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would seem to indicate that the spin conservation
rule is still applicable for this reaction. There
is evidence, however, that there is breakdown
in the LS coupling scheme for the 4F states.
Abrams and Wolga' have measured considerable
transfer in the case of O'F-4'D relative to O'F
-4'D. This of course is a different reaction.
A glance at estimates of the spin-orbit interac-
tion compared with the electrostatic repulsion
interaction' shows that 4P is a good LS coupling

term, 4D is poorer while 4F is the poorest. Thus
the reaction, 4'F-O'D, involves the pair of col-
lision partners least likely to obey the spin con-
servation rules. A further consideration is that
4 'P, O'F energy separation is over 6 times
larger than the 4 'D, 4 F separation and thus the
4 'D, 4'F collision represents a nearer resonance
reaction; however, both separations are smaller
than thermal energies.
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The generalized oscillator strengths for the transitions 2 S 2 P, 3 S, 3 P, 3 D,
2 S 2 P, 3 S, 3 P, 3 D, 4 P of He are computed from the Weiss correlated wave functions

3 3 3 3 3 3

of the Hylleraas type. The results from two alternative formulas, corresponding to the
"length" and "velocity" formulas in the optical limit, agree with each other within a few per-
cent for moderate values of the momentum transfer. The first Born excitation cross sections
for the above-mentioned transitions by charged-particle impact are also presented.

1. INTRODUCTION

Although the metastable 2'S and 2'S states of
the helium atom play important roles in various
gaseous phenomena as unique species by virtue
of their long radiative lifetimes'~' and great re-
activity, ' current information on the inelastic
scattering of charged particles by the metastable
He atoms is quite limited. 4 ' We have, there-

fore, extended our earlier work on some transi-
tions from the ground state' to include the gener-
alized oscillator strengths for the 2'$-2'P, 3'S,
3 P~ 3 D~ 4 P and 2 S 2 P~ 3 S j 3 P~ 3 D7 4 P
excitations. The Born cross sections'~' for the
excitations by charged-particle impact are also
presented.

We have used correlated wave functions by
Weiss' as before, and we believe our results to
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be accurate to 5% or better; thus they should
serve as means to test the validity of the Born
Bpproximation whenever experimental data in the
pertinent velocity region become available. More-
over we may propose the use of our results for
analytical purposes. For example, a beam con-
taining metastable He atoms as produced in the
laboratory by electron impact" usually consists
of three species, 2'S, 2'.S, and 1'S; the concen-
tration of the respective species can now be deter-
mined by combining our calculated generalized
oscillator strengths with energy-loss spectra
measured with sufficiently fast electrons.

We hope that our results will be useful also
in astrophysics, for example, in the analysis of
the population of the metastable He atoms in
gaseous nebulae. ' &"

2. DEFINITIONS

formulas for the optical (dipole) oscillator
strength f„, respectively.

The differential cross section for inelastic scat-
tering of a particle of charge ze and velocity v
with concomitant excitation (or de-excitation) of
an atom from state 0 to n is given, in the first
Born approximation, by'~"

4na 'g' f (K)0 n, 2d ln(Kao
n

where 7'=mev'/2 and me is the electron ma. ss.
The generalized oscillator strength may be ex-

pressed in terms of a power series in (Ka,)'
provided (Ka,)' is sufficiently small:

(4)

The generalized oscillator strength f (K) for
the transition of an N-electron atom from state
0 to state n at momentum transfer K5 is given
by8y 9

f (K) = [(E /R)/(KaO)']

N

Q Jq+e y dr ~ "dr, (1)
ij

'glPl Pg'P. y 7z PgP ~ ltd
pgp,

(5)

where the coefficients f (~) depend on the matrixn
elements of gj z.i and p, takes on the values
1, 2, ..., 2X+ 1. [See Eq. (5) of Paper I.]

The wave functions that we have used are due to
Weiss, "and have the form (specified by the usual
quantum numbers n, I, and m)

where a, is the Bohr radius, g the Rydberg en-
ergy, E the excitation energy, rj the position
of the jth electron, and g and (O are the wave
functions of the final and initial states, respec-
tively. When the states involved are degenerate,
customary average and summation over substates
are implied. The notations here and below are
the same as in our Paper I of this series, except
that we must specify here the initial state 2'S or
2'S. The transitions dealt with are all between
states with the same spin multiplicity, for the
generalized oscillator strength otherwise vanishes
unless one allows for spin-dependent couplings,
which are all weak in He. Where necessary, we
shall denote the singlet transitions by a super-
script + on the left, and the triplet transitions by

For instance, +f2iS (K) is the generalized
oscil1.ator strength for the 2'S-3'S transition,
and f33P(K) that for the 2'S-2'P transition.

An alternative formula to Eq. (1) is"

(K)=(R/E )a '
0

N Q $4
Je j g+ o —g

— dr '' dr
n eg. 0 eg. 1j=1

where'
—(K ~

r& )/K; In the limit K-O, Eqs.
(1) and (2) reduce to the "length" and "velocity"

with

p &+I —t, (t, +7/~, )
00 lm

' 'Im""OO(2']

where + and —stand for the singlet and triplet
states, respectively, the quantities p, q, and p,
are nonnegative integers, and +

cp&& z, g, and
g are variational parameters. As to the pro-
cedures of computing fn(K) by Eq. (1) or (2),
refer to Sec. 3 of Paper I.

It is now well recognized that one usually needs
accurate wave functions for reliable evaluation of
the generalized oscillator strengths. The Weiss
wave functions compare very favorably with more
elaborate ones calculated by Pekeris and co-
workers, " as can readily be judged from the
energies and other properties" listed in Table I.

The excitation cross section o is obtained by
integrating Eq. (3) between kinematical limits of
K. For sufficiently large T, for which the Born
approximation is valid, o~ can be conveniently
parameterized by the Bethe procedure. '&'~"
The result is
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4' 2@2 f 4cT y E
0

s 7/'R & /B B T/R T' )

for an allowed transition (n = s), and

4' 'z' y
O s' s'

s' 7'/a s' r/a r' ) (8)

for a forbidden transition (n =s'). The param-
eters cs, ys, bs&, and ysr are all evaluated from
the generalized oscillator strength by means of
Eqs. (12), (13), (15), and (16) of Paper I.

3. RESULT AND DISCUSSION

The generalized oscillator strengths for the
singlet and triplet transitions are presented in
Tables II and III, respectively. The values in
the "Formula I" columns were computed from
Eq. (1), and those in the "Formula II" columns
from Eq. (2). The excitation energies computed
by Weiss were used in both cases. The agree-
ment between "Formula I" and "Formula II" re-
sults is typically 3% or better in the region where
the magnitudes of +fz(Z) are significant. As we
mentioned in Paper I, "Formula I" results are
more reliable for large momentum transfers
[(Ka,& 0. 5] .

TABLE II. Generalized oscillator strengths fn(E) x 10 for the singlet transitions from the 2 S state of He

[see Eqs. (1) and (2)l.

n

Formula
(Ãao)

0.001
0.005
0.01
0.02

Ia

373.0
360.5
345.6
317.6

2P

374.2
361.7
346.7
318.6

6.022
14.01
23,32

37.98

3 $

2.430
11.43
21.17
36.36

142.8
124.0
103.4
70.39

31P

145.4
125.9
104.7
70.87

5.835
27.65
51.73
90.61

3D

5.903
27.95
52.23

91.29

49.82
45.75
40.97
32.40

4 p

49.61
45.90
41.47
33.36

0.04
0.06
0.08

0.10

0.15
0.20

0.25

0.30

0.35
0.40
0.45
0.50

268.7
227.8
193.5
164.6

110.8
75.27
51.57
35.60

24.72
17.25
12.09
8.496

269.6
228.6
194.2
165.3

111.3
75.74
51.97
35.93

25.00
17.49
12.29
8.657

54.94
60.94
60.54
56.65

41.77
27.77
17.47
10.60

6.257
3.596
2.008
1.083

53.81
59.98
59.65
55.80

41.11
27.33
17.21
10.46

6.171
3.540
1.967
1.050

29.07
9.094
1.304
0.1060

7.258
14.74
18.29
18.56

16.97
14.59
12.05
9.685

28.90
8.872
1.206

0.1354

7.411
14.87
18.38
18.66

17.10
14.73
12.19
9.819

139.5
162.0
168.0
164.1

135.5
102.1
73.92
52.51

37.00
26.00
18.28
12.88

140.1
162.3
168.0
163.9

135.3
102.1
74.01
52.66

37.15
26,12
18.37
12.94

19.02
10.00
4.437
1.417

0.2880
2.571
4.814
6.063

6.361
6.022
5.345
4 544

20.25

11.09
5.227
1.895

0.1175
1.966
3.942
5.054

5.317
5.011
4.408
3.701

0.55
0.60
0.65

0.70

5.980
4.211
2.962
2.079

6.113
4.319
3.049
2.149

0.5581
0.2695
0.1179
0.0436

0.5309 7.635
0.2479 5.931
0.1019 4.555,
0.0330 3.464

7.756
6.037
4.645
3.540

9.104
6.457
4.596
3.282

9.141
6.479
4.610
3.292

3.747
3.021
2,394
1.872

3.005
2.377
1.842
1.403

0.75
0.80
0.85
0.90

0.95
1.0
1.2
]

1.453
1.009
0.6954
0.4736

0.3178
0.2090
0.0263
7 x10

1.508
1.053
0.7286
0.4989

0.3366
0.2228
0.0293
0.000 04

0.0114
0,000 91
0.000 69
0.0045

0.0091
0.0131
0.0170
0.0106

0.0059
3x10
0.0036
0.0105

0.0174
0.0229
0.0281
0.0187

2.613
1.954
1.450
1.067

0.7777
0.5607
0.1292
0.0167

2.676
2.008
1.496
1.106

0.8111
0.5896
0.1452
0.0235

2.352
1.690
1.217
0.8779

0.6343
0.4586
0.1244
0.0317

2.360
1,698
1.225

0.8867

0.6432
0.4673
0.1307
0.0351

1.446
1.106
0.8381
0.6290

0.4675
0.3439
0.0873
0.0141

1.051
0.7749
0.5622
0.4008

0.2800
0.1910
0.0271
4x 10

1.6
1.8
2.0

0.0076
0.0177
0.0242

0.0068
0.0163
0.0218

0.0042
0.000 79
7x10

0.0087 0.000 03
0.0026 0.0069
0.000 22 0.0160

0.000 42 0.0067 0.0081 0.000 16 0.0087
0.0032 0.000 81 0.0012 0.0025 0.0218
0.0098 2 x 10 6 x 10 0.0073 0.0315

a"Formula I" results are calculated from Eq. (1), and "Formula II" results from Eq. (2).
Expansion formula (4) should be used for (Kao) 0.12.
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TABLE III. Generalized oscillator strengths f„(E) x 10 for the triplet transitions from the 2 S state of He

[see Eqs. (1) and (2)].

Formula
(Za,)'

0.001
0.005
0.01
0.02

Ia

535.6
521.6
504.7
472.7

2P

536.6
522.6
505.7
473.7

3 S

1.685b

7.861
14.80
26.33

1.639
7.821
14.76
26.30

61.85
53.53
44.36
29.61

3P

61.16
52.88
43.76
29.11

3.514
16.78
31.69
56.59

33g)

3.462
16.53
31.20
55.65

23.52
21.56
19.26
15.13

43P

21.73
19.87
17.68
13.75

0.04
0.06
0.08
0.10

0.15
0.20
0.25

0.30

0.35
0,40
0.45
0.50

0.55
0.60
0.65

0.70

0.75
0.80
0.85
0.90

0.95
1.0
1.2
1.4

415.2
365.3
322.0
284.1

209.3
155.4
116.3
88.70

66.55
50.80
38.99
30.07

23.30
18.12
14.15
11.08

8.705
6.854
5.408
4.274

3.382
2.679
1.055
0.4060

416.2
366.2
322.7
284.9

209.9
156.0
116.8
88.12

66.92
51.12
39.27
30.32

23.51
18.31
14.31
11.22

8.818
6.950
5.488
4.341

3.439
2.726
1.078
0.4180

41.89
50.15
53.53
53.72

47.04
37.12
27.78
20 ~ 15

14.32
10.02
6.931
4.741

3.207
2.145
1.415
0.9187

0.5846
0.3627
0.2175
0.1246

0.0668
0.0324
0.000 38
0.0113

41.86
50.12
53.51
53.69

47.02
37.11
27.78
20.15

14.31
10.01
6.921
4.729

3.196
2.135
1.406
0.9113

0.5788
0.3583
0.2144
0.1225

0.0656
0.0317
0.000 36
0.0107

11.13
2.600
0.0418
0.8854

8.556
16.23
20.93
22.75

22.52
21.05
18.97
16.66

14.37
12.24

10.33
8.654

7.213
5.989
4.957
4.093

3.373
2.775
1.255
0.5545

10.82
2.452
0.0251
0.9723

8.809
16.57
21.31
23.14

22.91
21.43
19.33
17.00

14.69
12.54
10.62
8.927

7.473
6.236
5.191
4.316

3.584
2.975
1.411
0.6710

90.51
109.1
117.3
118.8

107.2
87.85
68.91
52.87

40.11
30.27

22.81
17.20

13.00
9.849
7.487
5.712

4.375
3.362
2.594
2.009

1.561
1.217
0.4632
0.1834

88.84
106.8
114.7
115.9

103.9
84.57
65.78
49.97

37.48
27.91
20.71
15.35

11.36
8.416
6.235
4.619

3.422
2.533
1:873
1.382

1.016
0.7444
0.1984
0.0399

8.654
4.302
1.673
0.3608

0.5921
2.879
5.213
6.864

7.724
7.930
7.676
7.139

6.454
5.716
4.984
4.296

3.669
3.112
2.624
2.203

1.842
1.536
0.7243
0.3302

7.632
3.590
1.237
0.1741

0.9212
3.587.

6.185
8.005

8.961
9.207
8.951
8.380

7.641
6.834
6.026
5.257

4.550
3.914
3.352
2.860

2.434
2.067
1.063
0.5420

1.6
1.8
2.0

0.1458
0.0447
0.0093

0,.1527 0.0186
0.0489 0.0191
0.0116 0.0161

0.0172
0.0174
0.0143

0.2360
0.0939
0.0328

0.3191
0.1504
0.0691

0.0745
0.0306
0.0125

0.0027
0.0014
0.0086

0.1446
0.0594
0.0218

0.2755
0.1395
0.0700

a"Formula I" results are calculated from Eq. (1), and "Formula II" results from Eq. (2).
Expansion formula (4) should be used for small (Mao) .

For those S—P transitions for which accurate
optical limits are known" (Table I), we believe
that the calculated results which lead to better
agreement with such optical oscillator strengths
are preferable. The results for the transitions
to the 4'P and 4'P states are less trustworthy
than the others because neither of the wave func-
tions is as good as those used for other states
(Table I).

For the S- S transitions, the "velocity" data
(Formula II) are more reliable, partly because
they are not affected by the nonorthogonality of
the lower- and upper-state wave functions. The
"length" results (Formula I) for the 2'S-3'S
transition are strongly affected by the appreciable

overlap integral between the two wave functions
(see Table I). Forthe S-D transitions the "length"
results are probably better for (Ka,)' & 0. I, par-
ticularly for the triplet transition.

In comparison with the f„(K)for the transitions
from the ground state (see Paper I) we note:
(a) that the magnitudes of *f (K) for the (opti-
cally) allowed transitions are roughly twice those
of the corresponding transitions from the ground
state, and for the forbidden transitions almost
one order of magnitude larger; (b) that the peaks
of +f~(K) for the forbidden transitions are shifted
toward smaller momentum transfers, that is, to
the vicinity of (Ka,)'-0. I; and (c) that there are
"zeros" of +f (K) in all transitions, particularly
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noticeable in the transitions to the 3P and 4P
states, both singlet and triplet. Whenever the
integral in Eq. (1) [or Eq. (2)] changes sign, a
zero-value minimum of +f (K) occurs. These
minima are easily understood in terms of inde-
pendent-particle models; their positions are
closely related to the nodes of the radial functions
of the states involved. " For more complex atoms
and molecules the minima of fz(K) are often ob-
served in transitions from ground states. "

Although the occurrence of the minima is thus
qualitatively interpreted, their quantitative as-
pects, for instance, the exact location of the
minima, depend upon intricacies of the electronic
structure such as electron correlation. In fact,
the agreement between the "length" and "velocity"
results, even from such elaborate wave functions
as we have used, deteriorates near and beyond
the first minimum because the minimum results
from cancellation in the integrands of Eqs. (1)
and (2). (See Tables II and III. )

As a consequence of the large magnitudes of
+ f„(K) for the low-lying excited states [see (a)
above] and of the Bethe sum rule' [gg~(K)
=N for any K], the shapes of the Bethe surfaces"
for the metastables are very different from that
for the normal He atom. The fact that the magni-
tudes of the f (K) for the forbidden transitions
in the vicinity of (Ka,)' =0. 1 become very large,
while the minima of +f3p(K) and +f4@(K) occur
in the same region, is consistent with the Bethe
sum rule.

Note that the contribution of the region beyond
the first minimum of f3p(K) to the excitation
cross section o [Eq. (7)] is appreciable, as may
be seen by plotting +f3~(K) against In(Kao) . [The
area under such a curve between kinematic limits
of (Ka, )~ is proportional to os. (Ref. 15)] .

The expansion coefficients [Eq. (4)] are given in
Table IV. However, the range of validity of the
expansion formula (4) is more limited than for
transitions from the ground state. ' For the al-
lowed transitions, Eq. (4) may be used only for
(Ka,)' much smaller than that at which the first
minimum of +f~(K) occurs, and for the forbidden
transitions it may not be used beyond the first
maximum of +fz(K).

Our results for the 2'S- 2'P and 2'S- 2'P tran-
sitions may be used to analyze the composition of
metastable He atoms produced experimentally.
For instance, comparison of cross-section ratios
of fast electrons for the two transitions (the ex-
citation energies of which differ by 0. 54 eV) at a
few angles will readily determine the ratio of the
metastable atoms present in the collision volume.
In Figs. 1 and 2, we present the electron-impact
energy-loss spectra for the 2'S and 2'S states,
respectively, based on our calculated data. The
height corresponds to the differential cross sec-
tion per unit solid angle. %'e have not evaluated
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2p He (2IS—nILj, T= IOO eV
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FIG. 1. Electron energy-loss spectra
for the 2 S He at an incident energy of
100 eV. The ordinate gives the differ-
ential cross section per unit solid angle
in logarithmic scale. The 4 I' line for
the scattering angle 0= 8' is too short
to be seen. The 4 S, 4 D, and 4 I'

lines are not included. The superelas-
tic transition lines (2 S 1 Q at
0= 6 and 8' are similar in height to
that for 0=0'.

the cross sections for the transitions to the 4S,
4D, and 4I' states, either singlet or triplet, which
should appear very close to those for the 4P states.
Also, some singlet-triplet intercombination lines
will appear in experimental spectra at low inci-
dent energies. The 2'S- 1'S superelastic transi-
tion line is insignificant compared to other lines,
at least in the high incident velocity range where
the first Born approximation is valid. The zero-
value minima of +f+(K) lead to the corresponding
minima in the differential cross sections and
hence may be used in identifying some transitions.
These minima are responsible for the reduction
or disappearance of the 3P lines at the scattering
angle 0 = 6' and the 4P lines at 8 = 8' in Figs. 1
and 2. In reality, however, experimental cross
sections may fail to vanish at the minima because
of effects not included in the first Born approxi-
mation. "

At present, we are unaware of any experimental
differential cross section to be compared with our
results for metastable He atoms.

4. EXCITATION CROSS SECTIONS

The parameters for the excitation cross sections
[Eqs. (7) and (8)] are listed in Table V. As is
mentioned in Sec. 5 of Paper I, for an allowed
transition y depends on the reduced mass M of
the incident particle and the atom, and in Table V

we list both ys(e) for electrons and ys(~) for the
case M- ~, a good approximation to protons and
other heavy incident particles.

The asymptotic cross section [Eq. (7) or (8)] is
not identical to "the Born cross section" which
results from the integration of Eq. (3) between
exact kinematical limits of K at a given 7. How-
ever, the difference, which is represented by the
remainder O(E '/7'), is very small for the al-
lowed transitions (less than 1% for electrons even
at T = 5 eV) and only a little larger for the for-
bidden transitions (1-2%). Some excitation cross
sections for electrons computed from Eqs. (7),
(8), and Table V are shown in Fig. 3 (2'S- 2'P
and 2'S-2'P), a,nd Fig. 4 (2'S-3'S, 3'P, and
3'D). The ordinate of these figures represents
(r„/(4mao') ( T/It).

There are two earlier theoretical works on the
excitation cross sections for the transitions from
the 2'S state. The calculation of Moiseiwitsch'
includes excitation cross sections for the 2'S

2'P, O'P, and 3 D transitions, and the calcula-
tion of Ochkur and Bratsev' includes those for the
2'S- O'S, O'P, and O'D transitions. Moiseiwitsch
used modified hydrogenic wave functions to calcu-
late Born cross sections. His 2'P cross sections
are in excellent agreement with ours (Fig. 3),
but the O'P cross sections are larger than ours
by about 10/o and 3'D cross section smaller by
about 20% in the asymptotic region, as shown in

He (23S—n3L), T= IOO eV

FIG. 2. Electron energy-loss spectra
for the 2 S He at an incident energy of
100 eV. The ordinate gives the differ-
ential cross section per unit solid angle
in logarithmic scale. The 3 P line at
the scattering angle 8=6 and 4 P line
at 8= 8' are too short to be seen. The
4 S, 4 D, and 4 E lines are not
included.
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TABLE V. Parameters for the excitation cross sections [see Eqs. (7) and (8)].

Initial state

Final state 2P

2$

3P
A. Optically allowed transitions

4P 2'P

f,/(E, /z)
ncs

~ (e)
(Oo)

s

8.503
3.550

—0.153
0.035

0.814
—0.662

0.159
0.232

0.221
—0.741

0.035
0.061

6.408
2.533

—0.195
0.075

0.273
—0.878

0.100
0.132

0.084
—0.900

0.024
0.036

Final state 3 1$
B. Optically forbidden transitions

3D 3 S 3D

0.974
—0.101

2.630
—0.267

0.705
—0.088

1.419
-0.213
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FIG. 3. Cross sections for the
2 S 2 P and 2 S 2 P transitions of He

by electron impact. The circles (&) are
the Born cross sections calculated by
Moiseiwitsch (Ref. 5) .
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FIG. 4. Cross sections for the
2 S 3 J transitions of He by electron
impact. The open circles (0) and

squares ( ) are the Born cross sec-
tions calculated by Moiseiwitsch
(Ref. 5) for the 2 S 3 P and 2 $3 D
transitions, respectively. The solid
circles (), triangles (L) and squares
(8) are the Born-Ochkur cross sec-
tions calculated by Ochkur and Bratsev
(Ref. 6), for the 2 S 3 P, 2 S 3 $
and 2 S 3 D transitions, respectively.3 3



OSCILLATOR STRENGTHS OF He ATOM. II

Fig. 4. On the other hand, Ochkur and Bratsev
used Hartree- Pock wave functions and evaluated
the cross sections with the Ochkur approximation
to include the electron exchange effect. All of
their cross sections are in essential agreement
with our results except for the low incident en-
ergy region (T-20 eV for electrons) where, for
the forbidden transitions, the exchange effect ap-
pears to decrease the cross sections from the
Born-approximation values (Fig. 4).

Since electron correlation is not expected to be
strong in excited, states of He, it is not surprising
to find that the Hartree-Fock wave functions pro-
duce almost as accurate excitation cross sections
as the correlated wave functions.

It is interesting to note in Fig. 4 that the Born
excitation cross sections for the forbidden tran-
sitions (2'S-3'S and 3'D) are larger than that for
the allowed transition (2'S - 3'P) in the region
T &100 eV, contrary to the case of the tran-
sitions from the ground st ate'~ 22(1'S- 3'S, 3'P
and 3'D). For the singlet excitations from the
2'S state only the O'D excitation exhibits a sim-
ilar trend.

We expect the Born approximation for the tran-

sitions from the metastable states to be valid
down to rather low incident velocities because the
excitation energies are small, but there is at
present no pertinent experimental inf ormation re-
garding the actual range of validity of the Born
approximation. The result of a close-coupling
calculation" appears to indicate that the asymp-
totic behavior of the cross sections, for the 2'S
-2'P as well as 2'S-2'P transition, is attained
at rather low incident electron energy, although
the close-coupling results are somewhat smaller
(by- 20% for the singlet and by -

40%%u~ for the
triplet transitions) than the Born cross sections
at T=15 eV.
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The electronic excitation transfer processes,

K(P«2)+Rb( S«,) -K( S,»)+Rb( P«2)+~E

K( PP2) + Rb( S«2) K( S«2) + Rb( P«2) + DE,

have been studied by irradiating a cell containing a nonequilibrium mixture of potassium and
rubidium vapors with either the 7665 A D2 line or the 7699 K Dl line of the potassium resonance
doublet. The resulting collisionally induced rubidium 7948 A fluorescence signal, isolated
by interference filters used in tandem, is detected with a liquid-nitrogen —cooled S-1 photo-
multiplier placed at right angles to the direction of excitation. Measurements of the intensity
ratio of the potassium and rubidium fluoresence combined with an optical absorption determi-
nation of the rubidium atom density yields the following excitation transfer cross sections:

Q(K( Pf/2) ~ Rb( P&q~)) = 2.2 A + 25%

@[K(P3&2) Rb( P&&&)]= 2.6 A + 20%

at T= 365'K* 2%. Throughout an experimental run the potassium and rubidium vapor pres-
sures are varied, but data are taken for only the lowest vapor pressures for which corrections
due to resonance radiation imprisonment are unnecessary.

I. INTRODUCTION

When a gas gains energy by photo-excitation,
electron impact, shock heating, radiolysis, chem-
ical reaction, etc. , appreciable concentrations
of electronically excited atoms and molecules are
often generated. These excited species may emit
radiation, or they may be de-excited through var-
ious collisional encounters in which the energy is
redistributed among the collision partners. The
competition among the different deactivation path-
ways controls the subsequent physical behavior
and chemical properties of the gas. Knowledge of
the absolute cross sections (reaction rates) for
energy transfer is thus of fundamental importance
in understanding such diverse phenomena as flash

photolysis, flames, discharges, shocks, auroras,
and stellar atmospheres. Among the various types
of energy transfer, those between colliding atoms
in different states of excitation are, in principle,
some of the simplest. Of these, the excitation
transfer between different alkali atoms has been
of particular interest to us not only because such
systems typify a large class of near-adiabatic in-
elastic processes, but also because these systems,
which can be treated as hydrogen-like, offer
promise of allowing a critical comparison between
theory and experiment. We report here an experi-
mental study of the interchange of electronic excita-'
tion between the lowest-lying excited states of
potassium and rubidium in which cross sections
for energy transfer between some of the fine-


