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We show how impact-parameter representations with a dependence on final c.m. momentum k, angle 0,
and impact parameter b given by Jv(kb sine) follow naturally when we describe a scattering process in
terms of states localized in the transverse plane in coordinate space, or more generally when we analyze it
in terms of a Fourier transform with respect to the transverse momentum. We discuss this for the nonrelativ-
istic as well as the relativistic scattering amplitude. Two classes of impact-parameter representations are
considered here: one in which the impact parameter is a position coordinate, canonically conjugate to the
transverse momentum; and another —a fixed-energy representation —which is obtained by reinterpreting
the Fourier transform with respect to the transverse momentum, in which the impact parameter is not a
position coordinate, except in the limit of infinite energy. We show that the erst kind of impact-parameter
representation follows from the description of a scattering process in terms of transient asymptotic states
localized in the transverse coordinate space, We point out the distinctive features of each type of representa-
tion, and discuss the conditions under which each is valid.

I. INTRODUCTION
' 'N a recent paper, an impact-parameter representation

(IPR) of the scattering amplitude for finite energies
was discussed for the scattering of spinless particles. '
The generalization to arbitrary spins is discussed in a
separate paper. ' These representations involve the
functions J(kb sin8) r'ather than the J (2kb sin-,'0)
used more commonly till now. ' ' In the limit of infinite
energy they again lead to the eikonal approximation to
the scattering amplitude.

In this paper, we discuss the relation of IPR's Lwith
Jv(kb sin0), for spinless particlesj with the coordina, te-
space representation of the scattering amplitude, and
more generally, with the Fourier transform of the
scattering amplitude with respect to the transverse
momentum.

The representation of the scattering amplitude as a
Fourier transform with respect to the transverse mo-
mentum is a natural step in the infinite-momentum
frame, where the only degrees of freedom are the
transverse ones. In this frame it immediately shows the
relation between the IPR and the description of the
scattering process in terms of states localized in the
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W. E. Brittin and L. G. Dunham (Wiley-lntersclence, Inc. ,
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IL NONRELATIVISTIC SCATTERING

Consider the scattering of two spinless particles. In
the usual way we separate out the over-all motion of the
c.m. of the system, and treat the relative motion as
equivalent to the scattering of a single particle (with a
mass equal to the reduced mass nt) by a fixed potential
V(r). The relative motion is described by the Schro-
dinger equation

(V'+ 2mB jf(r) = U(r)P(r) . (2.1)

We now view the scattering process in terms of its
projection on the transverse plane; we introduce the
projection of the wave function on the transverse plane

N. P. Chang and K. Raman (to be published).
7 For a discussion of the kinematics in the infinite-momentum

frame, see H. Bacry and N. P. Chang, Ann. Phys. (N. Y.) 47, 407
(1968).

Throughout this paper the symbols y, k&, and b are used to
denote two-dimensional vectors. All other boldface symbols
denote three-vectors.

transverse coordinate space. ' ~ A similar analysis may
be made for the scattering amplitude in the c.m. frame.

In Secs. II and III we discuss this for a nonrelativistic
(Schrodinger) scattering amplitude and for a relativistic
amplitude, respectively. In Sec. IU we show how the
impact-parameter amplitudes describe a scattering
process in terms of transient asymptotic states localized
in the transverse plane in coordinate space.

In Sec. U we discuss a 6xed-energy IPR obtained by
reinterpreting the Fourier transform with respect to
the transverse momentum. I'inally, in Sec. UI we con-
clude by comparing briefly the different IPR's discussed
in this paper.

181 2048



INC AMPL~TU 2049OF SCATTEEsCR»SPACE181 COO RD I NA

by'

4 (r) =4 (~,s) =
+00

d~ e'"'N(p; g),

where

(2.2) f(k) ~)—=f(k)A; ~)

= x ,s)w
0
s

~i) ', —' 'x' . (2.11)2p~e—skg p"-"" d "(~', -') (~, ').

(2.12)

(V +k )'R(p) K) =

where

, , ~ ~ „, 0'+'(e s) =ALP(e, s)+4 e, —
(2.5)

,
—s)3

kt —2m

a e two-dimensional trans-and Vt'ist e aan t' h Laplacian in the two-
'

ns-

24) ti fi th

( . be written as linearto 2.6) may

Th 0 f t'
e Hankel unc i

ction
0

t"'(k ) =y—e
corresponding to an 0
dition is

2.7

2.13a)dK cosKs Ni (p; K )

0' '(e,s)=(») Lk(e,s-s) —4(e —&)3

2.13b)d~ sin)Is e' i(p; II,

s ives equationsfol U i+~ (g)S) . Tllls glv Iis
2 11) fo th.9analogous to . an

sigl1a ture wave funcctions I an
Definin

&'& kE)G&+&(y—y', k,) =-,mIIO

e'i(A:tR+~/4)

g
1 +ec

~)my~ (6) (p
~

~)I&+&(p ~) =—
2~ m—oo

)
(2~k,R)'"

s li e an
' '

cular wave for larges like an outgoing circu ar
e transverse coor

'

with an
d

inte ral equation correspo
oundary condition, isoutgoing-wave boun ary

dK'G'+&(p p', k,)—=b ~—k)+— d'p'

(2.14)

(2.15)e'"& i+&(k„~),f&+'(k, ,~) =—P e'"
2~-

'ncident wave only foi sf= 0)andnoting t ah t thereisanincide
we obtain

N(P, ~) (

I I. I (29yV(y', II: ~)g P., I&',

corresponds toto an

in o es
ane th

Writing y p,
ane et ito f large distances in t e r

f

1 2

f&+&(k„k,)—=— dy f~+&(k„k,)

db bJO(k, b)A &+i(b,k,),
he hm
orm'

) — .a —, (2.10)e(y; z; ) - b(» k)+f(k„Ib;—
7l tP

t oIng ci with unit Aux, from at oing circular wave, wI' N t that the ou go
js p (Al + /4)/(2~ &ppoint source is e'

where

2

dA &+&(b,k,) =— dP
2' p

d)).'i) &+& (b; k, —d)

u&+&(b; ~') . (2.17)

f the vector r (,yere y—, he rojection o

ave de ne —
'

nsional vector

the transverse plane. For t e p

In (2.11) we have de ne

t ' z in circular wave

imilarly define

'
nt (k II:) of the outgoing

tk 8 " 'V(p) K) .

l i li

U(r) = II
e'

l a direct po-terin~ with on y

I ))) r' -rI r))

We rs
li ot t l.e of any exc ange

(

tentia qi. e.,
'

e
is nee e

4)r
function u y, z

ted since the Aux at azimted since uth @ for a
e identical (so that the

equal), the scat
articles are i en

'

terin
f momentum

omentum
db k dd t- c

otentia s are e

ut oing sp eri
the forward an ac

ction (8,$).
'

1 the trans-

is
is Il

is
h

o mo i transverse plane
iso an exc a

1 for

y . ,f,ti,n,.„h
l t''t

The equation o mo i
'

ran

an g
' To obtain suitable ana y i

'
and negative s. o o

of the even an

given by

h
odd combinations P&+':



2050 N. P. CHANG AND K. RAMAN

Equation (2.16) gives an IPR of the nonrelativistic
scattering amplitude, for Axed k, .

III. RELATIVISTIC SCATTERING

For relativistic scattering, we again de6ne the
Fourier transform, in the transverse plane, of the even
and odd signature amplitudes. Denoting

T'+'(«, k.) = (16p~'pa'pc'po') '"
X-,'[T(k„k,)+T(k„—k,)j,

T' )(k»*)=(16p~'pa'pe'pD') '"
&((2 cos8) '[T(k„k.)—T(k„—k,)$,

which restricts the behavior of the amplitudes T&+' as
for fixed k„or equivalently, as s ~~,

t -+ —s/2, in terms of the usual Mandelstam variables.
As an alternative to (3.2), we may define a transform

for Axed 0:

T(+)(k,8) = db bJs(bki)A(+)(b, 8), (3.8)

T(k)(k ~ 8) — dsg e—ikg bA(+)(h. 8) (3 7)2'
which leads to equations of the form of (3.3) to (3.5),
but with 0 held fixed:

for the reaction A+& ~ C+D, where cos8=k./k,
k=(kP+k, ')'~' we defi~e A(+)(b, 8) =(sin'8) dk kJs(bk sin8)T +'(k, 8). (3.9)

T(+)(k k ) =— d'k e-'"& bA (+)(b; k,) . (3.2)
2~

For spinless particles, T(+) must be independent of the
azimuth @ of k, ; therefore A'+' depends on b only
through

~
bj =b. Integrating over P, we obtain theIPR:

Again the inverse transforms involve only the physi-
cal amplitudes, and the integration is over all k. The
integrability condition now reads

T(+)(k, ; k,) = db bJ()(bk,)A '+) (b,k,) . (3.3)
dk k"'~ T(+)(k,8) (

( (3 10)

A (+'(b,k,)=-
27r

d'k e'"'bT(+)(ki k ) (3 4)

Note that in (2.16) and (3.3), we have written
A(+)(b,k,) wjth k, held fixed, as is natural when we

regard b as the transverse space coordina, te. This gives
the inverse relations corresponding to (3.2) and (3.3) as

which restricts the behavior of T(+) for jh~~ for fixed
8, or equivalently, for s —+~, —s&t& ——,s.

In Sec. V we shall discuss a fixed-energy IPR in
which the impact-parameter amplitudes 0!(+)(b,k) cor-
respond to a fixed value of the energy, but require a
continuation of the scattering amplitude to values of
sin8 outside the physical region.

IV. IPR AND THE DESCRIPTION OF SCATTERING
dk k J (bk )T(+)(k k ) (3 5) IN TERMS OF LOCALIZED

TRANSIENT STATES

dk, k, ')'( T(+) (k~,k.) ( & ~, (3.6)

In (3.4) and (3.5), k, is held fixed during the inte-
gration, so that an integration over all energies (or all

values k of the momentum) is involved, and the ampli-
tudes 2'+) do not correspond to a fixed value of the
energy.

With this form of the IPR, which is the one obtained
directly on treating k, and b as canonically conjugate
variables (that is, on regarding h as the transverse
coordinate vector), the inverse relations (3.4) and (3.5)
involve the physical amplitudes a,t all energies. The
impact-parameter amplitudes A (+) (b,k,) are the ampli-
tudes for the scattering of a two-particle system from an
initial plane-wave state to a final state with a, definite
impact parameter b and a definite a component of the
momentum. In the final state, the transverse momen-
tum a,nd the total momentum do not have definite
values.

The validity of the fixed-k,. representa, tion requires the
integrability condition

In this section, we show how the IPR is intimately
related to the description of a scattering process in
terms of transient asymptotic states localized in the
transverse plane in coordinate space. We first consider
nonrelativistic sca,ttering.

Consider a nonrelativistic two-particle system in the
c.m. frame. We define a two-particle state with a
definite (two-dimensional) impact parameter b and a a
component ~ of the momentum by"

1
ih, ),=— d'k, e

—"'ik„)„
2~

(4.1)

where
t k&, )r), is a two-particle plane-wave state in the

c.m. frame, with transverse momentum k&. We normal-
ize the plane-wave states according to

.{k„s
I
k, ',s'), = (2~)'b(k, —k,') 8(s—s'), (4.2)

's Note that the state ~h, ~l, is a two-particle state in the c.m.
frame, with a definite impact parameter, a definite value (namely,
zero) of the total 3-momentum of the two particles, and a definite
value of the s component of the relative momentum, but not a
definite value of the energy.
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implies that the states
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dKd2b

ib, t(), ,(b,xi =1.
(27r)'

The significance of the description of the scattering
process in terms of the impact-parameter states becomes
clear when we examine these states in coordinate space.

From the classical meaning of the impact parameter,
we expect an asymptotic state with a definite impact
parameter to be a state that is localized in the transverse
plane in coordinate space at some time in the distant
past or the distant future. Such a state cannot be a
stationary state, but must be described by a wave
packet. For instance consider the state (4.1) at time
T in the distant past. (We later let T ~~.) The co-
ordinate space representative of the sta, te (4.1) is given

by the wave packet

C(9,s; t, T) = dk, d'k, dE 8(E)

)('eikt p+i)tgte ie(t-T)(t(k k-E) (4 6)
where

a(kt k, E)= e
—'"t bh(k. —t() b[E—(kts+k, ')/2M], (4.7)

and M is the reduced mass for the two-particle system.
The wave packet (4.6) is quite different from the type

of wave packets usually considered in the momentum-
space description of scattering. At time 1=T—+—~,
(4.6) describes a, state exactly localized in the transverse
plane in coordinate space, with a definite s component
~ of the momentum:

C (t= T~—~ )= e'"'t)(9 —b) (4.8)

Owing to its large spread in momentum space, such a
wave packet changes in character very rapidly with
time. " Such states will be termed transient states or
transients, in contradistinction to stationary states.

To examine how the wave packet (4.6) moves in the
transverse plane as a function of time, as it spreads, we
define the mean position (or "center") of the wave

"Any two-particle state in the c.m. frame may be expressed
in terms of the plane-wave states

~
kt, tt)„and hence in terms of the

impact-parameter states
~
b, tt)„using the inverse relation to (4.1).

"Note that a state with a 8-function localization in the trans-
verse plane at some instant of time cannot describe a physical
two-particle state, any more than a plane wave can. A physical
two-particle state would be expressed as a superposition of these
transient states {or as a superposition of stationary plane-wave
states).

which implies the normalization

,(b, t(~ b't t('), = (2w)'8(b —b') t)(x—x') (4.3)

of the states
~
b, t(), . The completeness of the plane-wave

states, expressed by the relation

(2w)'

d SfdK
,(qy, t(y~ by, x'),

(2w)'

X.(by, x'( T ~b, ,x). .(b;,&((1;,x,).
d't);d'bye"' ' '« yc(by, Ky~ T~b;', t(;), , (4.10)

(2w)'

"Care is needed in evaluating the expectation value, because
of the 8-function normalization of the states. The simplest device
is to work with wave functions in a box in momentum space.
{Note that, in momentum space, the transverse position operator
is te/()kt, and one evaluates the expectation value of this operator
in a state {4.6} whose momentum-space representative is e '"t
&&8(k,—tt), obtaining just b.) As remarked in Ref. 13, a physical
state would be a superposition of states ~b, tt) (with values of b
symmetrically distributed around a central value bp, say}. Then
again the expectation value of p may be evaluated with no
difBculty, and the same result is obtained.

14 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
{1953}."3.Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

packet in the transverse plane as the expectation value
of the transverse position operator g in the state speci-
fied by (4.6).

This expectation value is found to be just (9)=b,
independently of the time. "Thus, although the wave
packet (4.6) changes in character rapidly with time, its
mean position continues to be at 9=b. This supports the
assumption that the transient state

~
b, t(), can be inter-

preted as a state with a definite impact parameter b.
In the familiar analysis of a scattering process in

terms of stationary states, an incident wave train is fed
in over a long interval in the past, and the transients are
eliminated by a suitable limiting process' or by an
adiabatic switching on or off of the interaction, " so
that only the steady-state part of the asymptotic states
are retained.

Here we have a complementary description of the
scattering process, where a pulse is fed in over a short
time interval in the remote past. Thus we may write
(4.6) as

1
Ct(9,s, t, T) =lim — dr dk d'k, dE 0(E)

(r z)
)(e-iE(t—t')eikt p+itt~z(J(k k E) (4 9)

This expresses the asymptotic state (in the remote
past) explicitly as a short pulse.

%hereas the description of a scattering process in
terms of plane-wave states is a description in terms of
stationary asymptotic states, the impact-parameter
amplitudes describe it in terms of transient asymptotic
states. "Each by itself can provide a complete descrip-
tion of the scattering process, as the states

~
b, t(), and

~
kt, t(), each form a complete set. The impact-parameter

representation of the usual scattering amplitude
(between plane-wave states) expresses the relation
between these two descriptions of a scattering process.
Thus, using the completeness of the impact-parameter
states

~
b, t()„we obtain

.(e,xyl T
I &' x')
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where we have used the relation

,(b, /4 I q) q,),= (22r) 28(/4 —/t, )e'&'.

For equal masses, Mi =M &i =M, this is given by the
simple expression

For relativistic scattering, we shall write a covariant
two-particle plane-wave state in momentum space as

I
k, ,/4; P), where P is the total 3-momentum of the two

particles. These states will be normalized covariantly
according to

C(t=T~ ~)

2r expI —(/42/M2) /2I 9—b
I
]e'«

I9—bI
(4.19)

(k/', /4'; P'I k/, K; P)= (22r)2(4pI pII2)

X5(k —k ') &(/4 —/4') 8(P—P') . (4.12)

The normalization of the states in the c.m. frame will
be defined by factoring out the 5 function for the total
momentum:

(k/', ~", P'I k/, /4; P)=,(k/')/4'Ik„/4), (22r) 28(P—P'), (4.13)

so that

,(k,' ~ I" /4) = (2 )2(4pI'pII')8(« —«')5(/4 —') (4 14)

The impact-parameter states in the c.m. frame are
now defined by

I,~) =- e-'"/ b
I k„/4), . (4.15)

(4p Op 0)1/2

They are again normalized according to (4.3).
The completeness relation for the plane-wave states

I k, ,/4), is now given by

dI(,d2k

I
k, ,/4), ,(k„~ I

=1. (4.16)
(2~)'(4PI'p»')

The completeness of the states
I b, /4), is again expressed

by(45)
The coordinate space representative of the state

(4.15) is given by the wave packet (4.6), with (4.7)
replaced by

a(k„k, E) =4(pI'pII')-'/'e —""b(k,—K)

II
X tI(E —P (kP+k '+M')' ') (4.17)

The wave packets (4.18) and (4.19) describe states
localized in the transverse plane to within a distance of
the order of (/42+M2)'/2. This is characteristic of rela-
tivistic scattering, where states with positive-energy
components alone cannot have a 8-function localization.
These wave packets again change in character rapidly
with time and describe transient states.

The asymptotic states (4.18) and (4.19) are the
analogs of the Newton-signer" localized single-particle
states for a two-particle relativistic state localized in
the transverse plane.

Again, the mean position of the wave packet C in the
transverse plane, as defined by the expectation value
of the (relativistic) relative position operator

(4.20)

where Er=pr', XII= pII2, is seen to be just b, inde-

pendently of the time. The transient asymptotic state
described by the wave packet C is an eigenstate of the
position operator Io~.

The representation of the scattering amplitude for the
process A+8 —+ C+D, analogous to (4.10), now has
an additional factor (16p~'psopc'pD')'/2 on the right-
hand side.

It is also of intetest to consider states
I b,2/I; «), with

a definite value nz of the angular momentum component
along the s axis; we define such states by

where Mq and Mzr are the masses of the two particles.
For t=T —+—~, this wave packet is of the form

Ib, /4), = P e '~«+ ' Ib&222&/4)„ (4 21)

C(p, s, t,=T—+ —„)

—gzKz

where k' =k P+/42.

d2$ gikt (p-b)

(4.18)
2(k2+M 2) I/4(k2+M 2)1/4

"This is a particular instance of a more general observation.
A linear system can be described by examining its response either
to a steady-state input or to short-lived pulses. This is familiar in
the analysis of electrical networks. The two kinds of descriptions
stress complementary aspects of the system; each is of particular
utility in examining a diBerent kind of property of the system.
I'or instance, the analysis in terms of pulses is of particular
interest in studying properties such as the time delay of a pulse
in passing through a system. The relation of the time delay in
scattering to the impact-parameter description will be discussed
elsewhere.

2

Ib,2/I; /4), =— dg e' (&+ ")Ib, /4), . (4.22)
2~

The coordinate-space representative C of the state
I
b,m; /I), is related to C in (4.6) in a similar way, and is

obtained by replacing /I(k„k„E) in (4.6) by

/I (&t) = (4pI2pII0) / ~ (&&t)&(& &)

X8(E—P (k4'+k '+M ')"') (4.23)

~7 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949).
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andi+& and St+& depend on k, a
and b, respectively.

ss articles, T&+) an
b only through k&, an, res

The inverse relations rea

d'k e ' " ,
' 5.4)O', , =— d'k 'e-'b&'b T &+& (E,k, ')0'.&+&(b,E) =— d'k& e-' "

2~

X b(E—L(kP k ') j/2M)) (4.33)
5.5)dk, 'k, 'Jo(bk, ') T&+& (E,k, ) .



N. P. CHANG AND K. RAMAN

The integration over k, ' in these inverse relations is now
an integration over sin8 from 0 to ~, for fixed K Thus,
in order to define the representation (5.2) for fixed E,
we require an analytic continuation of the amplitudes
T'+~ as a function of sino, in the unphysical region in
sin8, from 1 to ~. We shall define this analytic con-
tinuation by writing Mandelstam representations for
g (+)

We shall refer to (5.3) as the fixed-energy IPR."
This was the representation considered in Ref. 1.

We note that now we no longer have an interpretation
of the impact parameter b as the spatial coordinate
canonically conjugate to k, . This is a necessary conse-
quence of looking for an IPR with the energy held fixed.
It is only in the limit of infinite energy that the fixed-
energy IPR also corresponds to a coordinate-space
description of the scattering amplitude.

The validity of the representations (5.2) and (5.3)
requires the integrability condition

From (5.2) or (5.3), we immediately obtain"

gs„(+l(E)—r db bR'+'(b, E)

d(cos8)Ps„,(cos8)Jp(kb s1118)

1 ) 'l' I'(rc+-,')
db b'"Jsnp:lo(kb)

2k) I'(rs+1) p

and similarly,
X e'+'(b, E), (5.7)

v2r(~+-', )
gs it—) (E)— db b l Js~yo/s(kb)

ko "P(n+1) „o

Xa, &-&(b,E). (5.8)

d(sin0) (sin0)'l'~ Tt+i(k, sin8) t ( oo . (5.6)

In an IPR with fixed k, or Axed 0, the impact-
parameter amplitude is not simply related to the partial-
wave amplitude. With the 6xed-energy IPR, however,
we have a simple relation between the amplitudes
8&+&(b,E) and the partial-wave amplitudes a~(E).

"We note that a ffxed-energy IPR with Jo(kb sin8) follows from
the optical (diffraction) picture of high-energy scattering. Consider
the optical-sphere model, in which the high-energy scattering of
the two particles is replaced by the scattering of a plane wave by
an absorptive sphere. Constructing the scattered wave from
Huyghens's principle, the scattering amplitude is found to be

where

f(k,8)=ik db bJo(kb sin8)(1 —e "to'"~),

(g2—g2) I /2

x(b,k) =
1

ds y(b, s,k).

LCf. S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. 75,
1352 (1949) for the corresponding expression for scattering by a
homogeneous sphere. See also J. Hamilton, Theory of E/ementary
Particles (Clarendon Press, Oxford, England, 1959), pp. 13, 19.j
In the above expressions, g is the radius of the sphere and y is
the (complex) absorption coe%cient. For a realistic model of
particle scattering, & must vanish rapidly outside the scattering
region, which has a radius of the order of a fermi. Therefore the
upper limit of the integral over b may be extended to in6nity,
glvlng

VI. CONCLUDING REMARKS

In this paper, we have shown how impact-parameter
representations involving Jo(kb sin0) follow naturally
when we consider the description of the scattering
amplitude in terms of states localized in the transverse
plane in coordinate space. We have examined two classes
of IPR. In one, the impact parameter 1 is the transverse
coordinate conjugate to the transverse momentum k&.

We have considered two such representations, one with
fixed k, and the other with a fixed scattering angle 8.
In these, the impact-parameter amplitudes involve a
knowledge of the physical amplitudes at all energies.
We have shown how these representations are intimately
related to the description of the scattering in terms of
transient asymptotic states localized in the transverse
plane.

The other kind of IPR is a fixed-energy IPR, obtained
by reinterpreting the Fourier transform with respect
to the transverse Inomentum. In this representation, the
impact-parameter amplitude involves a knowledge of
the scattering amplitude at one energy, but for un-
physical values of the sine of the scattering angle.

The existence of these diRerent IPR's imposes dif-
ferent kinds of restrictions on the scattering amplitude.
Thus the integrability condition (3.6) for the IPR with
fixed k, requires that the scattering amplitude fall off
suKciently rapidly at large values of the transverse

with

J(k,8) =ik db bJo(kb sin8) C(b,k),
0

e(b,k) = 1—exp [—x(b,k) g.

"In obtaining these, we have used the relations

+1 1&2 j..(g,+&)
d(cos8) Po„(cos8)jo(kb sin8) =

kb 1
J ~u o(kb), o—1 kb r(n+I)

and

For a recent model of high-energy scattering, using an optical
picture, refer to T. T. Chou and C. N. Yang, Phys. Rev. 170, 1591
(1968). They introduce a two-dimensional impact parameter and
obtain their expressions from a representation with J0(2kb sin-, 8).
Their representation and ours coincide in the infinite-energy', limit.

+I
d(coso) P2„+I(cose)cosOJ0(kb sin8)

2 3I2r(~+-,')
~( +))J2n+3(2(kb).
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momentum. The precipitous drop of high-energy dif-
ferential cross sections at 90' suggests that this con-
dition is well satisfied experimentally. Thus, the IPR at
fixed k, should be a useful representation for high-energy
scattering.

The analogous condition for the IPR with fixed 8 is
that the scattering amplitude fall o6 sufBciently rapidly
with increasing energy at a fixed angle. This condition
should be well satisfied not too close to the forward
direction, outside the difIiraction peak in elastic
scattering.

Finally, the validity of the fixed-energy IPR requires
that the amplitude decrease sufficiently rapidly for
large values of sine for fixed energy. This is a condition

on the behavior of the scattering amplitude in the un-

physical region; its interpretation depends on the ana-
lytic properties of the scattering amplitude.

The IPR's considered here provide us with different

ways of expressing the scattering amplitude for energies
and angles outside the domain of validity of the eikonal
approximation.

An important question is the analyticity properties
of each of the IPR's. This has been investigated for the
fixed-energy IPR'; in subsequent work we shall examine
this in detail for the other two representations.

The results obtained here may be directly extended to
the scattering of particles with arbitrary spin; this will

be discussed elsewhere.
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A field theory of electric and magnetic monopoles which are either point or extended particles is con-
structed, using Mandelstam s path-dependent field quantities specialized to straight-line paths. Restrictions
on the paths and form factors which are needed for self-consistency have been given. It is found that the
Jacobi identity is satisfied. Schi8 s selection principle for quarks, originally derived in ordinary quantum
mechanics, follows easily and is thus generalized to field theory.

I. INTRODUCTION

A THEORY has been proposed by SchiQ' showing
that fractionally charged quarks should be unob-

servable as separate entities. It makes use of Dirac's
idea that the quantization of electric charge derives
from the existence of a magnetic pole of strength g.'
Schiff treated a magnetic monopole of radius R classi-
ca,lly, and used the nonrelativistic Schrodinger equation
to show that fractionally charged particles can exist if

they are confined to a roughly spherical volume of radius
R which contains integer total charge. The purpose of
the present paper is to extend these ideas to a spin-zero
field theory by showing that a self-consistent field theory
of extended magnetic monopoles is possible. Several
other authors have previously considered the quantum
effects of magnetic monopoles. ' We shall use a modifica-
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AFOSR Contract No. AF49(638) 1389.
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tion of the formalism of Cabibbo and Ferrari, ' who gen-
eralized Mandelstam's quantum electrodynamics with-
out potentials. ' This approach uses Mandelstam's paths
which extend from the charged particle to infinity, and
is to be distinguished from the Dirac-Schwinger ap-
proach which uses strings of singularities. We shall in-
troduce straight-line paths in order to extend Schi6's
ideas; however, the material that follows can be gen-
eralized to arbitrary spacelike paths.

II. NOTATION

The field quantities are denoted by

C(x,n„) =q(x) exp ie n„A„(sc+ns)ds

for electrically charged particles and by

@(x,n„) =lb(x) exp ig noBo(x+ns) ds

ibid. 140, 3804 (1965); A. S. Goldhaber, ibid. 140, 81407 (1965).
J. Schwinger, ibid. 144, 1087 (1966};G. Wentzel, Progr. Theoret.
Phys. (Kyoto) Suppl. 37, 38, 163 (1966);R.Tevikyan, Zh. Eksperim;
i Teor. Fiz. 50, 911 (1966) LEnglish transl. : Soviet Phys. —JETP
23, 606 (1966)g; T.-M. Yan, Phys. Rev. 150, 1349 (1966).
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