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would seem to indicate that the spin conservation term, 4D is poorer while 4F is the poorest. Thus
rule is still applicable for this reaction. There the reaction, 43F -41D, involves the pair of col-
is evidence, however, that there is breakdown lision partners least likely to obey the spin con-
in the LS coupling scheme for the 4F states. servation rules, A further consideration is that
Abrams and Wolga® have measured considerable 4'P, 4°F energy separation is over 6 times

transfer in the case of 43F -~ 41D relative to 43F

1 3 3
-43D, This of course is a different reaction. larger than the 4 °D, 4°F separation and thus the

A glance at estimates of the spin-orbit interac- 4'D, 4°F collision represents a nearer resonance
tion compared with the electrostatic repulsion reaction; however, both separations are smaller
interaction® shows that 4P is a good LS coupling than thermal energies.,
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Generalized Oscillator Strengths of the Helium Atom.
II. Transitions from the Metastable States*
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The generalized oscillator strengths for the transitions 2!s—2'P, 3's, 3'p, 3'p, 4'p, and
255 23P, 33S, 33P, 33D, 43P of He are computed from the Weiss correlated wave functions
of the Hylleraas type. The results from two alternative formulas, corresponding to the
“length” and ‘velocity” formulas in the optical limit, agree with each other within a few per-
cent for moderate values of the momentum transfer. The first Born excitation cross sections
for the above-mentioned transitions by charged-particle impact are also presented.

1. INTRODUCTION fore, extended our earlier work on some transi-
tions from the ground state® to include the gener-
Although the metastable 2!S and 2°S states of alized oscillator strengths for the 2'S~2'P, 3'S,
the helium atom play important roles in various 3'P, 3'D, 4'P and 235~ 2%P, 33§, 3°P, 3°D, 4°P
gaseous phenomena as unique species by virtue excitations. The Born cross sections®?® for the
of their long radiative lifetimes!2 and great re- excitations by charged-particle impact are also
activity, ® current information on the inelastic presented.
scattering of charged particles by the metastable We have used correlated wave functions by

He atoms is quite limited.*~7 We have, there- Weiss!® as before, and we believe our results to
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be accurate to 5% or better; thus they should
serve as means to test the validity of the Born
approximation whenever experimental data in the
pertinent velocity region become available. More-
over we may propose the use of our results for
analytical purposes. For example, a beam con-
taining metastable He atoms as produced in the
laboratory by electron impact!! usually consists
of three species, 2'S, 23S, and 1'S; the concen-
tration of the respective species can now be deter-
mined by combining our calculated generalized
oscillator strengths with energy-loss spectra
measured with sufficiently fast electrons.

We hope that our results will be useful also
in astrophysics, for example, in the analysis of
the population of the metastable He atoms in
gaseous nebulae. 12,13

2. DEFINITIONS

The generalized oscillator strength f n(K) for
the transition of an N-electron atom from state
0 to state » at momentum transfer K7 is given
bya,g

£ () =[(E, /R)/(Ka )]

where ¢, is the Bohr radius, R the Rydberg en-
ergy, E, the excitation energy, Fj the position
of the jth electron, and ,, and y, are the wave
functions of the final and initial states, respec-
tively. When the states involved are degenerate,
customary average and summation over substates
are implied. The notations here and below are
the same as in our Paper I of this series, except
that we must specify here the initial state 2!S or
23S. The transitions dealt with are all between
states with the same spin multiplicity, for the
generalized oscillator strength otherwise vanishes
unless one allows for spin-dependent couplings,
which are all weak in He. Where necessary, we
shall denote the singlet transitions by a super-
script + on the left, and the triplet transitions by
- . For instance, *fg1g (K) is the generalized
oscillator strength for the 2!S- 3!S transition,
and ~ f3ap (K) that for the 235~ 3%P transition.

An alternative formula to Eq. (1) is™

f (K)=(R/E )ag?

sz Yy a‘P* 2
< n 9z, IPO 9z ) drl.”drn
j J

j=

(2)

wherez] =(K-%)/K. Inthe limit K~ 0, Eqgs.
(1) and (2) reduce to the “length” and “veloc1ty”
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formulas for the optical (dipole) oscillator
strength f,,, respectively.

The differential cross section for inelastic scat-
tering of a particle of charge ze and velocity »
with concomitant excitation (or de-excitation) of
an atom from state 0 to » is given, in the first
Born approximation, by®%!®

4770022 I (K)
do = ——— —7—— d1In(Ka ) (3)

where T=mev2/2 and m, is the electron mass.

The generalized oscillator strength may be ex-
pressed in terms of a power series in (Ka,)?
provided (Ka,)? is sufficiently small:

£, (K)= io (Kao)z"fn(”/x! , @)
)\ =

where the coefficients f 0 depend on the matrix
elements of E] z;M and u takes on the values
1,200,204+ 1. [See Eq. (5) of Paper I.]

The wave functions that we have used are due to
Weiss, !° and have the form (specified by the usual
quantum numbers #, I, and m)

—pali pqu, ni%qu, Im (5)
with
i¢pq“’ . 2-—% gp +g+ U +3+1 ?1 _ f2‘“
x [rlprzq = tlrimry) Yo7, (@)

1 -
11,161+ sze §(¢’2+771'1)Ylm(1)yoo(2)], (6)

where + and - stand for the singlet and triplet
states, respectively, the quantities b, g, and
are nonnegative integers, and *¢ Wy 7 ¢, and
7 are variational parameters. As to the pro-
cedures of computing f,(K) by Eq. (1) or (2),
refer to Sec. 3 of Paper I.

It is now well recognized that one usually needs
accurate wave functions for reliable evaluation of
the generalized oscillator strengths. The Weiss
wave functions compare very favorably with more
elaborate ones calculated by Pekeris and co-
workers, '® as can readily be judged from the
energies and other properties'” listed in Table I.

The excitation cross section o,, is obtained by
integrating Eq. (3) between kmematlcal limits of
K. For sufficiently large 7, for which the Born
approximation is valid, 0y, can be conveniently
parameterized by the Bethe procedure. 8,% 1%

The result is
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for an allowed transition (z=s), and
Es,2

for a forbidden transition (n=s’). The param-
eters cg, vg, bgr, and ygr are all evaluated from
the generalized oscillator strength by means of
Egs. (12), (13), (15), and (16) of Paper L
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3. RESULT AND DISCUSSION

The generalized oscillator strengths for the
singlet and triplet transitions are presented in
Tables II and III, respectively. The values in
the “Formula I” columns were computed from
Eq. (1), and those in the “Formula II” columns
from Eq. (2). The excitation energies computed
by Weiss were used in both cases. The agree-
ment between “Formula I” and “Formula II” re-
sults is typically 3% or better in the region where
the magnitudes of ifn(K) are significant. As we
mentioned in Paper I, “Formula I” results are
more reliable for large momentum transfers
[(Ka,>0.5].

TABLE II. Generalized oscillator strengths * fn () X 10% for the singlet transitions from the 21$ state of He

[see Egs. (1) and (2)].
n 2lp 3ls 3lp 3lp 4'p
Formula ? I 1 11 1 1I 1 I 1 II
(Kay)*
0.001 373.0 374.2 6.022°  2.430 142.8 145.4 5.835 5.903 49.82 49.61
0.005 360.5 361.7 14.01 11.43 124.0 125.9 27.65 27.95 45.75 45.90
0.01 345.6 346.7 23.32 21.17 103.4 104.7 51.73 52.23 40.97 41.47
0.02 317.6 318.6 37.98 36.36 70.39 70.87 90.61 91.29 32.40 33.36
0.04 268.7 269.6 54.94 53.81 29.07 28.90 139.5 140.1 19.02 20.25
0.06 227.8 228.6 60.94 59.98 9.094 8.872 162.0 162.3 10.00 11.09
0.08 193.5 194.2 60.54 59.65 1.304 1.206 168.0 168.0 4.437 5.227
0.10 164.6 165.3 56.65 55.80 0.1060  0.1354  164.1 163.9 1.417 1.895
0.15 110.8 111.3 41.77 41.11 7.258 7.411 135.5 135.3 0.2880  0.1175
0.20 75.27 75.74 27.77 27.33 14.74 14.87 102.1 102.1 2.571 1.966
0.25 51.57 51.97 17.47 17.21 18.29 18.38 73.92 74.01 4.814 3.942
0.30 35.60 35.93 10.60 10.46 18.56 18.66 52.51 52.66 6.063 5.054
0.35 24.72 25.00 6.257 6.171 16.97 17.10 37.00 37.15 6.361 5.317
0.40 17.25 17.49 3.596 3.540 14.59 14.73 26.00 26.12 6.022 5.011
0.45 12.09 12.29 2.008 1.967 12.05 12.19 18.28 18.37 5.345 4.408
0.50 8.496 8.657 1.083 1.050 9.685 9.819 12.88 12.94 4.544 3.701
0.55 5.980 6.113 0.5581  0.5309  7.635 7.756 9.104 9.141 3.747 3.005
0.60 4.211 4.319 0.2695  0.2479  5.931 6.037 6.457 6.479 3.021 2.377
0.65 2.962 3.049 0.1179  0.1019  4.555 4.645 4.596 4.610 2.394 1.842
0.70 2.079 2.149 0.0436  0.0330  3.464 3.540 3.282 3.292 1.872 1.403
0.75 1.453 1.508 0.0114  0.0059  2.613 2.676 2.352 2.360 1.446 1.051
0.80 1.009 1.053 0.00091 3x10~°% 1.954 2.008 1.690 1.698 1.106 0.7749
0.85 0.6954  0.7286  0.00069 0.0036  1.450 1.496 1.217 1.225 0.8381  0.5622
0.90 0.4736  0.4989  0.0045  0.0105  1.067 1.106 0.8779  0.8867  0.6290  0.4008
0.95 0.3178  0.3366  0.0091  0.0174  0.7777  0.8111  0.6343  0.6432  0.4675  0.2800
1.0 0.2090  0.2228  0.0131  0.0229  0.5607  0.5896  0.4586  0.4673  0.3439  0.1910
1.2 0.0263  0.0293  0.0170  0.0281  0.1292  0.1452  0.1244  0.1307  0.0873  0.0271
1.4 7x10""  0.00004 0.0106 0.0187  0.0167  0.0235  0.0317  0.0351  0.0141 4x 10~°
1.6 0.0076  0.0068  0.0042  0.0087  0.00003 0,00042 0.0067 0.0081  0.00016 0.0087
1.8 0.0177  0.0163  0.00079 0.0026  0.0069  0.0032  0.00081 0.0012  0.0025  0.0218
2.0 0.0242  0.0218 7x10~° 0.00022 0.0160 0.0098 2x10~% 6x107® 0.0073  0.0315

a%“pormula I” results are calculated from Eq. (1), and “Formula II”’ results from Eq. (2).
bExpansion formula (4) should be used for (Kag?<0.12.
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TABLE III. Generalized oscillator strengths — fn(K) x 10° for the triplet transitions from the 23S state of He
[see Egs. (1) and (2)].

n 2’p 3’s 3’p 3’p 43p
Formula 2 I I i I I I I I i

(Kay)*

0.001 535.6 536.6 1.685°  1.639 61.85 61.16 3.514 3.462 23.52 21.73
0.005 521.6 522.6 7.861 7.821 53.53 52.88 16.78 16.53 21.56 19.87
0.01 504.7 505.7 14.80 14.76 44.36 43.76 31.69 31.20 19.26 17.68
0.02 472.7 473.7 26.33 26.30 29.61 29.11 56.59 55.65 15.13 13.75
0.04 415.2 416.2 41.89 41.86 11.13 10.82 90.51 88.84 8.654 7.632
0.06 365.3 366.2 50.15 50.12 2.600 2.452 109.1 106.8 4.302 3.590
0.08 322.0 322.7 53.53 53.51 0.0418  0.0251  117.3 114.7 1.673 1.237
0.10 284.1 284.9 53.72 53.69 0.8854  0.9723  118.8 115.9 0.3608  0.1741
0.15 209.3 209.9 47.04 47.02 8.556 8.809 107.2 103.9 0.5921  0.9212
0.20 155.4 156.0 37.12 37.11 16.23 16.57 87.85 84.57 2.879 3.587.
0.25 116.3 116.8 27.78 27.78 20.93 21.31 68.91 65.78 5.213 6.185
0.30 88.70 88.12 20.15 20.15 22.75 23.14 52.87 49.97 6.864 8.005
0.35 66.55 66.92 14.32 14.31 22.52 22.91 40.11 37.48 7.724 8.961
0.40 50.80 51.12 10.02 10.01 21.05 21.43 30.27 27.91 7.930 9.207
0.45 38.99 39.27 6.931 6.921 18.97 19.33 22.81 20.71 7.676 8.951
0.50 30.07 30.32 4.741 4.729 16.66 17.00 17.20 15.35 7.139 8.380
0.55 23.30 23.51 3.207 3.196 14.37 14.69 13.00 11.36 6.454 7.641
0.60 18.12 18.31 2.145 2.135 12.24 12.54 9.849 8.416 5.716 6.834
0.65 14.15 14.31 1.415 1.406 10.33 10.62 7.487 6.235 4.984 6.026
0.70 11.08 11.22 0.9187  0.9113  8.654 8.927 5.712 4.619 4.296 5.257
0.75 8.705 8.818 0.5846  0.5788  7.213 7.473 4.375 3.422 3.669 4.550
0.80 6.854 6.950 0.3627  0.3583  5.989 6.236 3.362 2.533 3.112 3.914
0.85 5.408 5.488 0.2175  0.2144  4.957 5.191 2.594 1:873 2.624 3.352
0.90 4.274 4.341 0.1246  0.1225  4.093 4.316 2.009 1.382 2.203 2.860
0.95 3.382 3.439 0.0668  0.0656  3.373 3.584 1.561 1.016 1.842 2.434
1.0 2.679 2.726 0.0324  0.0317  2.775 2.975 1.217 0.7444  1.536 2.067
1.2 1.055 1.078 0.00038 0.00036 1.255 1.411 0.4632  0.1984  0.7243  1.063
1.4 0.4060  0.4180  0.0113  0.0107 0.5545  0.6710  0.1834  0.0399  0.3302  0.5420
1.6 0.1458  0.1527  0.0186  0.0172  0.2360  0.3191  0.0745  0.0027  0.1446  0.2755
1.8 0.0447  0.0489  0.0191  0.0174  0.0939  0.1504  0.0306  0.0014  0.0594  0.1395
2.0 0.0093  0.0116  0.0161  0.0143  0.0328  0.0691  0.0125  0.0086  0.0218  0.0700

a“Formula I” results are calculated from Eq. (1), and “Formula II” results from Eq. (2).
bExpansion formula (4) should be used for small (Ka)®.

For those S— P transitions for which accurate overlap integral between the two wave functions

optical limits are known'® (Table I), we believe
that the calculated results which lead to better
agreement with such optical oscillator strengths
are preferable. The results for the transitions
to the 4'P and 43P states are less trustworthy
than the others because neither of the wave func-
tions is as good as those used for other states
(Table I).

For the S— S transitions, the “velocity” data
(Formula II) are more reliable, partly because
they are not affected by the nonorthogonality of
the lower- and upper-state wave functions. The
“length” results (Formula I) for the 2S— 3'S
transition are strongly affected by the appreciable

(see Table I). Forthe S— Dtransitions the “length”
results are probably better for (Ka,)? > 0.1, par-
ticularly for the triplet transition.

In comparison with the fn(K) for the transitions
from the ground state (see Paper I) we note:
(a) that the magnitudes of *£, (K) for the (opti-
cally) allowed transitions are roughly twice those
of the corresponding transitions from the ground
state, and for the forbidden transitions almost
one order of magnitude larger; (b) that the peaks
of * fn(K) for the forbidden transitions are shifted
toward smaller momentum transfers, that is, to
the vicinity of (Ka,)?>~0.1; and (c) that there are
“zeros” of *f, (K) in all transitions, particularly
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noticeable in the transitions to the 3P and 4P
states, both singlet and triplet. Whenever the
integral in Eq. (1) [or Eq. (2)] changes sign, a
zero-value minimum of j:f,,l(K) occurs. These
minima are easily understood in terms of inde-
pendent-particle models; their positions are
closely related to the nodes of the radial functions
of the states involved. !® For more complex atoms
and molecules the minima of fn(K) are often ob-
served in transitions from ground states. °

Although the occurrence of the minima is thus
qualitatively interpreted, their quantitative as-
pects, for instance, the exact location of the
minima, depend upon intricacies of the electronic
structure such as electron correlation. In fact,
the agreement between the “length” and “velocity”
results, even from such elaborate wave functions
as we have used, deteriorates near and beyond
the first minimum because the minimum results
from cancellation in the integrands of Egs. (1)
and (2). (See Tables II and IIL.)

As a consequence of the large magnitudes of
*f,(K) for the low-lying excited states [see (a)
above] and of the Bethe sum rule® [3,,f,,(K)
=N for any K], the shapes of the Bethe surfaces?®
for the metastables are very different from that
for the normal He atom. The fact that the magni-
tudes of the * f,(K) for the forbidden transitions
in the vicinity of (Ka,)?=0.1 become very large,
while the minima of *f3p(K) and £f4p(K) occur
in the same region, is consistent with the Bethe
sum rule,

Note that the contribution of the region beyond
the first minimum of *f 3p(K) to the excitation
cross section o [Eq. (7)] is appreciable, as may
be seen by plotting *f3 p(K) against In(Ka,)?. [The
area under such a curve between kinematic limits
of (Ka,)* is proportional to og. (Ref. 15)].

The expansion coefficients [Eq. (4)] are given in
Table IV. However, the range of validity of the
expansion formula (4) is more limited than for
transitions from the ground state.?' For the al-
lowed transitions, Eq. (4) may be used only for
(Ka,)? much smaller than that at which the first
minimum of ¥f,(K) occurs, and for the forbidden
transitions it may not be used beyond the first
maximum of *f, (K). i

Our results for the 2!S—2!P and 23§ - 23P tran-
sitions may be used to analyze the composition of
metastable He atoms produced experimentally.
For instance, comparison of cross-section ratios
of fast electrons for the two transitions (the ex-
citation energies of which differ by 0.54 eV) at a
few angles will readily determine the ratio of the
metastable atoms present in the collision volume.
In Figs. 1 and 2, we present the electron-impact
energy-loss spectra for the 2'S and 23S states,
respectively, based on our calculated data. The
height corresponds to the differential cross sec-
tion per unit solid angle. We have not evaluated

43p
0.024 02
—0.50751
3.1266
2.9434
—128.79

3%p
3.5544
—40.975
257.98
-1174.2
4317.0

23s
3’p
0.064 08
—2.2597
30.971
—229.70
1178.1

3%s
1.6567
-19.303
119.40
—523.75
1831.4

2’p
0.53912
—3.5651
12.978
—34.557
75.274

P
0.05087
—1.0572
6.6869
4.7415
—284.10

D
5.9142
-79.580
574.37
—2939.8
11906

21s
3lp
0.14780
—~5.1185
73.171
—602.55
3468.0

3ls
2.3930
-35.959
279.91
—-1506.8
6301.8

P
0.37637
~3.2055
14.670
—-48.116

TABLE IV. Power series expansion coefficients f, Y /Al [see Eq. (4)] for the generalized oscillator strengths of He.
126.74

Initial state
Final state
1
2
3
4
5
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6k 2lp He (2'S—nL), T=100 ev 4 FIG. 1. Electron energy-loss spectra
for the 2'S He at an incident energy of
5 §=0 g-e 8- 7| 100 eV. The ordinate gives the differ-
? a4 _| ential cross section per unit solid angle
Zke 3lp in logarithmic scale. The 4!P line for
i 3o alp Sl 7 the scattering angle §=8° is too short
_g‘_ AR 3ls 2lp _| tobe seen. The 4's, 41D, and 4!F
sis 30 3 lines are not included. The superelas~
i 3ls 7 tic transition lines (2'5—11!9) at
ok e 3p _| 0=6° and 8° are similar in height to
i's 3lp that for 6=0°.
Y S 5 | | 1 | I | ] L ! |
-21 -2do0 I 2 3 4 o 1 2 3 4 2 3 a4

ELECTRON ENERGY LOSS (eV)

the cross sections for the transitions to the 4S,
4D, and 4F states, either singlet or triplet, which
should appear very close to those for the 4P states.
Also, some singlet-triplet intercombination lines
will appear in experimental spectra at low inci-
dent energies. The 2!S-1!S superelastic transi-
tion line is insignificant compared to other lines,
at least in the high incident velocity range where
the first Born approximation is valid. The zero-
value minima of *f,(K) lead to the corresponding
minima in the differential cross sections and
hence may be used in identifying some transitions.
These minima are responsible for the reduction
or disappearance of the 3P lines at the scattering
angle 6 =6° and the 4P lines at §=8° in Figs. 1
and 2. In reality, however, experimental cross
sections may fail to vanish at the minima because
of effects not included in the first Born approxi-
mation. *°

At present, we are unaware of any experimental
differential cross section to be compared with our
results for metastable He atoms.

4. EXCITATION CROSS SECTIONS

The parameters for the excitation cross sections
[Egs. (7) and (8)] are listed in Table V. As is
mentioned in Sec. 5 of Paper I, for an allowed
transition Ys depends on the reduced mass M of
the incident particle and the atom, and in Table V

we list both y¢(€) for electrons and ys ) for the
case M -, a good approximation to protons and
other heavy incident particles.

The asymptotic cross section [Eq. (7) or (8)] is
not identical to “the Born cross section” which
results from the integration of Eq. (3) between
exact kinematical limits of K at a given 7. How-
ever, the difference, which is represented by the
remainder O(E,?/T?), is very small for the al-
lowed transitions (less than 1% for electrons even
at T=5 eV) and only a little larger for the for-
bidden transitions (1-2%). Some excitation cross
sections for electrons computed from Eqgs. (7),
(8), and Table V are shown in Fig. 3 (2!S-2'P
and 235 -23P), and Fig. 4 (235 33, 3%P, and
3°D). The ordinate of these figures represents
0,/ (4may?) (T/R).

There are two earlier theoretical works on the
excitation cross sections for the transitions from
the 23S state. The calculation of Moiseiwitsch®
includes excitation cross sections for the 23S

- 23p, 3P, and 33D transitions, and the calcula-

tion of Ochkur and Bratsev® includes those for the
235335, 3P, and 3°D transitions. Moiseiwitsch

used modified hydrogenic wave functions to calcu-
late Born cross sections.
are in excellent agreement with ours (Fig. 3),
but the 3%°P cross sections are larger than ours
by about 10% and 3°D cross section smaller by
about 20% in the asymptotic region, as shown in

His 2%P cross sections

6

FIG. 2. Electron energy-loss spectra 5k
for the 2°S He at an incident energy of =
100 eV. The ordinate gives the differ-  g|° 4

NO

T

ential cross section per unit solid angle 2> ;| 33p ‘
in logarithmic scale. The 3°P line at 2 33D 23p s
the scattering angle 6=6° and 4°P line o 2r 33s / 4% 5% aP 7
at 6=8° are too short to be seen. The L 335 33p 133
438, 43D, and 4°F lines are not 335\
included. or 3 .
4% I
- 1 I b 1 I I A 1 | 1 |
o 1 2 3 4 o 1 2 3 4 o 1 2 3 4

=0° f=6° f=8° -

He (235—n3L), T=100 eV |

ELECTRON ENERGY LOSS (eV)
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TABLE V. Parameters for the excitation cross sections [see Egs. (7) and (8)].

Initial state 2%
A. Optically allowed transitions
Final state 2'p 4'p 2’p 3°p 4p
fs/(Eg/R) 8.503 0.814 0.221 6.408 0.273 0.084
Incg 3.550 —0.662 —0.741 2.533 —0.878 —0.900
'@ —0.153 0.159 0.035 —0.195 0.100 0.024
'ys(°°) 0.035 0.232 0.061 0.075 0.132 0.036
B. Optically forbidden transitions
Final state 3ls 3lp 33s 3°D
by 0.974 2.630 0.705 1.419
vs —0.101 —0.267 —0.088 —-0.213
T (eV)
5 10 50 100 500 1000 2000
T | (—— | T T T T
801 He (25—2P) N
2's—2'p

e

& a0

| | |

FIG. 3. Cross sections for the
215 2P and 235— 2°P transitions of He
_| by electron impact. The circles (O) are
the Born cross sections calculated by
Moiseiwitsch (Ref. 5).

0
-1 o] | 2 3 4 5
In (T/R)
T (eV)
5 10 50 100 500 1000 2000
I I T T T | 1T |

He (235—=33L)

pd

FIG. 4. Cross sections for the

“ 2% —3%L transitions of He by electron
impact. The open circles (O) and
squares () are the Born cross sec-

| | 1

tions calculated by Moiseiwitsch

(Ref. 5) for the 2°S—3°P and 2°5—3°D
—| transitions, respectively. The solid
circles (@), triangles (A) and squares
(m) are the Born-Ochkur cross sec-
tions calculated by Ochkur and Bratsev
(Ref. 6), for the 235—3°P, 2%s—3%S
and 2°5—3°D transitions, respectively.

0] | 2
In (T/R)
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Fig. 4. On the other hand, Ochkur and Bratsev
used Hartree-Fock wave functions and evaluated
the cross sections with the Ochkur approximation
to include the electron exchange effect. All of
their cross sections are in essential agreement
with our results except for the low incident en-
ergy region (7320 eV for electrons) where, for
the forbidden transitions, the exchange effect ap-
pears to decrease the cross sections from the
Born-approximation values (Fig. 4).

Since electron correlation is not expected to be
strong in excited states of He, it is not surprising
to find that the Hartree-Fock wave functions pro-
duce almost as accurate excitation cross sections
as the correlated wave functions.

It is interesting to note in Fig. 4 that the Born
excitation cross sections for the forbidden tran-
sitions (235 - 33S and 3°D) are larger than that for
the allowed transition (23S -~ 3°P) in the region
T <100 eV, contrary to the case of the tran-
sitions from the ground state® 22 (1S - 31§, 3'P
and 3!D). For the singlet excitations from the
2'S state only the 3!D excitation exhibits a sim-
ilar trend.

We expect the Born approximation for the tran-

sitions from the metastable states to be valid
down to rather low incident velocities because the
excitation energies are small, but there is at
present no pertinent experimental information re-
garding the actual range of validity of the Born
approximation. The result of a close-coupling
calculation®® appears to indicate that the asymp-
totic behavior of the cross sections, for the 2'S

- 2P as well as 23S 2°P transition, is attained
at rather low incident electron energy, although
the close-coupling results are somewhat smaller
(by~20% for the singlet and by ~ 40% for the
triplet transitions) than the Born cross sections
at T=15 eV.

ACKNOWLEDGMENTS

The authors take this opportunity again to thank
A. W. Weiss for providing the wave functions.
They are indebted to J. W. Cooper and L. H.
Aller for valuable communications, to F. F.
Rieke for his critical review of the manuscript,
and to D. Douthat for assistance in early stages
of the work.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.

1A, Dalgarno, Monthly Notices Roy. Astron. Soc. 131,
311 (1966); G. W. F. Drake and A. Dalgarno, Astrophys.
J. 152, L121 (1968).

20. Bely, J. Phys. B. 1, 718 (1968).

SFor instance, see Cermfk and Z. Herman, Collection
Czech. Chem. Commun. 30, 169 (1965); V. Cermsk,

J. Chem. Phys. 44, 3781 (1966), and references therein.

4Experimenta1 data have so far been restricted to the
threshold region. For example, see A. V. Phelps, )
Phys. Rev. 99, 1307 (1955); F. Robben, W. B. Kunkel,
and L. Talbot, Phys. Rev. 132, 2363 (1963); and R. H.
Neynaber ef al., Atomic Collision Processes, edited
by M. R. C. McDowell (North-Holland Publishing Co.,
Amsterdam, 1964), p. 1089.

’B. L. Moiseiwitsch, Monthly Notices Roy. Astron.
Soc. 117, 189 (1957).

8y. 1. Ochkur and V. F. Bratsev, Astron. Zh. 42,
1034 (1965) [English transl.: Soviet Astron. — AJ 9,
797 (1966)].

'R. Marriott, Proc. Phys. Soc. (London) 87, 407
(1966).

8y.-K. Kim and M. Inokuti, Phys. Rev. 175, 176
(1968), referred to as Paper I hereafter.

*H. Bethe, Ann. Physik 5, 325 (1930).

A, W. Weiss, J. Res. Natl. Bur. Std. (U.S.) 714,
163 (1967).

Upor example, see V. éermﬁk, J. Chem. Phys. 44,
3774 (1966); J. L. G. Dugan, H. L. Richard, and E. E.
Muschlitz, Jr., J. Chem. Phys. 46, 346 (1967); and

J. A. Herce, J. R. Penton, R. J. Cross, and E. E.
Muschlitz, Jr., ibid. 49, 958 (1968).

2p. E. Osterbrock, Ann. Rev. Astronomy Astrophys.
2, 95 (1964).

B1. H. Aller and W. Liller, in Stars and Stellar Sys-
tems, edited by B. M. Middlehurst and L. H. Aller
(The University of Chicago Press, Chicago, Illinois,
1968), Vol. VII, Chap. 9, Sec. 5.4.

Up R, Bates, A. Fundaminsky, and H. S. W. Massey,
Phil. Trans. Roy. Soc. (London) A243, 93 (1950).

w. F. Miller and R. L. Platzman, Proc. Phys. Soc.
(London) A70, 299 (1957).

'C. L. Pekeris, Phys. Rev. 115, 1216 (1959); 126,
1470 (1962); 127, 509 (1962); and B. Schiff et al., ibid.
140, A1104 (1965).

"m the hydrogen atom, expectation values of 'rlz for
a given n are smaller the larger 7 is. In the helium
atom, however, the 3S and 3P states, both singlet and
triplet, deviate from the above pattern.

18B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638
(1964).

%y, -K. Kim, M. Inokuti, G. E. Chamberlain, and
S. R. Mielczarek, Phys. Rev. Letters 21, 1146 (1968).

*'The Bethe surface is a comprehensive representation
of the generalized oscillator strengths for all excitations
from a given initial state; it is a three-dimensional
plot of the differential generalized oscillator strength
[df(K, E) /dE for excitation energy E] versus E and In
(Kao)z. For discrete transitions, it is convenient to
replace df (K, E) /dE by f, (K) (dn/dE,) extended over the



214 Y.-K. KIM AND M. INOKUTI 181

interval E,, —AE, < E< E, + AE,, where AE,=3(dE,/
dn). Here, E, is considered as a “smooth” function of
quantum number z. See U. Fano and J. W. Cooper,
Rev. Mod. Phys. 40, 441 (1968), Sec. 2.4.

Uyor a qualitative understanding, Eq. (4) may be
considered as an expansion of the exponential factor in
Eq. (1) in an effective parameter K7gpf, ¥opf being a
“transition radius” weighted by zl);zpo. For the transi-
tions considered here, 7 is much larger than it is

for the transitions from the ground state; therefore
Eq. (4) is slower in convergence for a given K. For
further discussion on the convergence, see E. N.
Lassettre, J. Chem. Phys. 43, 4479 (1965).

%y -K. Kim and M. Inokuti, to be published. The
1's~3'D excitation will be discussed in this reference.

Bp, G. Burke, J. W. Cooper, and S. Ormonde, to be
published.

PHYSICAL REVIEW

VOLUME 181,

NUMBER 1 5 MAY 1969

Measured Absolute Cross Sections for K* + Rb Collisional Excitation Transfer*

Michael H. Ornstein’ and Richard N. Zare¥
Department of Physics and Astvophysics, Joint Institute for Laboratory Astvophysics,

University of Colovado, Bouldev, Colovado 80302
(Received 27 January 1969)

The electronic excitation transfer processes,

K(Py ) + Rb(Sy3) —K(Sy9) + RbC Py, + AE

and K(*Py/5) + Rb(2Sy,9) — K(Sy;5) + Rb(*Py,) + AE,

have been studied by irradiating a cell containing a nonequilibrium mixture of potassium and
rubidium vapors with either the 7665 A D2 line or the 7699 A D1 line of the potassium resonance
doublet. The resulting collisionally induced rubidium 7948 A fluorescence signal, isolated

by interference filters used in tandem, is detected with a liquid-nitrogen—cooled S-1 photo-
multiplier placed at right angles to the direction of excitation. Measurements of the intensity
ratio of the potassium and rubidium fluoresence combined with an optical absorption determi-
nation of the rubidium atom density yields the following excitation transfer cross sections:

QIK(Py)y) - Rb(*Py,p)1=2.2 A%+ 25%

and QIK(Py;5) —Rb(*Py,p)1=2.6 A%+ 20%

at T=365°K+ 2%. Throughout an experimental run the potassium and rubidium vapor pres-
sures are varied, but data are taken for only the lowest vapor pressures for which corrections
due to resonance radiation imprisonment are unnecessary.

I. INTRODUCTION

When a gas gains energy by photo-excitation,
electron impact, shock heating, radiolysis, chem-
ical reaction, etc., appreciable concentrations
of electronically excited atoms and molecules are
often generated. These excited species may emit
radiation, or they may be de-excited through var-
ious collisional encounters in which the energy is
redistributed among the collision partners. The
competition among the different deactivation path-
ways controls the subsequent physical behavior
and chemical properties of the gas. Knowledge of
the absolute cross sections (reaction rates) for
energy transfer is thus of fundamental importance
in understanding such diverse phenomena as flash

photolysis, flames, discharges, shocks, auroras,
and stellar atmospheres. Among the various types
of energy transfer, those between colliding atoms
in different states of excitation are, in principle,
some of the simplest. Of these, the excitation
transfer between different alkali atoms has been

of particular interest to us not only because such
systems typify a large class of near-adiabatic in-
elastic processes, but also because these systems,
which can be treated as hydrogen-like, offer
promise of allowing a critical comparison between
theory and experiment. We report here an experi-
mental study of the interchange of electronic excita--
tion between the lowest-lying excited states of
potassium and rubidium in which cross sections
for energy transfer between some of the fine-



