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Investigation of the Accuracy of the Tomonaga Intermediate-Coupling Approximation*
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The Tomonaga intermediate-coupling approximation and a two-wave-function generalization of it are
applied to the system consisting of charged scalar mesons interacting with a static-source nucleon. The gen-
eralization allows mesons in the nucleon ground state to occupy either of two states in momentum space.
Expressions are obtained for the ground-state wave functions and energy, and for the dif'ferential cross
section for the elastic scattering of positive mesons by protons. The cross section associated with the one-
wave-function approximation differs significantly from the two-wave-function cross section. There is good
agreement between the one- and two-wave-function results for static properties of the nucleon.
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MAJOR obstacle to the field-theoretic under-
standing of the interaction of mesons with a static

nucleon is the difhculty of solving the equations of held
theory when the meson-nucleon coupling constant is too
large to allow perturbation-theoretic treatments of these
equations but too small to allow the use of strong-
coupling approximations. The Tomonaga intermediate-
coupling approximation for the interaction of mesons
with a static-source nucleon constitutes an attempt to
surmount this obstacle. ' This approximation effects
a considerable simplihcation of the Hamiltonian of the
meson-nucleon system by assuming that the mesons
surrounding the physical nucleon can be described with
a single-wave function chosen so as to minimize the en-

ergy of the nucleon state. It is possible to solve the held-
theoretic equations for the Tomonaga approximate
physical nucleon state and to compute the differential
cross section for meson-nucleon scattering. ' Indeed,
Friedman, Lee, and Christian have found that the
Tomonaga approximation for the interaction of pseudo-
scalar mesons with nucleons predicts the 3-3 phase shift
for pion-nucleon scattering to within 10%, up to 200
MeV. '

A theoretical investigation of the accuracy with which
the Tomonaga method approximates exact static-source
theory has not previously been performed. In this paper
we shall construct a two-wave-function generalization
of the Tomonaga approximation. The accuracy of the
Tomonaga intermediate-coupling approximation will
then be tested by comparing the results obtained from
the one- and two-wave-function forms of this approxi-
mation applied to the system of charged, scalar mesons
interacting with a static-source nucleon. The charged
scalar system is used since it is su%ciently simple to
permit easy application of the Tomonaga approxima-
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tion but retains many of the characteristics of more
complicated and realistic systems. In particular, an
exact treatment of the charged scalar system requires
the use of an infinite number of meson wave functions.

After describing the Tomonaga approximation and its
generalization, we shall obtain expressions for the
ground-state wave functions for the one- and two-wave-
function cases. We shall then use these wave functions to
obtain certain characteristics of the physical nucleon
state and the differential cross section for the scattering
of positive mesons by protons. It will be seen that the
cross sections resulting from different Tomonaga ap-
proximations disagree by orders of magnitude, indicat-
ing that the Tomonaga approximation is unreliable.

I. PHYSICAL PROTON

We consider a charged scalar held with the
Hamiltonian

8= dsk tos(aRtaR+ baths)

p(k)
+g dt's [r+(as+bat)+T (ast+bs) j, —

(2~ )1/2

where al, ~ and b&~ are, respectively, creation operators
for positive and negative mesons, the meson mass is
unity, and

($2+ 1)1/2

The source function p(k) is defined by

p(k) =(22r) '" dsz p(X)e'R *

where p(x) has been arbitrarily chosen to be the nor-
malized function

p(x) = (M2/42rx) e—~*.

The nucleon mass M is taken to be seven times the
meson mass. The effect of varying the source function
has not been investigated.

We now consider two arbitrary complete sets of ortho-
normal functions, {F,+(k)) and (J", (1'2)), and express
the meson destruction operators as series expansions
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with these functions4:

ak ——Q k 'F,+(k) V(„(k)a, ( .,
slm

bg=Q k 'J, (k)I"(„(k)b,(
slm

can be obtained by solving the effective Hamiltonian

EXg g= W(ata+b~b)+ ff(7+a+7 b)+H.c.j
where

dk (oI,F*(k)F(k),

F~ is the &n spherical harmonic. The operator expan-
sion coeKcients a, ~ and b, ~ satisfy

[&alma+a'l'm' j=Lbalmabs'l'm' ]=&s s&E'l&m'm and

f= (4')'"2g dk kF(k)u(k),

and, respectively, destroy mesons with the wave func-
tions F,+(k)F'~„(k)/k and F, (k)I"~ (k)/k. In terms of
u, ~ and b,~, the Hamiltonian is

s'slm
(W ' ss&+atm +slm+Ws'a bs'Lm bsl—m)

+Q (f,~r+a, g +f, r b, +H.c.),

where /=m=0 in the second summation,

dk A)IF,~*(k)F.g(k),

and

f,~= (4n)'"g dk -kN(k)F, p(k),

N(k) =P(k)/(2~I )"'
~

H =g g (W, ,+a;ta, +W, , b, .tb, )
s=1 s'=1

+Q (f,+a+a,+f, 7 b,+H.c.). (1)—
s 1

Since only s-wave mesons interact with the source, the
ground state of the system involves only s-wave mesons,
and only s-wave mesons are scattered by the physical
proton. We shall drop terms from the Hamiltonian in-
volving non-s-wave mesons and suppress the subscripts
l and m. This gives the effective Hamiltonian

dk F*(k)F(k)=1.

The operators a and b~, respectively, create positive
and negative mesons with the wave function F/(47r) '~'k.

The ground state of JI& ~ may be computed numerically
with arbitrary accuracy to obtain the results ordinarily
associated with the Tomonaga approximation. In the
following discussion we shall refer to this as the 1wf
approximation.

The Tomonaga approximation can now be generalized
to permit the use of approximate ground states involving
any finite number of wave functions. An n-wave-func-
tion approximation is formed by assuming that only
mesons associated with m members of the sets (F,+}are
present in the ground state. The effective Hamiltonian
is obtained by dropping all terms in (1) not involving
mesons with the given n wave functions. The n wave
functions are then chosen to minimize the ground-state
energy of the approximate Hamiltonian subject to the
constraint that the wave functions for positive and
negative mesons form separately orthogonal sets.

We shall consider two examples of the generalized
Tomonaga approximation:

(a) the two-charge wave-function approximation (2g)
in which there are two nonvanishing wave functions,
one for each charge of meson. The effective Hamiltonian
1S

IIgq W~ata+W btb+(f~—r—+a+f r b+H.c.), —

where

When using the ordinary Tomonaga method, one as-
sumes that all the mesons which significantly affect the
ground state of the system have the same wave function
F/(47r)'"k. The approximation is then made that only
mesons with this wave function are present in the ground
state, and the function Ii is chosen so as to minimize the
ground-state energy. The sets (F,+} may be assumed
to contain F.Then only those terms in the Hamiltonian
(1) which are associated with F correspond to mesons
present in the ground state and have nonvanishing
ground-state expectation values. Thus, the ground-state
energy and the approximate ground-state eigenvector

4 E. M. Henley and %'. Thirring, in Elementary Quantum Field
Theory (McGraw-Hill Book Co., New York, 1962), Chap. 17, p.
186.

dk F~*(k)F~(k)=1,

and

dk a)gF~*(k)F„(k),

f~ = (4~)'"g dk ku(k)F~(k) .

The operator u~ creates positive mesons with the wave
function F+(k)/(4')'"k, while bt creates negative me-
sons with the wave function F (k)/(4~)'t'k.

(b) the two-momentum-space wave-function approxi-
mation (2P) in which there are two orthogonal wave
functions independent of meson charge. The effective
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TABLE I. Static characteristics of the proton. ~

N1+
Ng+
N12+
F1+
JI2+—E

E]
Ã2+
N12
3II1+
3II2+

N1+
N2+
N12+
F1+
CV2+
jV

N1+
N2+
E12+
M1+
3f2+

0.0039

0.0624
0.01337

0.3039

0.4450
1.753

0.4280

0.4808
2.893

0.5130

0.4999
3.875

g2=0.01
0

0.0039 0.0039
0
0

0.0624 0.0624
0.01337 0.01337

g'=1.581
0.00269

0.3166 0.3211
0.02165
0.04045

0.4507 0.4493
1.766 1.787

g2 —2 8
0.0243

0.4355 0.4331
0.0952
0.1229

0.4840 0.4689
2.893 2.938

g'= 4.0
0.00507

0.5274 0.5359
0.0337
0.0506

0.5007 0.4963
3.905 3.962

x2-
'hp =

0.108
2.372
0.6404
0.3031
3.4502

x2-
)p=

2.06
11.0
0.8644
0.4185
3.279

$2—
)p=
X+=

0.0775
1.740
0.9852
0.4848
3.060

x1= 0.0007973
x2 =300.632
Xp = 0.0067
Z+—— 0.0030

3.4004

(PIHp~lp)=0, s=1 or 2
8F,

F~(k) = —(4~) '~'gA+ku(k)/((op+A~),

where A+ are normalization constants, and the param-
eters X~ are chosen to minimize the ground-state energy.
For the 2p approximation

~(~~+0)
F,(k) = (4') '"gkn(k)-

xyMg +$2(dan+1

Fp(k) = (47r) '"gku(k)
xygy +$2My+ 1

(3)

for the 1wf, 2g, and 2p approximations, respectively.
lp) represents the physical proton state. Analysis of
Eq. (2) leads to an expression for F of the form

F(k) = —(4') '~'gAkm(k)/(cu&+Xp)

for the 1wf approximation, where A is a normalization
constant and A, 0 is a parameter chosen to minimize the
energy of the ground state. For the 2g approximation
we find that

a N and M parameters for the »wf and 2q approximations are tabulated
as N2+ and M2+ .Column headings indicate the approximation to which the
data apply. Natural units are used with the meson mass equal to unity.

Hamiltonian is

2 2

H p„QQ W;, (a;ta——,+b;tb. )
s=l s'=I

+g tf (r a+r b,)+H c j, . .

where

dk F, *(k)F,(k) =b, „

and

dk ppI, F, *(k)F,(k),

f, = (4m)'"g dk kg(k)F, (k) .
0

The operators a,t and b,~, respectively, create positive
and negative mesons with the wave function F,(k)/
(47r)'"k. The ground states of both of the effective
Hamiltonians may be computed numerically with arbi-
trary accuracy.

The wave functions for the three approximations are
chosen to satisfy

where n, P, and y are selected such that Fq and Fp are
orthonormal. The constant 6 may be equated to zero by
choosing an appropriate basis in the space defined by
F» and F2, while x» and x2 are chosen to minimize the
ground-state energy.

The functions F, F~, F», and F2 all have the same
functional form, that of Eq. (3). The only independent
parameters appearing in these functions are A. 0, A.+, x»,
and x~. These parameters are analogous to undeter-
mined Lagrange multipliers and will be referred to as
such in the following discussion.

The energy-minimizing values of the Lagrange multi-
pliers and ground-state energy have been computed
numerically using a CD C-1604 computer. This was done
by choosing the Lagrange multipliers for a given ap-
proximation so as to minimize E in

H. ~I p) =F-
I p)

for states
I p) of unit positive charge. H, rq is the effective

Hamiltonian. When the Lagrange multipliers have their
energy-minimizing values, E is the approximate ground-
state energy, and

I p) is the approximate physical proton
state. The following constants, which are required in
the computation of meson-proton scattering cross sec-
tions, were also computed:

for the iwf and 2g approximations, and

(PIH - IP&=o, &P—IH" IP&=o,
0F SF'

(2)
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for the 2p approximation. The Lagrange multipliers,
X and M parameters, and ground-state energy for the
three approximations are displayed as functions of g' in
Table I.

II. SCATTERING OF MESONS BY NUCLEONS

We now consider the scattering of positive mesons by
protons in the various Tomonaga approximations. The
scattering state ~lt), representing a proton and an in-

coming positive meson of energy coo and momentum

ko, is calculated using the variational principle

BQ iH —E—copilot)=0, (4)

where H is the exact charged scalar Hamiltonian, and E
is the energy of the proton state. ' The trial state is tak.en
to be

(5)

TAsLE lI. Meson-nucleon elastic scattering cross sections'.

Columns below approximation

g2=1.581 1.2 3.021
2.0 2.992
2.6 1.359
3.0 7.553

g2 28

g'= 4.0

1.2 3.937
2.0 3.664
2.6 1.588
3.0 0.8621

1.2 4.629
2.0 4.280
2.6 1.832
3.0 0.9868

names show k'(dp/dQ) X102

4.594 9.065
7.025 4.886
4.060 2.237
2.527 1.331

6.199 72.35
9.009 41.28
4.924 26.86
2.939 19.75

7.353 20.86
10.63 7.968
5.720 3.382
3.371 1.948

Pert.
1wf 2q 2P theor.

Columns below approximation names show ks(do/dQ) X10'

g'= 0.01 1.2 2.807 2.839 2.914 2.94
2.0 5.506 5.670 5.690 5.91
2.6 4.940 5.181 5.145 5.45
3.0 4.279 4.557 4.500 4.85

with y a function to be determined. '
Substitution of (5) into (4) yields the following inte-

gral equation for y:

22 Column headings indicate the energy and approximation to which the
data apply. Natural units are used with the meson mass equal to unity.

(000 —pop)x(k) = d'k' E(k,k')X(k').
The iwf kernel is the sum of separable terms. The solu-

(6) tion to (6) for this case is

The kernel is

E(k,k') = ——',(g(P j Lus.u(k)+asu(k') jr+~ P)
gg~gg ~A,

—o — Ca Qk ore —eo

For the 1wf case, this is

X(k,k') = $(ops. 00p) f(—k) f(k')—/V++gu(k') f(k)M+j,

where

1 gu(kp)
x,„,(k) =h(k —k,)— — M+f(k),

Djwf Goy —Goo —z6

u(k)
D,„r——1+X++ d'k g f(k)M+.

Gay —Mo —Z6

where

f(k) =F(k)/(42r) "2k.
It follows that the differential cross section for the 1wf
case is

do = (42r'co p)'Lgu(k p)f(k p)M+j' u(k)
$42rsgcppkpu(ko) f(kp)M+j'+ (2+IV+)+I' d'k g M+f(k)

The kernels for the 2g and 2p cases are also the sum of separable terms and the solution of (6) for these cases
leads to the following expressions for the differential cross section:

do'
=$42rsrppu'(k p) Rgs js

dQ 2~

u'(k)
&4~'~pkpu'(kp)zg'j'+(~0+le )'~ 1—zg'(~0+ii )z d'k

(010+l1+) (&0—&0)~

with R= (M+)2/E+ for the 2q case, and

(42r 000) (gu(kp)L(M1 +Ml 1V2 +12 M2 )fl(ko)+ (M2 +M2 +1 +12 Ml )f2(ko) j)
dQ 2„ (&mDsn)'+(ReD»)'

where

Ds„——(1+%1+)(1+Ps+)—(1V12+)2+ d'k g
u(k)

for the 2p case.

cd' —GDo
—z6

X / f1(k) (Mr++Mt+/V 2+ 1V 12+Ms+)+ f2(k) (M—2++Ms+Er+ —1V12+Mt+)j
5 W. Kohn, Phys. Rev. 84, 495 (1951}.' We do not know what error is involved in the one-meson approximation used in the state (4).
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The cross sections for the three approximations have
been evaluated numerically using the CDC-1604. The
results are shown in Table II along with the differential
cross sections obtained from first-order perturbation
theory. As can be seen from the table, for g' values equal
to or greater than 1.581 there is sharp disagreement
among the cross sections obtained using the three types
of Tomonaga approximation. The 1wf and 2q cross sec-
tions diRer by as much as a factor of 2.7, while the 1wf
and 2p cross sections disagree by more than a factor of
20 for certain values of g' and &p. On the other hand, at
g'=0.01 there is good agreement among the cross sec-
tions obtained from the three types of Tomonaga ap-
proximation and perturbation theory. This agreement is
to be expected inasmuch as the perturbation-theoretic
proton state approaches the 1wf proton state as g' ap-
proaches zero.

The cross sections obtained from the 1wf and 2g ap-
proximations do not agree with the cross section ob-
tained from strong-coupling theory at large values of
g'. ~ The behavior of the cross sections therefore differs
from that of the ground-state energy and E and M pa-
rameters obtained from the 1wf and 2g approximations.
The latter quantities approach agreement with strong-
coupling theory as g' becomes large. s Computation of
the strong-coupling limits of the 2p approximation was
not feasible with the computer facilities available.

III. INTERPRETATION OF RESULTS

The results displayed in Tables I and II show that
the values of the ground-state energy and S and M
parameters obtained from the various Tomonaga ap-
proximations are in close agreement but that there is
considerable disagreement among the cross sections as-
sociated with different approximations. Since the wave
functions associated with all three approximations have
the same functional form, that of Eq. (3), it follows that
the similarities and differences in the results obtained
from the approximations considered here are attribut-
able to the values of the Lagrange multipliers associated
with each approximation. Perfect agreement among the
cross sections for the scattering of positive mesons by
protons requires

xg ——0 and Xp=X =x2 '.
~ See Ref. 2, Eqs. (23) and (24), and footnote 9.' See Ref. 2, Figs. 1 and 2, and Table I.

However, as can be seen from Table I, the computed
values of the Lagrange multipliers depart from this con-
dition by orders of magnitude. The cross sections, which
depend explicitly on the distribution in momentum
space of the mesons surrounding the physical proton,
reQect the departure of the Lagrange multipliers from
conditions (7). There is no way of knowing which, if
any, of the three approximations considered here has
yielded the correct Lagrange multipliers. We conclude
that Tomonaga-type approximations using few wave
functions do not yield reliable scattering cross sections
outside the region of validity of hrst-order perturbation
theory.

The ground-state energy and E and 3f parameters
depend only on the integrated distribution of bound
mesons in momentum space. As can be seen from Table
I, the values of these quantities obtained from the
various approximations agree to within 3%. This indi-
cates that the ground-state energy and S and 3f pa-
rameters are probably accurately computed using any
of the approximations we have considered. However,
these quantities are not observable in the laboratory,
so the utility of the approximations is severely
restricted.

It is, of course, conceivable that accurate calcula-
tions of dynamical quantities could be made with
Tomonaga-type approximations if suKciently many
wave functions were included in the Hamiltonian. How-
ever, the complexity of the numerical computations in-
volved in determining the E and 3f parameters, ground-
state energy, and Lagrange multipliers increases so
rapidly with the number of wave functions used that it
is scarcely feasible to attempt to solve higher-order
Tomonaga approximations with computing equipment
presently available.

Pote added ie proof. The following papers also deal
with the accuracy of the intermediate coupling approxi-
mation: R. Stroffolini, Phys. Rev. 104, 1146 (1956);
R. J.Drachman, ibid. 109, 996 (1958);125, 1/58 (1962).
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