(j,s). The residues P„,P. , and P„„will behave as in
(2.1).

To summarize, the Gell-Mann mechanism occurs if
the "force" that is responsible for producing a Regge
pole comes completely from the nonsense channel. At
the j=o, the sense and nonsense channels decouple
from each other. This pole will only remain in the
nonsense-nonsense amplitude, and we say this pole has
chosen "nonsense. "However, as one moves away from
j=0, the distinction between the sense channel and
the nonsense channel is lost. This Regge pole will
couple to all ana1.ytically continued partial-wave
channels.

It is obvious that the above model is not adequate to
produce a mirage trajectory. As one moves to the next
integer j=2, both channels, ~l= j+1) and ~l= j—1),
are physical there (we shall ignore signature for now).
Consequently, this trajectory n(s) cannot choose non-
sense. In order to build a mirage trajectory, it is clear
that additional structure" has to be introduced into
the model.

~lt is not sufhcient for our purpose to have the trajectory
"turn over" as s increases along the real axis, thus, never reach
the line Re(j) =1. When this happens, there will always be a
point sr, on the unphysical sheet, where n(s~) =1, at s=s~, the
pole has to choose sense.
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B. Mirage Trajectory by Choosing Nonsense
at all Physical JValues

What we need is a model that allows a Regge tra-
jectory to choose nonsense at all physical j values,
regardless of how large the spin-is. Dynamics involving
high-spin particles or multiparticle channels is ob-
viously required. The model" of "nearby dominance, "
used for discussing rising Regge trajectories, seems
most appropriate here. The model asserts that one
could study the dynamics of a Regge trajectory at one
small energy region at a time. At any particular energy
region, the dominant forces that bind this Regge tra-
jectory come from the high-spin channels whose
thresholds lie in that region. With respect to these
dominant channels, the "orbital" angular momenta
could thus remain small. The physical justification of
this model is discussed in Ref. 13, and we shall only
concentrate on discussing how a mirage trajectory can
be formed within this model.

We shall generalize the case of two spin--,' particles
to the case of two particles with arbitrary spin O.i and
0-&. We assume that a Regge trajectory is formed, in a
particular energy region, by the interaction between
these two particles. The interaction potential has the
form V(r)=+V;(r)A;, whe. re each V;(r) is a scalar
potential, and each A; is a tensorial operator in the
spin space. In analogy to the triplet states, we shall
consider those states corresponding to a total spin
[e) =

~
or~+

~
os~. The states in this subspin space can

be labeled by ~g, l=g&(0 —n)) n=0 1 o.. This
model of nearby dominance asserts that the produced
Regge trajectory n(s) will have a value n(s) =o in the
neighborhood of the threshold of these two particles.
Let us first adjust the potentials so that n(s, ) =o.—1,
at a point s, near this threshold; and, in particular, we
choose the V;(r) in such a way that the dominant force
for binding this trajectory comes from the channel
labeled by

~ j, E=j—o.). However, this channel is
nonsense at j=o-—1.As one moves toward this j value,
this Regge trajectory will be choosing nonsense.

As one goes up in energy, one just has to keep on
changing the spin 0-~ and 02 of the dominant channel.
By adjusting the potential appropriate1y, the output
trajectory will be able to choose nonsense at every
physical angular-momentum value. Consequently, there
will be no physical particles lying on this Regge tra-
jectory, and, by definition, it is a mirage trajectory.

We have demonstrated one type of mirage trajectory
to show that the existence of these trajectories is really
not so unlikely as it would seem at first sight. In fact,
other models can readily be constructed. One can easily
convince oneself that they do not violate any accepted
property of scattering amplitudes, and their presence

S. Y. Chu, C. I. Tan and P. D. Ting (unpublished):S. Y.
Chu and C. I. Tan, Lawrence Radiation Laboratory Report No.
UCRL-17511, 1967 (unpublished).

will lead to many interesting consequences. We shall
next consider some of them.

III. MANDELSTAM CUTS AND
MIRAGE TRAJECTORIES

By Mandelstam cuts, we mean those moving branch
points in the j plane which owe their existence to the
presence of Gribov-Pomeranchuk fixed poles, ' ' In the
following, we shall review first, the necessity for
Mandelstam cuts and their relation with the normal
threshold singularities in the energy plane. Then, we
discuss the case where mirage trajectories are involved
and show that it is possible for them not to participate
in producing Mandelstarn cuts.

It has become a well-known fact that, if we are to
avoid essential singularities in the j plane, the existence
of Gribov-Pomeranchuk fixed poles, at wrong-signature
nonsense-j values, forces the presence of moving cuts.
These essential singularities, which are due to the
accumulation of poles, would violate crossed-channel
unitarity when high-spin particles are present.

For the even-signatured partial-wave scattering
amplitude of two particles with spins O.g and 0.~, the
nonsense wrong-signature points occur at

J=og+os —n, n=1, 3, 5, (3.1)

They correspond to the system having a nonsensical
orbital angular momentum I= —j., —3, —5, ~ . To
avoid essential singularities, the moving cuts will have
to have the special property that they coincide with
the normal threshold s= (mal+ms)' at these j values,
so that the "elastic" discontinuity formula would no
longer be applicable. In terms of the position of the
eth cut in the j plane, the above condition corresponds
to

n[g, ii]' "Ls= (mg+m )'ji=ig+O~ nii ,
n= 1, 3, 5, . (3.2)

Mandelstam, by investigating those perturbation
diagrams containing Gribov-Pomeranchuk fixed poles,
has found cuts that satisfy LEq. (3.2)j.Their positions
are given by

n[~,ii]' "(s)=n~((s' ' ms)')+CB n-
n [ii,g ]

"(s) = 0 z+ns ((s'[s mz) ') n,— (3.3—),
where ng(s) and nii(s) are Regge trajectories on which
particles A and 8 lie, respectively.

We would like to point out that in the case where
fixed poles are absent, the necessity for the existence of
moving cuts is removed. One such case is when eg or
AQ (or both) is a mirage trajectory. Since particle A
really does not exist, there will be no normal threshold
at the point s= (mal+ms)s. Consequently, moving cuts
n[A, B] ' (s) and n[s, A] '"(s) are not required.

It is not surprising to find that Mandelstam's proof
for the existence of moving cuts also fails in this case.
The proof made use of the existence of Gribov-
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Pomeranchuk 6xed poles to show that the discon-
tinuity across "formal" branch cuts cannot vanish.
However, if one of the trajectories involved is a mirage
trajectory, the existence of a Gribov-Pomeranchuk fixed
pole can no longer be ascertained. Consequently, the
proof for the existence of Mandelstam cuts will no
longer hold.

We have just seen that the type of cuts described by
Eq. (3.3) does not have to be present if one of the
trajectories involved is a mirage trajectory, in con-
trast with that associated with ordinary Regge tra-
jectories. In all the above arguments, we implicitly
assume that amplitudes with one or more external
Reggeons can be defined. If this can be done, " than a
great simplification" on high-energy Regge repre-
sentation can be achieved.

Iv. HARARI'8 CONJECTURE AND
MIRAGE TRAJECTORY

An interesting observation' has been made by
Harari on the different roles played by the Pomeranchon
and other Regge trajectories in relating the high-energy
behavior of scattering amplitudes to their low-energy
behavior. It has led him to conjecture that, within the
context of finite-energy sum rules, the Pomeranchon is
mostly built by the nonresonating background, while
"ordinary" Regge trajectories can be bootstrapped by
using the resonance approximation. Preliminary tests"
of this conjecture have been encouraging.

The failure of resonance saturation in the case of
the Pomeranchon does not necessarily indicate doubts
on the "bootstrap" nature of the Pomeranchon; how-
ever, it shows signs of having certain peculiar properties
which ordinary trajectories do not possess. We would
like to suggest that a mirage trajectory would lead to
the phenomenon observed by Harari. This phenomenon
arises because a mirage trajectory fails to give rise to
long-range attractive forces when being exchanged in
any allowed reaction.

In order to introduce the notion of forces, we can,
for instance, adopt the method of Charap and Fubini, "

'4N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163,
1572 (1967).

'5 We have here considered only cuts of the type described by
Kq. (3.2). There is also the type called trajectory-trajectory cuts,
which, in the case of two identical trajectories, has the position
a~'(s) =2m~(s/4) —1. These are the ones which become important
at negative s. Since this type of cut is also intimately connected
with the existence of Gribov-Pomeranchuk poles (see Ref. 6),
we believe that a mirage trajectory will also not produce this
type of cut if it does not produce the type of cuts described by
Kq. (3.2).' F. J. Gilman, H. Harari, and Y. Zarmi, Phys. Rev. Letters
21, 323 (1968)."J.Charap and S. Fubini, Xuovo Cimento 14, 540 (1959).
For one to use the method of Charap and Fubini directly, the
scattering amplitude has to satisfy Mandelstam representation,
or its equivalent. The complications coming from the possible
inde6nitely rising Regge trajectories are discussed in Ref. 13. By
adopting the model of "nearby dominance, " these difficulties can
be avoided. See also Jerome Finkelstein, Lawrence Radiation
Laboratory Report Xo. UCRL-17311, 1967 (unpublished).

who demonstrated that an energy-independent local
potential could be given a meaning in a relativistic
theory at low energies. In particular, the long-range
part of this potential is shown to correspond exactly to
poles in small t region. When a Regge trajectory with
low-mass particles is exchanged, it will give rise to
forces that are of long range (either attractive or re-
pulsive). Conversely, if Pomeranchon is a mirage tra-
jectory, it will not give rise to a long-range Yukawa
force, because Pomeranchon does not correspond to
poles of the full amplitude in the t plane. It is a well-
known fact that in nonrelativistic-potential-theory
problems without attractive long-range force, no
resonances can be found. Since our example is approxi-
mately given by potential theory in the low-energy
region, it is then natural to expect that no resonances
are being formed due to the exchange of the
Pomeranchon. Furthermore, if one is allowed to inter-
change the "cause" a,nd "effect" in the discussion of
Rnite-energy sum-rule bootstrap the part of the Harari
conjecture on the Pomeranchon then follows from the
argument given above.

We would like to add that there might be other Regge
trajectories which in most instances behave as ordinary
trajectories, but not in some other instances. These
include trajectories whose first few recurrences are
missing, or whose coupling to specific channels" is
very weak. If this is true, a generalization of Harari's
conjecture is required.

V. CONCLUDING REMARKS

We have discussed in this paper several interesting
consequences of the assumption that the Pomeranchon
is a mirage Regge trajectory. These include the ex-
planation of the Harari hypothesis, and the possible

.removal of Pomeranchon cuts. We have also pointed
out the possible dynamical origin of mirage trajectories
and have illustrated a special model in which a mirage
trajectory is formed by choosing nonsense at every
physical value of angular momentum.

The mysteries surrounding the Pomeranchon are by
no means solved. Our conjecture perhaps provides a
new route of attacking these puzzling problems. One
unique property of the Pomeranchon is the possibility
of its small slope near t=o. I.et us consider the low-
threshold two-particle channels that communicate with
the Pomeranchon. We find that all the lowest ones m.x,
EX(939), etc. , cannot be the dominating channels in
producing the mirage Pomeranchon, because at j=2
all these channels have 0- -. 2, and thus are sense
channels. In fact, the lowest channels that can be
nonsense channels at j= 2 are X*X*(1238) or.V(939)E*(1688). They have thresholds around 2.5
GeV. If all hadron bound states are not very deeply
bounded due to the finite range and strength of the
strong interaction force, then in our model as mentioned
in Sec. II 3, n~(s, ) equals to a.—1, with s, near the
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threshold of the external part. icles L (2.5)' GeV'] and
0.=3 in this case. The slope will be o.l'=0.2 GeV—'. Of
course these are only very crude arguments, the essen-
tial point is: The fact that Pomeranchon chooses non-
sense at j=2 requires that it can couple strongly only
to those channels with thresholds higher than the
thresholds of the channels that coupled to ordinary
meson trajectories.

Other problems which our conjecture might shed
some light on include: Why the diffractive dissociation
cross section is small compared with the elastic cross
section and the possibility of a vanishing residue of

Pomeranchon-Pomeranchon coupling in the multi-

Regge model. '"
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Following Weinberg, we use linearity, current algebra, and the hypothesis of partially conserved axial-
vector current to restrict the form of the xm amplitude below threshold. However, we do not assume iso-
scalarity of the 0. term. Instead, we propose a model in which nonpole scattering diagrams are constant
below threshold. Then, the current-algebra restriction leads to a consistency condition from which the
p leptonic-decay branching ratio can be calculated. The prediction is 8(t+t ) =(0.68+0.18)&&10 4. This
agrees well with recent experimental data: B(e+e ), pt= (0.56+0.06))(10 ', B(p+p, ), pt, = (0.66+0.15)
)&10 . In addition, the m-m. scattering lengths are determined to be in agreement or nearly in agreement
with Weinberg's. The model suggests that the small scattering lengths result from a cancellation of large
nonpole and c-exchange contributions.

I. INTRODUCTION

'HE current-algebra calculation of x~ scattering
lengths by Weinberg' assumes isoscalarity of

the so-called 0 term. In this paper we replace the iso-
scalarity hypothesis with a more dynamical one; in
particular, we assume that the nonpole part of the
scattering amplitude is constant below threshold. This
conjecture is strong enough to imply a consistency
condition for the 7rs coupling constants (especially the
psrsr and e7r7r vertices) as well as to determine the s.sr

scattering lengths.
The consistency condition can be compared with

experimental data in two ways. By using the results of
vector dominance we can predict a value for the p
leptonic-decay branching ratio which is in good agree-
ment with experiment. We can also find a correction to
the usual p-dominance value of the pion electromagnetic
radius which has the correct sign and possibly the
correct magnitude.

The mm. scattering lengths are determined to be close
to those of steinberg; thus the theory is compatible
with an isoscalar 0- term. The model suggests that the
small scattering lengths are produced by a cancellation

* National Science Foundation Graduate Fellow.' S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

of large contributions from nonpole diagrams and
c-exchange diagrams.

In Sec. II, we use linearity, current algebra, and the
hypothesis of partially conserved axial-vector current
(PCAC) to restrict the scattering amplitude. Section III
describes and "solves" the model for xw scattering. In
Sec. IV, the consistency condition is compared with
experimental data. The ~x scattering lengths are derived
in Sec. V.

II. LINEARITY, CURRENT ALGEBRA, AND
PCAC RESTRICTIONS

Following Weinberg, ' we define an invariant off-mass-
shell amplitude':

(id, qb~ M
~ pe, ka)

(i' —m ')(q' —m ')(p' m')(te' —m ')—

(m 'F )'

d'4+$4yd'4Ze 1'P z+il x+iq y

)&(0~ T{r)A"(x)r)A'(y)i)A'(s) )A'c(0)) ~0), (2.1)
' The metric and propagators are those of J. D. Bjorken and

S. D. Drell, Relativistic QNmtlm Fields {McGraw-Hill Book Co. ,
New York, 1965).


