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Vector-Meson-Dominance Predictions*f

G. J. GOUNARis

The Enrico I&'ermi 1nstitlte, and the Department of Physics, The University of Chicago, Chicago, I/linois 60637
(Received 19 December 1968)

Corrections due to the finite width of the p meson based on a generalized effective-range formula for pion-
pion scattering modify by a non-negligible amount the well-known expressions, based on vector-meson
dominance, for the following branching ratios: 1'(p' —& e+e )/1" (p' —+ s+s. ), F(q ~EK)/I'(p'~ sr+~ ),
F (cu ~ e+e )/I' (po ~ e+e ), and F ( v ~ e+e )/F (po —& e+e ).We also present a new current-algebra prediction
for the shape and magnitude of gt, t(e+e —+ ~+m ), and estimate the p-meson contribution to the Schwinger
term and to the anomalous magnetic moment of the muon. A discussion of p dominance when the width is
explicitly taken into account and a simple recipe for including finite-p-width corrections in vector-meson-
dominance calculations are also given.

I. INTRODUCTION

~INURING
the last eight years the vector-meson-

dominance (VMD) hypothesis has been used to
derive predictions covering a wide range of phenomena. '
In most of these cases the vector mesons were treated as
essentially stable, or sometimes, in processes dominated
by vector-meson exchange, the width was taken into
account by adding a negative imaginary part, either
constant or energy-dependent, to the vector-meson mass
appearing in the corresponding propagator. Of course,
when the dominating vector meson is very far off the
mass shell, intuitively we do not expect the width to be
important. For example, if we use the p-exchange modep
to calculate the s-wave pion-nucleon scattering length,
we would not expect the width of the p meson to be of
any relevance. But as we approach the mass shell, we
do expect the finite width to become important. In-
tuitively, we would expect eAects of the order of the
ratio of the width over the mass to appear. Therefore,
if our intuition does not mislead us, we would expect, for
the case of the p meson, finite-width effects to be of the
order of I',/m, 15/o for reasonable values of I', . For oi

and p, this argument is somewhat less secure, because of
threshold effects (for the q) and three-particle final
states (for the oi).'

Recently, methods to take into account the width of
the p meson on the vector-meson-dominance prediction
for p ~ e+e were suggested independently by Gounaris
and Sakurai4 and by Vaughn and Wali. ' The latter
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J. J. Sakurai, in Lectlresin Theoreticar Physics (University of
Colorado Press, Boulder, Colo. , to be published), Vol. XI.

2 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).' Actually in the model suggested in Ref. 5, the cv-q finite-width
eGects are as large as 25 jf).

4 G. J. Gounaris and J. J. Sakurai, Phys. Rev. Letters 21, 244
(1968).

5 M. T. Vaughn and K. C. Wali, Phys. Rev. Letters 21, 938
(1968);Phys. Rev. 177, 2199 (1969).See also M. T. Vaughn, M. L.
Blackmon, and K. C. Wali, in Proceedings of the Fourteenth
International Conference on High-Energy Physics, t/ienna, 196$
(CERN, Geneva, 1968).

authors calculated also in their model the e6ect of the
width of the p on the decay rates ~ ~ 3x and co —+ m"&,

and suggested a model to take into account the widths
of 4) and

In the present work, we propose to pursue further the
method of Ref. 4 and to calculate systematically the
correction due om/y to the finite width of the p meson on
various predictions of the VMD. In the various calcula-
tions presented in this paper, the only other unstable
(under strong interactions) particles which are going to
appear occasionally are co and &p. We treat them as if
they were essentially stable. We think that this is
worthwhile, even if it will finally turn out that the
finite-width effects of ~ and y are important. Our
reasons are the following. (1) We present our theory and
results in such a form that to take into account co, y
6nite-width corrections should be a completely inde-

pendent problem. It will be obvious in our treatment
which of our results are going to be modified because of
this and which are not. (2) Even in processes where o&, p
finite-width effects may be important, it may be inter-
esting to find how much of the 6nite-width corrections
are due to each of the unstable particles involved. (3)
Within our phase-shift approach4 it is hard, at least for
the present, to take into account finite-width effects for
~ and p. It seems that an analysis of three-particle
interactions is required.

Our order of presentation is as follows. In Sec. II,
starting from the assumption4 that for a wide energy
range (s(1 BeV') the P-wave pion-pion scattering phase
shift 61 satisfies a generalized eRective-range formula of
the Chew-Mandelstam type, ' we derive an expression
for the pion electromagnetic form factor. Using this
form factor and the current-field identity, ' ' we esti-
mate the p-meson contribution to the Schwinger term
and we derive an expression for the p-meson propagator
which is expected to be valid for low values of s (s(1
BeV'). We then proceed to show that our assumptions

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
7 M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 956

(1961).
8N. M. Kroll, T. D. Lee, and B.Zumino, Phys. Rev. 157, 1376

(1967).
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lead to complete p dominance of the pion electromag-
netic form factor or, equivalently, of the ps s vertex (see
Eqs. (2.35) and (2.37)], and give a recipe on how
p-width corrections may be included in calculations in a
simple way. Roughly, this recipe states that the p meson
should be treated as if it were stable and the only effects
of the width is to modify the p propagator and the
normalization of the p field. In connection with this we
note that when F, ~O, both the p propagator and the
normalization of the p field become the usual ones.

In Secs. III and IV, relations among the processes

p 'e+e, p ) x+x, q —+EK, p —~ e+e, co —+ e+e,
co —+ m'y, and cv —+ 3x are calculated and compared with
the stable-p-meson predictions. Finite-width effects of at
most 15%, for reasonable values of I'„are found. We
wish to add here that the decay rates p' —+ e+e and

p ~ x+x are calculated in a completely unambiguous
way and shown to agree with our recipe. In Sec. V, the
form factor found in Sec. II is used to calculate the p
contribution to the anomalous magnetic moment' of
the muon. It is expected that our results should be
better than those of other calculations, since it is known
that the low-energy region, for which our pion form
factor is particularly good, is most important' in the
calculation of the p contribution to the anomalous
magnetic moment of the muon. We also give an evalua-
tion of the p contribution to the charge renormalization'
to the order e'. Finally, in Sec. VI we summarize our
results and give our conclusions.

where

(k'/gs) cot5i ——k'h(s)+u+bk'

k =-,' (s—4', ')'i', (2.2)

II. GENERAL THEORY

We assume that for a wide energy range (s&1 BeV')
the p-wave pion-pion scattering phase shift satisfies a
generalized eff ective-range formula of the Chew-
Mandelstam type':

2 k f'Qs+2k
h(s) =— 1n~—

~~s 4 2m.

We construct the function

(2.3)

s=sp= —9.4&(10'mp . (2.5)

(4) f(s) has only a right-hand cut, from s=4ns ' to
s= ~, right above which

Imf(s+is) = —k'/gs, (2.6)

phase of f(s+ie) = —8i(s) . (2.7)

Note that in (2.2) and (2.3) it is implied that for
0&s&4m ', we make the replacement

k ~ i(ns. ' ——,'-s)'i',

Qs+2k) s
h — ~~icot '—

2ns. t 4ns. ' s)—
Using the analytical properties of f(s), we can write
F (s) with the correct phase and singularities""

~-(~) =f(0)/f(~) . (2 8)

We now define the p mass nr, and the p width I', by

cot8i~, ~ =0& (2.9)

dpi/ds
~
.=,~ = I/ns, i', . (2.10)

With these definitions our form factor (2.8) can be
written as follows":

f(s) = i k'/g—s+ (k'/gs) cotbi. (2.4)

From (2.1)—(2.4), it is easy to see that f(s) has the
following analytical properties":

(1) f(s) is an analytic function without any poles.
(2) It is real in the sense of the Schwarz reflection

principle. That is,
f(s) =f*(s").

(3) When a and h are determined by a fit to the mass
and the width of the p meson, f(s) is seen to have a
zero at

m, '+m, i',d
~.(s) =

ns, ' s+I', (nt„'/k, '){k'—(h(s) h(ns, ')]+I, h—'(ns ') (m ' —s) ) An, i', (—k/k, )'(ns, /gs)
(2.11)

where d is a constant that depends only on the p mass:

3 m ' ns, +2k, q ns, ns 'm,
d =— ln — i+— — —. (2.12)

s- k, s 2ns ) 2rrk p s-k, s

Near the p mass we can ignore the middle term in the
denominator of (2.11) since it goes as (ns, ' —s)', and

' C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961);
L. Durand, III, Phys. Rev. 128, 441 (1962); 129, 2835 (E) (1963);
T. Kinoshita and R. J. Oakes, Phys. Letters 25B, 143 (1967)."To be speci6c, we may state that in an s plane we take gs to

have a cut along the negative real axis, and k= 2(s —4m ')'/' to
have a cut along the positive real axis.

"The connection between the p-wave pion-pion phase shift and
the pion form factor was first discussed by P. Federbush, M. L.
Goldberger, and S. B. Treiman, Phys. Rev. 112, 642 (1958).» Since onr formalism is expected to be valid for ~s~ &1 BeV',
we have ignored the vanishing Point of f(s) at s0= —9.4X10'mp'.
The only place where the knowledge of this point is of some use is
in Sec. V, where we "estimate" the unrenormalized mass of the p
meson. Note also a mistake in Ref. 4, where it was stated that
so ———1.2 X106m '."Equation (2.11) is essentially equivalent to the expression for
the pion form factor given by W. R. Frazer and J. R. Fulco, Phys,
Rev. Letters 2, 365 (1959); Phys. Rev. 117, 1609 (1960). Note,
however, that their vp is not quite equal to our k, . See also B. W.
Lee and M. T. Vaughn, Phys. Rev. Letters 4, 578 (1960).
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(2.11) is reduced to the familiar resonance formula

Fa (&) ~
near a=md

nz„'[1+(I',/rN, )d]
(2.13)

m ' s—im—,I'„(k/k, )s(m„/&s)

It is very important to note that even though our F (s)
is correctly normalized at s =0, the numerator in (2.13)
is not just ns,2. Numerically, we have d=0.48 for
m, =775 MeV. The fact that the quantity d is not zero,
but has such a large value, is our most significant result.
This quantity will appear again and again till the end of
this paper; it is, in most cases, responsible for a major
part of the finite-width corrections.

I et us now calculate the p propagator. This calcula-
tion will lead us to the recipe promised in the Introduc-
tion and many other useful results. The p propagator is
given by'4

d g s-"*(0~2"*(p„'(*),p„'(0)}lo)

We shall construct an expression for g(s), by just
checking these two requirements, In order to do this,
we have first to find an expression for pt&si(ms). It is
known that pi&@(m') is related to the colliding-beam
cross section via""

$2

pi&I(m') = —~...(e+e- ~ (T=1 system)) ~,=„*.
16m'0, 2

(2.17)

%e now make the assumption that the low-energy
contribution saturates the integral (2.16) for small s
(say,

~
s~ &1 BeV'). Therefore, in order to find an ex-

pression for g(s) valid for small s, we can use in the
integral (2.16) the expression

s2

pi si (nz') = ——o ...(e+c- ~ s-+s=) ~,=, (2.17')
16m'0.2

or, from

o.t.,(e+e——& s.+sr—)

= Prs7ro. '(s 4m —')'& /s'"&']
j F (s) [ (2.18)

=g"&(—v')+v. v s(—v') 1 (s—4nz ')'I'
IF-(s) I' ~ (2.19)pi&" (&) =

48m2op„+re gq&Jp

o, (m') d (m') . (2.14)
g'+m' —ie

1 kp' I'p
g(s)=——1+—d F (s)

6x I'p mp
(2.20)

o, (nz')
de . satisfies requirements (i) and (ii) and, consequently, is

the result of the integration (2.16) when pi&" (eP) is
given by (2.19). At this point we already have a useful
result. We see from (2.16) that the Schwinger term (or
the vacuum expectation value of the Schwinger term if
the Schwinger term is not a c number) is given by

(2.15)R(s) =
mp

2 Pl —S ZE

At this point, in order to indicate when the various
assumptions enter, it is more advantageous to calculate
instead the expression

Now from (2.19), the analytic properties of f(s) given

Ke are only interested in the b„„part of the propagator.
It is only this part that would contribute for the p
meson coupled to a conserved current:

g(s) =
pi&a& (ass)

dpi' ~

fSp
& m —s —'L6

(2.16)
C»=g(0),

where C p is normalized so that

(2.21)

where pi&'& (ris') is the spectral function which appears in

steinberg's sum rules. "At the end of the calculations,
current-field identity" will be used to find R(s). Now
(2.16) just tells us that the function g (s) has the follow-

ing properties. (i) It is real (in the sense of the Schwarz
reflection principle), analytic, without any poles, and
vanishes at infinity. (ii) It has only a right-hand cut
from s=4ns ' to s= ~, just above which

Img($+ie) =7fpl (r) ~

'43y T* we indicate the covariant part of the time-ordered
product. Note also that R(—q') and S(—q') are related to each
other by 1'Lo, (a)/agda=R( —q')+g'S( —g')."The spectral function p1(') (s) is normalized so that the p-meson
contribution to it in the stable-particle approximation is given by
(1np'j jp)'a(s —1np').

t.je.(*),j.s(*')j.,=., =ij.„j,(~)~(x—x )
—iC pBsb(x —x').

"J. J. Sakurai, in Lectures on Clrrents and 3Eesons (The
University of Chicago Press, Chicago, to be published).' A relation of this type was 6rst written within the framework
of quantum. electrodynamics by T. Goto and T. Imamura, Progr.
Theoret. Phys. {Kyoto} 14, 396 (1955).' In particular, Eq. (2.6).

We have again ignored the pole of P (s) at s=sp= —9.4
)&10'1np'. Taking this pole into account, we And that the correct
expression for g(s), corresponding to p1()(1n') given in (2.19), is

R pP, t'*,l i)6' I p 1np s—sp

where ResLF (so}g is the residuum of the function F {s) at s = so.
It is easy to show that for small s, for which our formalism is valid,
the second term in brackets in the equation above is completely
negligible.
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Therefore, the assumption that the low-energy con-
tribution saturates the integral (2.16) for small s gives,
via (2.20) and (2.21),

1k,' I
Css ————1+—d I,

6 I, m, )
(2.22)

p

Al
~e

where d is given by (2.12).
From here on, let us adopt the gauge-field algebra, "

in which C p is a finite constant given by

l I l l I i l

90 lOO IIO l20 150 i@0 tSO

I' in MeV

C.,= (m, /f, ) t'i,

We thus obtain from (2.22)"

f,' 3I',m, ' I', q-'
1+—d

I

4e 2 kp' ma /

(2.23)

(2.24)

FrG. 1.The dependence of the coupling constant f,'/47'. defined
by Kq. (2.23), on the p-meson width. The full line is based on Kq.
(2.24), which takes into account the 6nite p width. The broken line
corresponds to the usual VMD prediction when we treat the p
meson as stable. The triangular point represents the current-
algebra prediction.

Note that in the stable-p approximation, assuming that
the p meson dominates the pion form factor, we obtain

Combining (2.15)) (2.16)) (2.21), (2.23), (2.24), and
(2.28), we find the 8„„part of the p propagator,

f,'/4~= ;(r,m-, '/k„s) . (2.24')
Z(s) = (1/m, s)P.(s), (2.29)

We see that the two expressions, (2.24) and (2.24'),
agree in the limit F,«m„but for a realistic value of the
p width they differ by about 8%. This is illustrated in
Fig. 1.

Recently, Brown and Goble" proposed that the p-
wave pion-pion phase shift be obtained by matching the
effective-range formula (2.1) to the current-algebra
prediction on pion-pion scattering near threshold. '3

Their procedure leads to the modified Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation"

kp'
I', = (1—k,4k'( m)/3ec ')—'=130MeVr (2.25)

3X'C7r mP

if m, =775 MeV is used. Using this value of I', in (2.22)
and (2.24), we obtain the current-algebra predictions

where F (s) is given in (2.11) and (2.13).We note that
this result is what would have been expected by analogy
with the stable p case. For s near m, ', we have

Zi/Z = 1+(I',/m, )d . (2.31)

We recall that Zi/Z gives the normalization of the
renormalized p 6eld. The best way to define it is by the
numerator in Eq. (2.30)."In the hypothetical stable-p
case, an alternative equivalent definition is

«I p (o) I p) =ep(», ) '"(Zi/Z)'" (2.32)

1+(I',/m, )d
&(~) I near e=rn r= —,(2.30)

mn' s imnI'n —(k/—kn)'(m, /Qs)

from which, using the formalism of Ref. 8" we get

and"
C33=0.021. BeV'

fp'/47r =2.3.

(2.26)

(2.27)

At this point some interesting remarks about (2.31)
are in order. We note that already in writing (2.23), we
have adopted the convention

These predictions correspond to the triangular point in
Fig. 1.

Now let us calculate the p propagator R(s). The
current-field identity' ' tells us that

(m '/f )'o. (m') =pit" (m') . (2.28)

"T.D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

"Our coupling constant is normalized so that the current-field
identity reads j„e(a)= (rlra/f, )p„e(e) (rr=1, 2, 3).

2'L. S. Brown and R. L. Goble, Phys. Rev. Letters 20, 346
(1968); also, see Ref. 4."S. Weinberg, Phys. Rev. Letters 17, 616 (1966).It is amusing
to note that our result, depending only on the current-algebra
prediction for the p-wave pion-pion scattering length, is inde-
pendent of any assumptions concerning the 0- terms. I wish to
thank D. F. Greenberg for pointing this out to me.

'4 The pion decay constant is normalized so that c =94 MeV.
2' The value of f,'/4m that we found should be compared with

the original KSRF value far/(4rr) =rara/(8rrc a) =2.66.

Zi =Ze = (m&/m )s (2.33)

2' In particular, Kq. (4.18}of Ref. 8.» See Kqs. (3.10) and (3.11) of Ref. 8. Note that our f, and fp
correspond, respectively, to g, and g~' used in that reference.

in the notation of Ref. 8, where m, ' is the unrenormalized
mass of the p meson. This convention is the one used in
gauge-field algebra, "and has the important advantage
of establishing"

(m, /f, )' = (m, '/f, ')',

that is, making (m, /f, )' "renormalization invariant "It-.
is important to remember that once the convention
(2.33) has been chosen, the normalization of the
renprrnalized p field has been determined and we cannot
choose it arbitrarily. In our effective-range-formula
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RK Orsoy experiment
O

a I 0--

9 ~ Current-Algebra
C: Prediction

c

O

MZl Novosibirsk experiment

I I I I I I I

90 IOO IIO I20 I50 I40 I50 I60

I+ in MeV

FIG. 2. The dependence of the lepton pair branching ratio on
the p meson width. The full line is based on Eq. (3.4), which takes
into account the finite p width. The broken line is obtained when
we treat the p meson as stable. The experimental results of the
Xovosibirsk and Orsay groups are indicated. The triangular point
represents the current-algebra prediction.

Up to now in this section we have calculated m, '/f, '
and Zi/Z, and found expressions for the tr~ form factor
and the p-meson propagator valid for small s. Now let us
focus on the question: What can all these things tell us,
in a more formal way, about p dominance when the
width is explicitly taken into account? From the
current-field identity'

j.'(o) = (ttt, '/f, )p'(o)
we obtain"

( '(p ) I j'(o) I
'(p )&

= (~.'/f. )(~+(pe) I p.'(o)
I ~+(pi))

= (ttt, '/f, )E(~)f,(~+(pe) I J.'(0)
I ~+(pi)),

where

d„j„n(x)=0.

(2.34)

model, it turns out that this normalization is given by
(2.31).It is also interesting that in the hypothetical case
of a stable p meson (I',«m, ), (2.31) gives

Zl/Z
I narrow width

and the renormalized field has the usual normalization.
That is, so long as we treat the p meson as a stable
particle, it is perfectly consistent to have

Z —Zo —Zg e

Hy analogy with the corresponding treatment in the
stable-p-meson approximation, " (2.37) may be con-
sidered as a definition of what we mean by p dominance
of the ~+ electromagnetic form factor, in the framework
of the current-field identity. Of course, it is a relation
which holds only for small s. We can, therefore, make
the following statement: Our effective-range formula
for the pion form factor, the gauge field algebra, and the
approximation to use only the two-pion intermediate
contribution in the spectral function pti" (m') in order to
calculate the p propagator, lead us to complete p
dominance in the sense of (2.37). It is also interesting to
note that (2.34) and (2.37) imply that (in our theory) f,
plays also the role of the usual pxm coupling constant.
Therefore, our theory implies the relation

derived long ago'" under the assumption of p domi-
nance of the pion form factor in the stable-p approxima-
tion. Another interesting feature in our derivation is
that the usual p-dominance phrase, "The p meson
saturates the spectral function pii" (s) for low values of
s," is consistently replaced by the phrase "The low-
energy two-pion contribution saturates the spectral
function pi'@(s) for low values of s." In fact, this
substitution is the only difference between our p-domi-
nance theory which takes into account finite-p-width
corrections, and the usual p-dominance theory.

Looking back now at (2.29), (2.34), and (2.37), we
see that all the structure of the pion form factor comes
from the p propagator, exactly as in the stable-p
approximation, where VMD leads to

1
Fx (~) 'I p stable

m2
''' '

m2 SP P

It is now natural to conjecture that this analogy is
always true. That is, in any process in which p exchange
dominates, its propagator gives all the structure so far
as the p meson is concerned. "We can, therefore, give the
following recipe on how to take finite-width corrections
in any process dominated by the p meson. Treat the p
meson as if it were stable with the following modifi-
cations only:

(1) Use for the 5„„part of the p propagator

We now define

(~+(p2) I j,'(0)
I ~+(pi)) = (pe+pi),F.(~) (2.35)

~(~) = (1/~.')F-(~),

where F (s) is given in (2.11).
(2) The renormalized p field is normalized as

(2.29)

F.&(s) =1. (2.37)

"The current J„p{x)is the same as the one in Ref. 8.

(tr+(p, ) I
I„'(0)I7r+(p&)) = (pe+pi)„F '(s), (2.36)

where s= —(pe —pi)'. Combining (2.29) and (2.34)—
(2.36), we obtain

(0I p„(0) I
pp) =(2En) 'i (Zi/Z) i e„rt pr (2.32)

"Y. Xambu and J. J. Sakurai, Phys. Letters 8, 79 (1962);
8, 191{K){1962);also, Ref. 31.

Actually this is the point of view underlying the work in
Ref. 5. We wish to acknowledge at this point that this is what
motivated us to try to prove it for the particular case of the 7r+
form factor, in the framework of our phase-shift approach.
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Z,/Z=1+(r, /m„), (2.31)

where d is given in (2.12).
(3) The p field is coupled to the isovector current''-'

with coupling constant f, given by

60—

50—

„Navosibirst
Experiment

Orsay
Experimentf,'/4~= —'(I',m, '/k„')L1+(I', /m, )d] '. (2.24)

cu 40—

L„& ao—
Note thatin the stable-p-meson approximation (F,((m, ),
this recipe becomes the ordinary recipe for calculating
processes assumed to be dominated by the p meson. We
hasten to say that in Sec. III we shall calculate in a
completely unambiguous way the decay rates p" —+ e+e

and p —+ xx and show that we obtain the same results as
the ones expected from our recipe. After that, we shall

simply use it in order to calculate the decay rates of
co —+ x"y and co —+ 3x using the Gell-Mann —Sharp—
Wagner model, " and assuming a constant f.,„cou-

ling. "

20—

lo—

0.2 0.4 0.6 0.8 l .0
s in 8ev 2

l.2

p
Pro. 3. Theoretically predicted lF (s) le basecl on current

III. CORRECTION DUE TO FINITE WIDTH OF p algebra (i.e., j. p=130 MeV) and the effective-range expansion.

MESON TO VMD PREDICTION FOR p ~ &+ The theoretical curve has no adjustable parameter once the p mass
is given (m, =775 MeV).

We first note that using (2.31) we can rewrite (2.24)
as follows:

,=U,'/ )l(,'/, ')( i/ ) ( )

are also shown. For the current-algebra prediction
(2.25), Eq. (3.4) gives

~Icurrentalgebra 50X10 (3.6)Remembering that throughout this work we have
implicitly assumed F,=F(p' 'm+m ), we immediately
see that (3.1) is what would have been expected from
our recipe. "

We now focus our attention on the process p" —+ e+e

We note that the most unambiguous way to define the
lepton pair branching ratio, 4

These predictions correspond to the triangular point in
Fig. 2. Also note that combining (2.24), (2.31), and
(3.4), we obtain

I'(p' —+ e+e ) = 'n'(4~/f ')m -(Zi/Z) (3 7)

This relation is exactly what would have been expected
(3.2) from our recipe. The current-algebra prediction for this

decay rate is
A=I'(p' —+ e+e )/F(p' x+m ),

is by the formula
F(p' —+ e+e ) =6.5 keV. (3.8)

(3.3)~«t(e+e ~ ~+n. ) I ™,r =3'(2/m, )'R.

Combining (2.11), (2.18), and (3.3), we get
The experimental results, calculated from (3.3) and the
experimental value for o.«t(e+e ~ ~+m ) at s m, ', are
somewhat sensitive to the value of I', that we use.

(3.4) losing for consistency with the result (3.8) I', =130
MeV, we find

which is to be compared with the narrow-width result F(p —+ e+e—
) =6.7+1.4 lceV (3.9)

~lnarrow wight~=(&/36)(mp 4m /mp)
X(m, /F, )'. (3.5)

Although the two expressions agree for I',(cm„ for a
realistic value of the p width they differ by as much as
15%. This is indicated in Fig. 2. The data of the
Novosibirsk'4 and Orsay" colliding-beam experiments

"M. Gell-Mann, D. H, Sharp, and W. Wagner, Phys. Rev.
Letters 8, 261 (1962); R. F. Dashen and D. H. Sharp, Phys. Rev.
133, B1585 (1964)."S. G. Brown and G. B. West, Phys. Rev. 174, 1777 (1968).

'g Note that this relation is equivalent to Eq. (7.1) of Ref. 8.
"V. L. Auslander et al. , Novosibirsk Report No. 243 (un-

published)."J.E. Augustin et al. , Phys. Rev. Letters 20, 129 (1968); and
papers presented in Proceedings of the Fourteenth International

from the Novosibirsk data, '4 and

I'(p —+ e+e ) =8.1+1.3 keV (3.10)

Conference on High-Anergy Plzysi cs, Vienna, 1066' (CERN,
Geneva, 1968). Note that in consistency with our input nzp= 775
MeV, we have used the experimental value of O-t, t(e+e ~ m-+or ) at
s=mp =0.6 BeV', in order to calculate E, pt, rather than the
maximum value of rtpt, (e+e ~ ~+~ ).

from the Orsay" data.
Using the current-algebra phase shift, we can also

predict the s dependence of IF (s) I' (or, equivalently,
the colliding-beam cross sections) as shown in Fig. 3. We
emphasize that the theoretical curve has no adjustable
parameters once the p mass is given. The values of the
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cates that this shift does not depend. strongly on I', . On
the other hand, no such shift is observed for curve y in
Fig. 5. Going back now to Figs. 3 and 4, we observe that
the value of ~F (s) ~' at the maximum is about 4%
higher than the value at s=m, '. This introduces an
error of about the same magnitude in the branching
ratio R, if the maximum ori, i (e+e ~ s.+s. ) is used for its
evaluation in (3.4). .Of course, this error could, in
principle, be avoided by first fitting the data to

~
F,(s) ~

'
in order to find m, and then use ot,i(e+e —+ a.+s ) at
s=mp'. But any way this error is very small. Finally,
Fig. 6 serves to give a comparison for the real and
imaginary parts of our theoretical prediction for F, (s)
with other forms commonly used in the literature. We
have used for all curves res, =775 MeV and I'~=130
MeV.

FIG. 4. Theoretically predicted
~
F (s)

~

' based on eiiective
range [Eq. (2.11)g. The curve corresponds to FAN=116 MeV,
up ——775 MeV.

cross sections obtained by the Novosibirsk group, who
have reanalyzed their data, '4 are in very good agreement
with our prediction which is based on I', =130MeV. On
the other hand, the peak cross section obtained in the
Orsay experiment is considerably higher. If we put
F,=116 MeV and mp=775 MeV in our theoretical
formula (2.11),we can obtain a reasonably good "fit"of
the Orsay data, without having to abandon proper
normalization of the pion form factor at zero momentum
transfer. This is shown in Fig. 4. The Novosibirsk group
has claimed I'„=105~20 MeV and the Orsay group
1 „=112~12MeV. In connection with this, using Fig. 5,
we remind ourselves that commonly quoted values of
the p width and p mass may often depend on the par-
ticular manner in which the experimental data are
parametrized. Curve e in Fig. 5 corresponds to our
effective-range prediction for

~

F (s)
~

given in (2.11),
while curves p and y correspond to two other forms
commonly used in the literature. The same values of mp.

and I', have been used for all three curves. Note the
large difference between curves n and y in the low-
energy region. For 0.4&s&0.6 BeV', the difference be-
tween the two curves varies between 25 and 17%. The
difference between curves n and P is 10% or larger for
0.4& s& 0.8 BeV'. It is also worth mentioning that when
curves n, p, and q are plotted versus Qs, the full width
at half-maximum of curves n and p is the same and.
about3' 123 MeV, while that of curve y is about 130
MeV, even though in all three cases we have used
I p 130 MeV. Also note in Fig. 5 that the actual peak of

~

F (s) ~' for curves n and P is not at s=ris, '=0.6 BeVs
but it is shifted towards the left by about 14 MeV. A
glance at Fig. 4, which is based on I'„.=116MeV, indi-

"Note that in Ref. 4, because of a mistake, it was claimed that
the width at half-maximum is instead 118 MeV for our theoreti-
cally predicted form factor.

IV. EFFECT OF FINITE WIDTH OF y MESON ON
VMD RELATIONS INVOLVING DECAY

MODES OF p, u, AND q

We are working in the framework of the gauge-field
algebra. " In this framework, the generalized first sum
rule of Weinberg" "applied to comparison between the
third and the eighth SU3 components of the vector
currents, and the dominance of the corresponding
spectral functions by p, co, and p lead to"

3 1
-[m„'(cosgy)'+res„'(sin8r)'$. (4.1)

f, ) 4 fr'

50—

30

20

IO

0.2 0.4 0.6 0.8
2

s in BeV

I.O I .2 I.4

"S. Weinberg, Phys. Rev. Letters 18, 507 (1967);T. Das, G. S.
Guralnik, V. S. Mathur, F.E.Low, and J.E. Young, ibid. 18, 759
(1967); S. L. Glashow, H. Schnitzer, and S. Weinberg, ibid. 19,
139 {1967);T. Das, V. S. Mathur, and S. Okubo, ibid. 18, 761
(1967); J. J. Sakurai, ibid 19, 803 (1967). .

' R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
I'1967).

"The formalism of Ref. 8 is used.

Fio. 3. Comparison of our theoretically predicted ~t (s) ~s

with two other forms for the pion form factor commonly used
in the literature. Curve o. corresponds to our theoretical eBec-
tive-range prediction [Eq. (2.11)g. Curve P corresponds to
F (s) =m, '/[m, ' s im, P,(k//r, ,)'(m, /—gs—)g(s 4m ') j, and curve-
p corresponds to F (r) =m, '/[m, ' s r'm, p,e—(s —4m ')g In—all.
three curves, we have used m p

= 775 MeV and Fp
= 130 MeV.
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Fin. 6. The real and imaginary parts of our theoretically predicted F (s) are compared with other commonly used forms. Curves
o,, P, and p correspond to expressions for the form factor given in the caption of Fig. 5. In all three cases 5'sp =775 MeV and I,= 130 MeV
were used.

We emphasize that this relation takes into account the
6nite width of the p meson. From (4.1) and

I'(p'-+ e+e ) =sic'(4m/f ')m (Zi/Z), (3.7)

I'(cu ~ e+e—) =P,n'(4s. /fr')m„(sin8r)', (4.2)

I'(p~ e+e ) =—,', o.'(4s/fr')m„(cos8r)', (4.3)

we derive in complete analogy with the stable-p
approximation"

(Z/Zi)-', m, I'(p' —+ e+e—
)

=m„r (o ~ e+e-)+m, i'(q ~ e+e ), (4.4)

where Zi/Z is given in (2.31).We also recalls' "that the
mixing angles Oy, 8~, and 0 are directly measurable in the
lepton decays of co and p, since

that the radius of the circle is reduced only by the factor

(1+di' p/m, )
—'~',

compared to the one in Ref. 38. Recent experimental
Orsay results are also shown. As was observed ear-
lier, experimentally we measure directly the leptonic
branching ratio E using the total cross section
o«i(e+e —+ s.+s. ) around the peak t see Eq. (3.3)].
Now in order to calculate the decay rate p' —+ e+e, we
also need to know I'„which, of course, depends on the
experimental values of the total cross section away from
the peak as well as around it. Because of increased ex-
perimental background difficulties as we go away from
the peak. , we believe that the experimental value for I",
may be considered as not so accurate as the experimental

I'(cv ~ e+e ) m„m„
(tane, )s = (tang)'.

I'(y-+ e+e ) m„m„ (4.5)

1.5.

Zi/Z =1.0805 . (4 6)

We see that in (4.4) the finite-width correction is given
by the factor Zi/Z. This is to be compared with (3.4),
where the finite correction is given by (Zi/Z)'. Nu-
merically, for F,=130 MeV,

fD

I.O-

I

+0)

3 0.5-

= 775
MeV

= lM
MeV

= 115
MeV

Thus there is only an 8'Po finite-width correction in Eq.
(4.4). Of course, by analogy with Oakes and Sakurai, "
we can summarize (4.4) and (4.5) in a corresponding
graphical representation shown in Fig. 7. We observe

T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967); also, J. J. Sakurai (Ref. 37).

4'R. F. Dashen and. D. H. Sharp (Ref. 30); see also C. A.
Levinson, H. J. Lipkin, and S. Meshkov, Phys. Letters 7, 8f.
(I963).

0.5 1.0 1.5

v'rn 1 (s' ~e+e ) in MeV

I'io. 7. Modification, due to the finite p width, of the Oakes-
Sakurai graphical representation of the ar-q mixing and of the
lepton pair decays of p, co, and g. The experimental results of the
Orsay group for Fp

= 130MeV and I'
p
= 115MeV (see text) are also

shown.
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FIG. 8. The dependence of the branching ratios ~(~ ~ e+e )/I'(p ~ e+e ) and I (q ~ e+e )/p(p ~ e+e ) on the p-meson width for
the Oakes-Sakurai model (curves i) and for the Das-Mathur-Okubo model (curves ii). The full lines are based on Eqs. (4.7) and (4.8)
which take into account the finite p width. The broken lines are obtained when we treat the p meson as a stable particle. The experi-
mental results of the Orsay group are indicated.

value of o«o(e+e —o m+vr ) around the peak. Therefore,
in Fig. 7 we give the experimental results for
I'(p" ~ e+e ), for two values of I'„namely, I', = 130 and
115 MeV. From (3.7) and (4.1)—(4.3) we can also write

nz„m, (sin8r)'

I'(po ~ e+e ) 3Lm„'(co'8&)'+m„'(sin8Y)

I'((u ~ e+e
—

)

I'(p —+ e+e ) m„m, (cos8r)'

I'(p ~ e+e ) 3Lm '(cos8r)'+m '(sin8r)')

—), (o.7)
1

Z
. (4.8)

1

To obtain the corresponding results in the stable-p-
meson approximation, we have simply to put Z=Z& in
(4.7) and (4.8). We see that the finite width reduces

90 I I 0 I 30 I 50

Ip In MeV

FIG. 9. Dependence of the decay rate F(p —+EX) on the
p-meson width. The full line is based on Eq. (4.9), which takes into
account the finite p width. The broken line is obtained when we
treat the p meson as a stable particle. The currently accepted
experimental results are indicated.

these branching ratios by the factor Z/Z& given in
(2.31).This is illustrated in Fig. 8, where we summarize
the Oakes-Sakurai" and Das-Mathur-Okubo4' predic-
tions for these branching ratios for various values of F,.
The experimental Orsay results are also shown.

An interesting effect of the width of the p meson is
that it reduces the VMD prediction for I'(y —+ EE) by
about 8%, for reasonable values of I', . In more detail if
we assume that the electromagnetic form factors of E
and n are dominated by p, co, and p, we obtain via (3.7),
(4.1), and the formalism4' of Ref. 8

I'(y -+ EE) 3{m ' cos'8r+m ' sin28r}

I'(p —+ me. )

cos88 (pK+K +pKogo ) (ZX—
cos(8r —8n) ( p, '

3 (pK+K +pxoKo o -(Z
l(cos8)'l —. (4.9)p~ J Ez,

The corresponding narrow-p-width prediction is ob-
tained by simply putting Z=Zi in (4.9). The two
formulas agree with each other in the limit F,&&mp but
they differ by about 8% for realistic values of I', . This
is illustrated in Fig. 9, where the Oakes-Sakurai model

4' Das, Mathur, and Okubo (Ref. 40).
4' The relevance of (4.1) (or a relation equivalent to it obtained

from the soft ~, E technique) to the y width has been discussed by
V. S. Mathur, L. K. Pandit, and R. E. Marshak, Phys. Rev.
Letters 16, 947 (1966);P. P. Divakaran and L. K. Pandit, ibid. 19,
535 (1967); Oakes and Sakurai (Ref. 38). Our approach is closely
related to the one of the last reference.
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TAnLE I. The decay width F(co —& 3zr) in MeV for various forms of the zz propagator (m, = 773 MeV). '

p propagator E(s)

8 (s) = 1/(zzzp' —s)
ff (s) =1/[m, z s i—m, F—,8(s 4m —z)]
ff (s) = 1/Pnz, z s —An—,I', ()'z/)z, )z (zn, /gs) 8 (s 4m—,') 5
E(s) given in Eqs. (2.29) and (2.11)

rp= 130 MeV, fp'/4m =2.3,
frrp /47'= (0.39+0 07)/~n.

F (co—3m.)

6.7~1.3
6.2~ 1.2
6.6~1.3
7.2+ 1.3

I,=115 MeV, fp'/47f =2.05,
f 'p /4' (0 34~0 06)/w

I (GP 371)

5.3+1.1
5.0%0.8
5.3+0.9
5.7~1,0

a Note that f~&~~ was calculated from the experimental decay width I'(co ~ ~ y) =1135+200keV, and the value of f& /47r. The coupling constant f&~/47r
was calculated from I'& using (always) Eq. (2.24).

has been used for 8& and 8&.44 The currently accepted
experimental results are also shown. " The triangular
point indicates the current-algebra, prediction (F,= 130
MeV).

Finally, our p-meson propagator has a rather im-
pressive effect on the decay rate co~3m, which was
calculated using the Gell-Mann —Sharp —Wagner' model.
This is indicated ' in Table I, where for comparison we
also give the results for other commonly used forms of
the p propagator. Also, in order to obtain some feeling
for how our results depend on I „we give results for
two values of F„i.e., I', = 130 MeV and I', = 115 MeV.
In the calculations the coupling" f „„was taken to be
constant" as in the ordinary Gell-Mann —Sharp —Wagner
model, and was Axed from the experimental value of the
decay rate oz ~ zr"p. For F,=130 MeV, Eq. (2.24) gives

f,'/47r=2. 3, and using the commonly accepted experi-
mental value for F(z0 —+ zr"y), 4' we find"

f p„'/4zr= (0.39+0.08)/zzz, '. (4.10)

For F,=115 MeV, Eq. (2.24) gives f,'/4zr=2. 05 and
correspondingly we have

f p '/4rr = (0.34&0.06)/m '. (4.10')

In order to be able to compare our p propagator with
other forms for it, we have used in all cases listed in the
Table I

f,.„'/4rr =j,'/4zr,

where f,'/4' was calculated from (2.24) for each value
of I'p.

The errors in the table are due only to errors in
f„„'/4zr. The present experimental results4s are

F(zo —+ 3zr),„,=11&2 MeV,

F (oz ~ zr"y)/F (oz —z 3zr) =0.10&0.03.
44 We have used ezp = 775 MeV, ws„= 783 MeV, ns„= 1019MeV,

nz„=140 MeV, zn~+=494 MeV, mz~0=498 MeV (Particle Data
Group, Ref. , 45).' Particle Data Group (N. Barash-Schmidt et al.), Rev. Mod.
Phys. 41, 109 (1969).

'The kinematics for a three-pion final state is given in an
immediately programmable way by M. Parkinson, Phys. Rev.
143, 1359 (1966).I wish to thank T. H. Chang for suggesting this
reference to me.

"The~pcointeraction was written as 2=i6p, & f p N'Ops' Observe that the value of f,„calculated from ~ —+ ~'y does
not depend on what form we use for the b„„part of the p propagator
E (s), so long as E (0) = 1/es p', as expected from gauge-field
algebra.

We see that our p propagator gives a better result by at
least 10%%u~ than any other in the table. The reason is
perhaps easy to see. The relevant part of the p propa-
gator for the process or —+ 3m is for momentum trans-
fers roughlv between s = (4zzz ') ~0 08 .3eV' and
s= (m„—zrz )'~0.42 BeV'. In Figs. 5 and 6, remem-
bering that in all cases

R(s) = (1/m ')F.(s),
we can see the differences between the various pmpa-
gators in this region. Of course, our propagator based on
effective range is expected to be better than any other
in the table, particularly for such a low-energy region.
In connection with Table I, it is amusing to note that a
stable-p propagator gives a better result than the one
with "fixed width" (row 2 in Table I). It is also amusing
to note that the over-all finite-width correction in
F(oz —+3zr) will become negligible if in the row 1 in
Table I Eq. (2.24') is used, instead of (2.24), to calcu-
late f,'/4sr from I', . We conclude, therefore, that if we
consistently neglect p-meson finite-width effects in the
p propagator and in the coupling constant f,'/4rr, we
find the same result for F (o& —+ 3zr) as the one obtained
when p-meson finite-width effects are taken into account
in both these quantities.

We should also mention that the results of Table I
are similar to those of Vaughn and Wali. '

V. HADRONIC CONTRIBUTION TO THE
ANOMALOUS MAGNETIC MOMENT

OF THE MUON

In the last year, evaluations of the leading contribu-
tion of the n' radiative correction4' to -,'(g —2) of the
muon magnetic moment have been done and are shown
to be not much larger than the expected order of
magnitude (zr/zr)'-10 '. Therefore, ot' hadronic con-
tributions arising from modifications of the photon
propagator due to strong interactions may be at least as
important. The formalism for such a calculation has
been given a long time ago. ' Our purpose here is to redo
these calculations for the following reasons:

(1) We want to comps. re the result obtained using our
pion form factor with those of other commonly used
form factors, with the same p mass and p width.

4' S. D, Drell, in Proceedings of tlze Thzrteenth Annggal Inter-
national Conference on High-Energy Physics, Berkeley,
(University of California Press, Berkeley, 1966), p. 93.
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(2) Since the last paper on the subject, the gener-
alized Weinberg first sum rules" " have been dis-
covered, which relate f, and fr with a relation different
from the 5U'3 prediction

fr = (V' ')f. -

states in (5.3) and find via (2.18) that

e'p(s) =(n/12m)(s —4m ')'"s '"II'-(s) I'8(s —4m ')
+ (n~/fr')( (cos8r)'m„48(s —m„')

+(sin8r)'m„'8(s —m„')}. (5.5)

Using (4.1), we write

l(g —2) =l(g-2), +l(g —2)-+l(g-2)„(5 6)

where

(s—4m. ')'"
I~-(~) I'G(~), (5 7)

0,2 00

s (g —2).=
12% 4m

n /4~)
(5.1)

l(g-2). =—
I

—
I

0, dS

k(g —2).=— —,o'p(~)G(~),
4m '~

and new ideas about cv- p mixing" " have appeared
which are consistent with these sum rules. These ideas,
as well as the p-finite-width corrections to f„are going
to modify the ~-p contribution.

For completeness we will first review the relevant
formulas, all of which have been given before. ' The
hadronic contribution to the muon magnetic moment is
given by'

where

G(s) = dx
x'(1—x)

x'+(s/m„') (1—x)

p(~) =3(2~)'z 8(P P.)—
(5.2')

m '(cos8r)'
X G(m„'), (5.8)

m, '(cos8r)'+m„'(sin8r)'

n' 4x)

j, )

X«1j.™(0)
I zs)(z I

j:-(o)
I o) (5 3)

p(s) = (s'/16~sn')o„, s(e+e . +(T=—1 system))
+(s' /1 n6sn)o.s(e+e —+ (T=0 system)), (5.4)

and therefore can, in principle, be measured. But
actually all we need in order to find a reasonably
accurate value for ~ (g —2) & is the low-energy behavior
of p(s). To see this, observe from (5.2) that for s))m„'

G(s) 1/s,

p(~)
—', (g —2) g- ds

(5 2')

(5.1')

In (5.3) the sum is over all possible eigenstates of the
strong interaction Hamiltonian and j„' (x) is the
hadronic part of the electromagnetic current with a
factor e taken away. Just as in (2.17), p(s) is related to
the colliding-beam cross section via" "

m '(sin8r)'
X G(m„') . (5,9)

m„'(cos8r)'+m. '(sin8r)'

The coupling constant f,'/4m is determined by I', via
Eq. (2.24). Our numerical results for ss(g —2), are
shown in Table II, where we also give results for other
commonly used expressions for the pion form factor as
well as for the p stable approximation. We see that our
form factor gives a p contribution which is at least
-15% larger than the one obtained from any of the
other expressions listed in the table. The reason is easy
to see from Fig. 5, since the integral (5.2) rather
strongly emphasizes the low-energy contribution. In
Table III we give the total hadronic contributions
-'(g —2)q, as well as the ones for s& and q for I' = 130
MeV, for both the Oakes-Sakurai'7 and the Das-
Mathur-Okubo4' Inodels. Although the hadronic effects
estimated above are well below the present uncertainties
in the currently accepted value4'

Therefore, the large-s contributions to p(s) will be
highly damped by the 1/ss factor. It is therefore legiti-
mate to take only ~, p, and two-pion intermediate

-'(g —2) '*~"= (116645~33)X10—',

we may expect that in the near future the accuracy will
increase so that we will not only be able to check these

gABLE Il. p-meson contribution to the magnetic moment of the muon for various forms of the pion form factor (mp 775 MeV). &

p meson treated as a stable particle
F (s) m,s/(ass =s zmsI'sa(—s —4m s)g—
F (s) =m, s/pm, s s ,zm, l', (k—/k,—)s(zn, /V's)e(s 4zzz s)g—
F (s) given in Eq. (2.11)

F,= 130 MeV

40X10 s=3.20(a/vr)s
40X10—s 320(a/m. )s

42X10 s=3.36(a/m. )s

4.8X10 s=3.84(a/n. )s

Fp=115 MeV

45X10 s=3.60(a/n)s
4.5X10 s=3.60(a/n)s
4.7&&10 8=3.76( / )'
53X10—s 424(a/n. )s

a Note that the coupling constant f&'/4~, which is needed to Qnd tQe, res@it;s ljsped in the first row in this table, was calculated from Fp via Eq. (2.24).
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TABLE III. Hadronic contribution to the magnetic moment of TABLE IV. p-meson contribution to the charge renorm@lization
they . (In this table the p-meson contribution was taken from the to the order e' (er, =775 MeV, I', =130 MeV, f,'/4rr=23). a

last line in Table II; I', = 130 MeV. )

co-Or mixing model s(g —2)„~(g —2)r s(g —2)total hadronic

Oakes-Sakurai 0.3X10 ' 0.4X10 8 5.5X10 s=4.36(rr/a)8
Das-Mathur-Okubo 03X10 ' O.SX10 ' S.6X10 '=445(rr/rr)'

Treating p meson as stable particle
l~' (s) from eilective range LEq. (2.11)g

(eep'), /e'

0.31&'Fo
—0.325%%u~

a Note that fp2/4m was calculated from Fp via Eq. (2.24).

hadronic effects but also, perhaps, give some inde-
pendent information about the correct co-p mixing and
the precise form of the pion form factor.

In the remainder of this section we shall calculate two
quantities of only "theoretical" interest, namely, the
wave-function renormalization constant Z for the p
field, and the hadronic contribution to the order t,' part
of the charge renormalization. The calculation is rather
enlightening, and so we shall give the details.

The wave-function renormalization constant is

and therefore

mp 0
)

that is, the theory becomes divergenceless.

Now let us consider the hadronic contribution to the
e' part of the charge renormalization. It is given by'

(heo')g/e'= (beo') /e'+(beo') /e' (5.14)

where the p contribution is

Z 1

4m '
o, (s)ds, (5.10)

(&eo') p

g2

pt(s) (g)—4$)
m„~

(5.15)

(leo') „,„e' " 1—p&r&(s)ds.
e' 4 9 2 s'

cc

Z'=— (5.11)Im(R(s) jds.

Note that

'1
where o, (s) is the expression appearing in (2.15). Using
(2.15), we have

(5.16)

Z—'=—residueLF (s)j
2

mp s=so

From (5.12) and our convention.

=15.5. (5.12)

For R(s), we uses' (2.29) and (2.11) in spite of the fact
that there is no damping factor in (5.11) and that ex-
pressions (2.29) and (2.11) are valid only for low s. We
use these expressions as if they were valid everywhere.
Remembering that F(s) has a pole at s=so ———9.4
&(10'm ' we Gnd

pt"'(~)+4 p'"'(e) =p(~), (5.17)

and p(s) has been given in terms of the hadronic part
of the electromagnetic current" in (5.3). First the p
contribution. Since high values of s in (5.15) are damped
by the 1/s' factor, it is perfectly legitimate to use (2.19)
for pt&+(s). On the other hand, from (2.16) we ixrnnedi-
ately have

(&eo') /e'= —eY(0). (5.18)

Using (2.20) and (5.18), it is a matter of straightforward
algebra to find

z=zo= (~,/~, ')',

we hand (with m„=775 MeV) that

m '=3 BeV (5.13)

(beo'), P=——,'n — +-,'h(m p') +kp')'s'(nap')—
mp2F p 3~

=—0.325'g), (5.19)

Z—1—(x) ) (5.12')

"It is easy to see that this result remains unaltered if, instead of
using (2.29) for E(s), we had. used the expression which does not
ignore the pole of I (s) at so= —9.4)&10'nzp~ (Ref. 19).

%e remind the reader that in a divergenceless theory,
Z '=~. Note also that if we had not ignored the
vanishing point of f(s) at s=so ———9.4X10'm„', the
correct expression for the pion form factor would have
been

P-(e) = L(ro —~)/»jf(0)/f(e),

where f(s) is given by (2.4). In this case from (2.28) and
(2.19), we immediately see that

(leos) /es = es/4frs—(5.20)

where fr is related to f, via (4.1). The results for both
the Oakes-Sakurai" and the Das-Mathur Okubo4&

models are summarized in Table V.

"Actually, +4p1( ) (s) is the spectral function due to the isosinglet
part of the electromagnetic current.

for Fp 130 MeV. Note that if the width of the p meson
is neglected,

(beo'), /e' = e'/f, ' = 0.317'Po—. (5.—19')

These results are also summarized in Table IV. The co-q
contribution is
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TABLE V. Hadronic contribution to the charge renormalization
to the order e'. (The p-meson contribution is taken from the last
line in Table IV.)

(&ec'),/e' (&co')., „/c' (&ac'/e') total hadronic

Oakes-Sakurai —0.325% —0.071%
Das-Mathur-Okubo —0.325 jo —0.079'Po

0.396'Fo
0.404%

Our method gave also a correction of 10% or higher to
the p contribution to the anomalous magnetic moment
of the muon, compared to the results obtained with
other coinmonly used forms for the m.+ form factor.
These later results are due to the fact that our pion form
factor is considerably different than the usual forms for
it, particularly in the low-energy region, as was shown in
Fig. 5.

(2) Smaller corrections (about 8% of the ordinary
VMD predictions) were also seen in the branching
ratios

P{p—&%K) I'(oc —&e+e ) F(p —+e+e )

I'(p ~ arm) I'(po ~ e+e ) F(p' —+ e+e )

and in the sum rule

~~m, I'(p'~ e+e ) =m„r(&p —+ e+e )+m„I'(&o —+ e+e ).
In particular, the finite p width tends to decrease the
value of I'{p~EK) by the factor

(1+F,d/m, )
—' = (1.0805)—'

VI. SUMMARY AND CONCLUSIONS

(1)We have seen in the various calculations presented
in this paper that the correction due to the finite width
of the p meson may be as large as 15%, compared to the
ordinary VMD predictions, for reasonable values of the
p width. We have seen in more detail that such a high
correction appeared in the branching ratio

for F,=130 MeV, and move it towards the right
direction in order to agree with experiment.

(3) On the theoretical side, the p propagator. was
calculated by integration of the low-energy part of the
spectral function o;(m'). To no surprise we found that
the p propagator is responsible for all of the structure of
the pion form factor for low energies, in complete
analogy with the stable p meson, VMD expression

F.(s) =m„'/(m, '—s),

and consequently the pox coupling does not depend on s,
for low s, even when the width is explicitly taken into
account /see Eq. (2.37)].

(4) Finally, we have shown in our model that al-
though the gauge-fieM algebra" with the convention

Z=Zo= (m, /m, ')'

immediately fixes the normalization of the renormalized
vector-meson field, it is perfectly correct, in the ap-
proximation where we neglect the width of the vector
meson, to take

and consequently to assume the usual normalization for
the renormalized p field. However, this is no longer the
case when the width is taken into account. In this latter
case, the relation Z&/Z=1 does not hold any longer; it
is replaced by

provided, of course, that we stick to the convention
Z=ZO, which has the important advantage of making
(m, /f, )' "renormalization-invariant. "'
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