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The same reasoning may be applied to the term propor-
tional to M,S„,aq,„, so we have a quadratic divergence.
There is also the graph of Fig. 7(b) which we must
assume is cancelled by a mass-renormalization term.
The diagrams of Fig. 7(a) could lead to a violation of
universality. Of course, if we imagine H/; to have
strangeness zero, 8'~ and 8', to have strangeness one,

I + f,x+~,&,.(0) I
)&0 (&&)

and 8'WW' couplings to preserve strangeness, the
diagrams of Fig. 7 are forbidden.
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The partial-wave dispersion-relation (PWDR) problem is studied in the nonrelativistic elastic case. In
particular, a set of conditions on the left-hand-cut discontinuityis obtained whichis sufhcient to guarantee
that the p~og. problem has a solution. The nature of the solutions so obtained and the possible extensions
are discussed.

I. DITRODUCTION

1

can introduce dynamical information abou
~~ partia]-wave amplitudes in a relatively consistent

manner by requiring that the amplitude f(k') be
unitary, be analytic in the variable k' in the usual
twice-cut plane, and have a prescribed left-hand-cut
discontinuity which is regarded as input.

The problem consists of finding solutions to
singular, nonlinear integral equation (3.1) which are
analytic in the desired region. The problem as stated is
known not to lead to unique solutions in many cases as
a result of the Castillejo-Dalitz-Dyson (CDD) am-

biguity. The ancient and mysterious 1tf/D algorithm
reduces the problem to one which is less formidable in
appearance. In so doing, one considerably limits the
types of solutions one can obtain as a result. However,
the dynamical content (e.g. , the nonlinearity) of the
partial-wave dispersion relation (PWDR) is carefully
disguised in the E/D approach.

The rich dynamical content of the PWDR problem is
indicated by the fact that although it in general has
more than one solution, certain conditions must neces-

sarily be fulfilled if it is to have any solution at all. ' We
will illustrate this here in a simple way.

In Secs. II and III we obtain and discuss conditions
on. 5T which are sufhcient to guarantee the existence of
a certain type of solution to the P%DR problem. In
Sec. IV we study the relative eKcacy of these conditions

by examining known solutions in simple cases. The
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' A. Martin, Nuovo Cimento 38, 1326 (1965).

m-pole case is discussed in Sec. V and distinct conditions
are obtained there, Further discussion of the general
problem is presented in Sec. VI.

II. PARTIAL-WAVE DISPERSION RELATIONS

Here we will study the construction of nonrelativistic,
completely elastic partial-wave amplitudes from uni-
tarity, analyticity in energy, and knowledge of the left-
hand-cut discontinuity. That is, given the function
DT(k') defined in —~ &k'& —tt', we wish to learn
under wha, t conditions there exists a function f(k') with
the following properties.

(i) f(k') is a real analytic function of k' in the twice-
cut k' plane, where the cuts lie along the real axis and
extend over the domains —~ &k'& —p,

' and 0&k'& ~
(ii) The function f(k') —+0 ask'~ oo within the cut.

plane.
(iii) The discontinuity of f(k') across the left-hand

cut —oo &k'& —tts is given by AT(k')
(iv) As one approaches the right-hand cut from above,

f(k'+ee) satisfies the unitarity condition

Imf(ks+ee)= (ks+se)»sI f(ks+se) Is (2.$)
or

f(ks+se) = (ks+se) tse'st~'& sinb(ks) P(ks) real. (2.1')
A very simple type of necessary condition can be

obtained as follows2:
I.et p (k') be any function analytic in the k' plane with

only a right-hand cut. If p is such that ks+'fry(ks) -+ 0
2 G. Tiktopoulos (unpublished).
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as k'~~, then

dk'p(k')AT(k') = dk' Imlfg(k') j

where unitarity requires that the right-hand integral be
finite, so that the left integral must also be finite. The
interesting aspect of these conditions is that the func-
tions P are smooth (analytic) over the region of inte-
gration so that these conditions are not very dependent
upon the structure of the discontinuity hT. We show
here that a function satisfying the above properties
exists if the left-hand-cut discontinuity DT satisfies
these conditions:

(a) AT(k') is such that the function

unique because of the latitude of choice of behavior on
the unphysical sheet of the k' plane.

We have proved the existence of solutions under
conditions (a) and (b) which satisfy the threshold
condition at l= 0 The more general threshold condition
that

S(k')lim-
k~ 0+ (k 2) i

exists will not be generally valid for our solutions. This
question is discussed further at the end of Sec. V.

III. PROOF OF SUFFICIENCY OF
THE CONDITION

We want to establish that f(k') can be written in the

(2.2)
p2

is analytic in the k' plane with only a left-hand cut and
approaches zero as k' ~~ in the cut plane.

(b) In addition, the integral 1 dk'2
+—

(2.3)

exists and is less than 1. The condition (2.3) can be
viewed as a constraint of the total variation of the
integral of the function hT over the left-hand cut. It
does not place any further restrictions on the structure
of hT.

One can examine the case in which Tp contains pole
terms by including 8-function singularities to write

AT(k2) —p g g(ni)(k2+g. 2)+AT (k2)

1 ~ dq2
X(k') =— D(q') AT(q'), (3.3)

where AT(k') is specified. We will use the E/D con-
structive procedure to show that such a solution exists;
that is, we make the ansatz

(3.2)

One can show that relation (3.1) is satisfied if cV and D
have the following properties:

where AT0(k') is the derivative of a continuous function
of k'. In this case we define

(2)
1 dg

D(k') = 1— qcV(q'),
7l p g

—k
(3 4)

——',~&S(k') &-,'~ (2.4)
for 0& k'& ~.

It is well known that the solution to boundary-value
problems of this type are plagued with the CDD
ambiguity and thus one does not get unique solutions.
The above restriction reduces this ambiguity, although
even under such a restriction the solution would not be

dk
+ (

ATD(k')
~

(2.3')
-- V'( —k')

and a sufficient condition for a solution is &&1.
We will show that under conditions (a) and (b) there

exists a solution f such that the phase shifts defined
in (2.1') obey the constraint

(3) E must be analytic in the left-hand-cut k' plane,
whereas D must be analytic in the right-hand-cut k'
plane.

(4) The function 1V/D must be analytic in the twice-
cut plane and must vanish at ~ like some inverse
power of k'. In particular, therefore, B cannot vanish
in the cut plane.

The 1V/D approach should be regarded neither as
panacea or anathema, but merely as a trick to construct
the scattering amplitude. One can hardly expect the
same trick to work in generation of all possible solutions
of the problem. Conversely, one must always check to
see that the amplitude so constructed does satisfy the
partial-wave dispersion relation (3.1). In any case,
with the restriction (2.3) we will show that one can
construct an f satisfying (3.1).

We choose to uncouple Eqs. (3.3) and (3.4) by in-
serting (3.3) into (3.4) and inverting the order of
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integration' to obtain the phase shift B(k') satisfies the inequality

(
tanb(k')

i & ~,
dq'D( —q') 6T(—q') —— (3.5)

g(kp)
"

so that the condition (2.8) is satisfied for our phase shift.

where Im(+k') &&0 on the physical sheet.
We can write Eq. (3.5) formally as

D= 1+ED, (3.5')

2
Eh(k') =— dq —AT( —q')k( —q'). (3.6)

q ig—(k')

Suppose ~k( —q')
~
(C for p'(q'( ~. Then for all k'

such that Im(gk') &0

where the kernel E operating on a function k(k') is
written

IV. EXAMPLES

We have shown that certain conditions upon the
left-hand-cut discontinuity are sufficient to guarantee
the existence of a solution to the PWDR problem. Here
we will apply these conditions to simple cases.

(a) Tp(k') = (!iM/4k') in(1+4k'/p') .

Martin' has shown that XM/p, (2.5 is necessary for any
solution to this problem to exist. Our condition implies
that XM/@&0.5 is sufficient to guarantee a solution
without CDD poles.

(b) Consider the following amplitude:

2C
iEk(k ) i

&
g

dq—. —,—I»(—q')I
I q

—~v'(k')
I

f(k') =Tp(k')

" k'dk"
Tp(k")

k"—k'

tEk(k') (
&~—',CM (3.7)

for Im(k') &&0. One may thus write the Neumann series

for the integral equation (3.5) and show that this series

converges to a solution for Im(k') ~&0. In fact, one can
easily obtain the following inequality for D with

Im(k') &&0:
M

~D(k) —1~ & P (-',M)-=
n=l 2 —3f

Since M is strictly less than 1, then

0& ~D(k) ~&2 (3.9)

for Im(gk') ~& 0.
One determines 1V(k') by solving (3.5) for D(k') and

then substituting the result into Eq. (3.3) for E.4 The
condition (3.8) first obtained upon D along with (2.7)
on the left-hand-cut discontinuity is sufficient to
establish that E is analytic in the k' plane with a left-
hand cut. Further, for any point in the cut plane,

~
1'(kP)

~

& 4Lgd(kP)g-iM,

2C
dqihT( —q') i

=-', CM.
7t p

Under the assumption of (2.7) we have thus shown that

" dp XM / 2pq--'

.ip p' — 2p
(4.2)

One can bound this integral to show that (4.2) is
satisfied if XM/p(p, whereas (4.2) cannot be satisfied
if l~M/@=0. 25.

(c) We consider s-wave scattering from the potential
V(r)=ge "for which

(—g)' 1

To(k') =- 2
2 =ir!(r—1)!k'+-', r'

It has been proved5 that the corresponding partial-
wave dispersion relation has a solution if —g&1.4457.
Our condition on Tp is met if Ip(2+t —gt)&1.5 or

These examples give some indication of the "breadth
of suAiciency" of the above conditions.

XM / 4k'q

4k' 4 p'1
XM 2g( —k')q-

1— ln 1+
~ , (4.1)

2g( —k') p, I
where Tp(kP) is the same as in (a).' The amplitude is
unitary and analytic in the cut plane if liM/p& 1. The
constraint for a sufficient condition is that

where d(k') is the shortest distance between the point k'

and the left-hand cut.
These results imply that the function f(k') =iV(k')/

D(k') constructed here must satisfy the partial-wave
dispersion relation (3.1). Note that iV(kP) is purely real
for k'~&0. Since D never vanishes on the left-hand cut,

V. N-POLE CASE; THRESHOLD

Here we will consider the case in which

Tp(k') =g Z
'=i k'+u'

(5.1)

' This step is justified a posteriori.
4 It is also possible to use relation (5.8) to obtain ~ from D.

5 R. Blankenbecler, M. I. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1959).
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where ), and u; are real, and we write for definiteness
0(a~(a2( ~ ~ (a~. We can write f=lV/D as above
and obtain

N ~i
&(k') =g Z D(—a"),

'=& k'+a;2
(5.2a)

D(k) =1—
g P D( a,2)—.

~=» 8;—Zk

One can also write E and D in the form'

where

X(k') =2 (k')/Cp,

D(k) =8(k)/C~,

C+= det{C;;}=det{b;;+gX;/(a;+a;) },

(5.2b)

(5.3)

0(gX;/(a'+k')

and

A(k')= ii
:l
1l

1 )
—gX~/(a, —ik)

B(k)= 1~
~

l

ll

where the domain D has the following properties:

(1) D is connected;
(2) D contains the point g=0;
(3) for every point g in D,

C+(g) =det{~'+gL}«/(a'+a )3} (5 4)

is positive; and

(4) for every point in g in D,

We show that the following conditions on To, or,
equivalently, upon g and X;, are sufficient to guarantee
a solution of the PWDR problem (we require all X; to
be of the same sign):

gED,

where

( }I.; ) ~ X; (c;—c;) '
~(c ' c )=detl I= II—II I

kc;+c~l '=~ 2c (~ kc;+c;)

gZ
i=» 2g

(5.6)

One can verify independently that C+ and C are
positive under this restriction. In fact, one can verify
that if the left-hand side of (5.6) is less than 1, C~ and
C are still positive. (See the Appendix. ) In the ex-
amples given in Sec. IV the more general condition
&&4 is still sufficient to obtain a solution, as one
would expect it to be, by analogy with the m-pole
problem with residues of the same sign.

If the numbers X; are not all positive, then zeros of D
can enter the upper half k plane at any point on the
real k plane; when they are on the real axis they are
exactly cancelled by a zero of E, since for real, positive k

(5.7)D(—k*)=D(k)*,

We are guaranteed of a solution to the problem if D
has no zeros in the upper half k plane. Since in Eq. (5.2b)
we have required D(k= ~)= 1 if D does not vanish in
the upper half k plane, then D(k) will be positive
everywhere along (Rek = 0, Imk )&0). The function
f(p) =D(ip) cannot vanish unless p is real if D( a,2)—
are all positive. (Either f or f i—s a Herglotz function,
depending upon the sign of the X;.) Thus as g is in-
creased, all the zeros of D remain on the imaginary k
axis, at least until one of them enters the upper half
k plane. ' Thus the first zero to enter the region Imk&0
will do so either at k=0 or k= ~.

Now if C+(g) vanishes at some value go, it is not
possible to require that D(k' = ~, g,)=1; in other
words, a zero of D may enter the upper half k plane
at g=go. Similarly, A(k=O)=C (g) and, if C (g)
vanishes, a zero of D occurs at k =0 and may enter the
forbidden region. Thus the requirement g+D is
sugciemt to guarantee that a solution to the PWDR
problem exists. Note that if X;)0, C~(g) never vanishes,
whereas if X;(0, C (g) never vanishes.

The suKcient condition obtained in Sec. III (M(1)
requires that

C (g) = det{h,,—gP.;/(a;+a, )]} (5.5)
D(k) —D(—k) = 2ikE(k') . (5.8)

is also greater than zero.
One can rewrite C+ by writing it as a polynomial in g:

C+=1+Z g ( Z )~(a' a'.),
u=» 1&~2& ~ «y

' E. M. Nyman, Nuovo Cimento 37, 492 (1965).
7 Note that one can show that

8(0=0) =det(B;, gp;/(a;+a—,)5}

One cannot expect a zero of X to follow the zeros of D
as they enter the upper k plane, although such cancel-
lation is not ruled out.

We now consider the threshold conditions on the
amplitude:

If we assume for simplicity that C (g) WO, the
threshold condition is simply that E(k') k" as k —+ 0.

' The zeros of Dc,'k, g) move continuously in k on the Riemann
sphere as g varies.
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C;;
&i

=0 (p=0, l—1)

This is equivalent to

8"E(k')
=0

cj(k')& i, =p
Ol

0)gX,/aP&

tinuously in k as g is varied, so that conditions (1)—(4)
should be sufficient to guarantee a suitable solution of
the integral equation (5.5) by the Fredholm alternative
and to guarantee that the solution of the 1V/D problem
satisfy the desired conditions. LOf course, we interpret
C~(g) as the exact Fredholm determinants of the
kernels &It.]

The relativistic, inelastic PWDR problems can be
studied from this same approach. Details will be given
elsewhere.

One can easily check to see whether the desired thresh-
old conditions are satisfied without needing a complete
solution to the problem. The threshold condition is
manifestly nonlinear in g and thus will be satished only
at special values of g.

VI. DISCUSSION

%e have obtained sufhcient conditions for a solution
of the l=0 PWDR problem to exist for a wide class of
left-hand-cut discontinuities in Sec. III, and we have
generalized these conditions in Sec. V, where the
left-hand cut is replaced by a series of poles of residues
of fixed sign.

Our solutions do not have CDD poles in the latter
case since D remains 6nite off the imaginary k axis.
One can, of course, construct solutions containing CDD
poles by explicitly inserting them in D when the 1V/D
separation is made.

In nonpathological cases where AT(k') is of fixed
sign, it should be possible to approximate To(k') by
poles, so that the results of Sec. V should be of more
general validity. More properly, one should view this
procedure as the determinental approximation of the
integral equation (3.5) for D. Under fairly general
restrictions that equation is essentially Fredholm for
k' real; —~(k'& —p', so that one can generate a
solution there by standard techniques. Then one can
explicitly perform the Hilbert transform to obtain D(k)
everywhere for Imk) 0.

Now Eq. (5.2b) is to be considered as a determinental
approximation to Eq. (3.5), and in fact the quantity
C~(g) is the determinental approximation' to the
Fredholm determinant of the kernel E in (3.5). Simi-
larly, C (g) is the determinental approximation of the
Fredholm determinant of the kernel —E.

With nonpathological conditions on AT with AT&0,
one would expect the roots of D(k,g) to move con-

W. V. Lovitt, Linear Integral Equations (Dover Publications,
Inc. , New York, 1950), pp. 24ff.

APPENDIX

We show that C+(g) do not vanish if

g g — -(1.
'=J 2a;

(A1)

Define a matrix

Now the matrix M is positive definite since

(A2)

(a;—a
detM;;=g~g g ~

&0
2ai '&J (ag+ag'

(A3)

and all the subdeterminants are of the same form and
thus also positive. Thus the eigenvalues of M are all
positive.

But TrM is equal to the sum of the eigenvalues of 3f,
so every eigenvalue p satisfies the constraint

0(p(g Q (1,
'=i 2g;

(A4)

where p satisfies the equation

det(gL
~
X A,

~
'"/(a, +a;)$—b,,p) =0. (A5)

If either C~(g) or C (g) were to vanish, the matrix 3II
would have an eigenvalue equal to +1. Since all the
eigenvalues of M are less than 1, the numbers C+(g)
cannot vanish. Hence the result is proved.
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