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Model of Weak Interactions with a 3QQ-Bev Cutoff*
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A model of weak interactions is displayed which preserves all the observed symmetries of weak interactions
in lowest order. It is mediated by three intermediate vector bosons with their respective antiparticles, and
also contains a massive neutral muon-type lepton and electron-type lepton, so altogether there are two
lepton triplets: e, v„ t. and p,, v„, 'A„. Higher-order corrections diverge, but for a cutoff A~300 HeV, i.e.,
G~A. 1, the model is shown to be compatible with present experimental limits.

I. INTRODUCTION
' 'T has been known for a long time that corrections
~ - to lowest-order —perturbation-theory calculations of
weak processes were, to say the least, ambiguous. When
calculated perturbatively, they diverged in any theory
for which the vector-vector nature of the interaction
was considered to be fundamental. It was hoped for
many years that these divergences were due to the fact
that the hadrons and leptons were being treated as
bare, elementary particles and that if electromagnetic
and strong interactions were taken into account cor-
rectly, the divergence might be tempered or altogether
eliminated. However, recently if has become clear that,
under certain assumptions, the coefficients of the leading
divergences are dictated by nonvanishing current
commutators, ' whose commutation relations hold even
in the presence of strong interactions. The interpreta-
tion is relatively unambiguous for semileptonic inter-
actions and a cutoff in the neighborhood of 50—100 BeV
is necessary in order to account for the absence of
EI, —& p+p, .' For nonleptonic weak interactions the
DS= 2 EI;Eg mass difference suggests' ' a cutoff
A. 4 BeV in a theory mediated by an intermediate
vector boson (IVB). In particular, even the lowest-
order nonleptonic weak interaction is quadratically
divergent4 for such a theory. Recently, several papers
have appeared either attempting to exploit this diver-
gence' or to show how in certain cases it may not be
present and what consequences this has. ' ~

The upshot of all this is that the value of the cutoff
has to be small (of the order of a few BeV) and, if these
calculations are to make sense, the value of the IVB
mass even smaller, nor does using an elementary
current-current interaction improve matters. Since such
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a vector boson has not yet been observed experi-
mentally, ' one may ask what are the possible remedies
to such a state of affairs. The first one is to say that we
may just not be able to deduce anything meaningful
from perturbation-theory calculations done to a few
orders with a cutoff and that, in fact, the perturbation
expansion is meaningless or at best misleading unless
the whole series is summed. A second possible solution
is to say that the observed vector-vector nature of the
weak. interactions is accidental and the weak inter-
actions are really mediated by scalar bosons. " " A
third possibility" is to introduce, in addition to IVB's,
scalar bosons coupled by derivatives to the vector
currents, such as to remove the divergences which
would lead to discrepancies with the observed selection
rules of the weak interactions if the cutoff A. were of the
order of several hundred BeV. At that point a natural.
length, namely, 1/QG&, is introduced, which may
provide a scale for the cutoff.

We would like to propose a model for weak inter-
actions similar to a schizon model we already con-
sidered, ' which is in the spirit of the third possibility
discussed previously. It is neither as ambitious nor as
general as the schemes of Ref. 13, its only virtue being
relative simplicity in that it involves in addition to the
usual hadrons and leptons, three IVB's and their anti-
particles and two massive neutral leptons and their
antiparticles.

In Sec. II, we shall present the model and show how
it reproduces to lowest order the conventional results.
In Sec. III, we will discuss the question of divergences
in nonleptonic weak interactions, in Sec. IV, the diver-
gences in semileptonic and leptonic processes, and finally
in Sec. V, possible extensions of the model and some
experimental consequences.

For a discussion of the search for 8' mesons in neutrino experi-
ments, see G. Bernardini, Lectures at 1964 Scu04 Internasionale
di Fisica at Varenna (Academic Press Inc. , New York, 1966).
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(1965).
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II. MODEL OF WEAK INTERACTIONS

To begin with, we assume the existence of a massive
neutral lepton, which we call 'A„, having the same quan-
tum numbers as the muon's neutrino v„and an analo-
gous heavy v„which we call X.. The masses of ) „and) .
are taken to be greater than that of the Emeson so that
they would not have been seen in strange particle
decays. They may natura11y be combined to form a pair
of triplets (e,v„X,) and (p, p„, X„) analogous to quarks
or another triplet model of hadrons, though we shall not
say anything yet about the strangeness of the leptons.
In addition to the usual lepton current

j.+=Me. (1 vs) ~.+—~1 v. (1 vs) ~.—, (1)

we introduce a new current involving P „and X,

In a conventional IVB theory, one takes the weak
interactions to be described by a Lagrangian of the form

Z;„,=g(J.++j.+)W.-+H.c.,

where J is the hadronic Cabibbo current, "8' is the
IVB (of mass 3I~) Geld and g is 6xed by the relation

g'/MQ= Gp/V2,

where GO =10 '/MN'. Since J,+ is a member of an
octet, the eGective current-current Lagrangian de-
scribing nonleptonic weak interactions contains both
octet and 27 representation components. To obtain the
observed octet transformation properties of the strange-
ness-changing nonleptonic effective Lagrangian, one
must invoke a dynamical octet enhancement. "Alterna-
tively, one may start from a fundamental Lagrangian
involving more vector bosons such that the current-
current strangeness-changing effective Lagrangian has
octet transformation properties. The minimum number
of vector bosons with which one may accomplish this
feat is four, "i.e., two with their respective antiparticles.
The model we would like to describe involves three such
bosons (and their antiparticles —so altogether six) of
which two are charged and one is neutral. The La-
grangian is

Z,„,=gP.-+W. ..-+J.x+W,
,;

+ (J.x'+y V.')W...'+j.+(W...—cos8+ Ws,
—sin8)

+j +(—W. .. sin8+Ws. . cos8)j+H.c. (5)

Here J is a V—A hadron current, whose transformation
properties under SU(3) are assumed to be those of the
particles in its superscript label; V is the baryonic
number current, which is of course conserved and an
SU(3) scalar; 8 is the Cabibbo" angle; and 7 is a con-
stant to be determined by fitting to experiment. The

5
¹ Cabibbo, Phys. Rev. Letters 10, 531 (1963)."R. Dashen, S. Frautschi, M. Gell-Mann, and Y. Hara, in

The Eightfold lVay, edited by M. Gell-Mann and Y. Ne'eman
(W. A. Itenjamin, Inc., ¹wYork, 1964), p. 254.

'" S. Ojrubo, Phys. Letters 8, 362 (1964l.

We notice also that, since V.' is an SU(3) scalar, the
~5= 1 nonleptonic effective Lagrangian has octet
transformation properties. Furthermore, in the roughest
of approximations, namely, that all current-current
matrix elements are of order unity, it predicts that the
rate for hS= 1 nonleptonic decays should be of order of
magnitude y'/sin'8 compared to semileptonic decay
rates. %e shall say more about the parameter y in

Sec. III.

III. DIVERGENCES IN NONLEPTONIC
PROCESSES

(A) Let us begin by considering the amplitude for a
nonleptonic weak transition A —+ 8, where 3 and 8 are
hadron states. The Inatrix element for this process is
most easily analyzed if we write the hadronic part of the
Lagrangian (5) in a Cartesian SU(3) basis, where we
relabel the S' Gelds

S' =S"—iS',
8'g = S'4—iw/'5,

S',o = S'6—iS'7.

the hadronic part of the Lagrangian (5) becomes

ghadr, .
&
—

g P (J rW i+@' OW s)
i=1,2,4, 5, 6,7

The amplitude for the transition 2 —& 8 is then given by

—'bg

~A ~B
2 (27I.)4

8ar gv gr/~w
d4qd4X e i&'~

q2 —3Ig '

&&(~l&{ 2 J.'(*)J.'(o)+l'(x)l'(o)
i=1245 67

+l'(~)J.'(o)+J.'(*)l'(o)) I» (9)

Tg B is, in general, quadratically divergent because of
the q„q„ term in the S'-meson propagator which leads to
an expression of the form

Td ~rr l uuad div =—&

2%2(2s.)4

d4 de g
—iq z

q2 —Mg '

x8(x,)&a l { g p, '(x),a,J,'(o))
i=1,2,4,5, 6,7

yLv, o(*),8,J, (o)3 la&, (1o)

results of the Cabibbo theory for semileptonic and
leptonic processes are immediately obtained if we take
all S' mesons to have the same mass M~, namely, we
obtain lowest-order Lagrangian for processes not
involving X~ ol Xp.

&,&t
——G,P,"J..+J. 'J.
+(J. '+7~. )(J' '+&~. )+J."j.

+J.x+j, sin8+j.+j. j+H.c. (6)
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where we have of course made use of the fact that the
baryonic number current V„' is conserved. " To go
further, we must have a model for the strong interaction
Hamiltonian and from it obtain an expression for the
divergences of the currents. Ke shall describe one such
model here, leaving others to Sec. V. The simplest one,
as proposed by Gell-Mann, "is

J= V—A, we have

de
TA ~B —(A I &0~0(0)+~sus(0) I J3)

2v2 (2m-)4 q' 3E—g '

Gp A2

(A I.,u, (0)+e,m, (0) I2l),

Vs 6 $8ij+j
8y

D = cod '~V~+ fad''~ V~' (12)

where v& are the pseudoscalar densities. From this,
assuming the equal-time commutation relations of the
fourth components of vector and axial-vector currents
with the scalar and pseudoscalar densities to be as
follows:

[Vo'(x),n'(0)]„=p= if'&'I" (0)8 (x), (13a)

L Voj(x),n'(0)]„=o= if'& "v "(0)5(x), (13b)

I Ao'(x) v '(0)]„0—— id' '"I"(0)6(x), (13c)

I
A 0'(x) +'(0)]„=o———id'' 5"(0)8(x) . (13d)

The only term in (10) which leads to AS= 1 transitions
vanishes as

(14)LVoo(x), a,J,.(O)]„=,= O

by the above relations, and, for the others, we 6nd that

LVp'(x), D *(0)]„=0——3ie,u, (0)6(x), (15a)
i=1,2,4, 5, 6, 7

H =H+ epQo+ egB8,

where H is invariant under chiral SU(3) XSU(3) and
n~, u8 are scalar densities belonging to the (3,3) and
(3,3) representation of SU(3) XSU(3). The divergences
of the vector and axial-vector currents are then given by

so that even for an enormous value of h.', G~h.'/4m' 1,
the only effect is to have a contribution to TA B propor-
tional to EoQp+faN8, i.e., an. SU(3)XSU(3) breaking
term proportional to the original SU(3) XSU(3) break-
ing. Note that, in principle, this value of the cutoff
could lead to violations of the strong interaction. selec-
tion rules such as isospin invariance if any of the
commutators in (15) had led to a u3 term. This violation
of isospin invariance would have shown up as an appar-
ently large splitting of the masses of particles belonging
to the same isomultiplet. If the second and third
commutators in (15) had not vanished, we would have
obtained a strong violation of parity. Note also that the
vanishing of (15b) and (15c) for all values of i means
that even in a conventional weak-interaction model, in
which there is only one charged H/" meson coupled to a
Cabibbo-type hadron current, there is no quadratically
divergent parity-violating term to order GJ with the
assumed commutation relations (13a)—(13d).

As stressed in Ref. 13, a value of A as large as GpA2
167i-2 violates unitarity, so we must have a damping

mechanism occurring before then. In our model, we
shall only attempt to require consistency with experi-
ment for a smaller value of A, namely, GpA2 1.

(B) We must now go on to look at higher-order terms
in Gp. I.et us begin by considering a general G&2 term
which would have the form

i=1,2,4, 5, 6,7
LA 0'(x),D~* (0)]„=0——0,

I:vo'(x), D'f(0)]'o=o =o

(»b)

(15c)

d4x d4y d'z A„„(x—y)hz. (z)

X(A I &V.'(x)J '(y) J~"(z)J-'(0)}I ~) (17)
i=1,2,4, 5, 6, 7

i=1,2,4, 5, 6,7
I

A p'(x), D"'(0)]„=p

=iL4«~, (0)y;~, (0)]~(x) . (15d)

where D„„(x—y) is the lV-meson propagator. The most
divergent part of this integral, in momentum space,
comes from the q„q„/Mz" part of the W propagator and
gives

The vanishing of the commutators in (15b), (15c) is
true for all indices i, while the vanishing of the coefh-
cient of N3 on the right-hand side of (15a), (15d) occurs
only after summing over i. Remembering now that

' Strictly speaking, Eq. (9) is incorrect if the time-ordered
product is not covariant. In calculating the quadratically divergent,
term, however, we will neglect Schwinger terms, assuming that
they are cancelled by the divergence of the term one would have
to add to (9) to make it covariant. For a discussion of this point
and further references, see S. Adler and R. Dashen, Current
Algebra (W. A. Benjamin, Inc. , New York, 1968), Chap. 3.

"M. Gell-Mann, Physics 1, 63 (1964). I would like to thank
Dr. I. Gerstein for a helpful discussion of this model.

g 0 ~ ~

de d4y d4S d4q d4q'

&
—iq (x—y)&—ig'g

(q2 ~~2) (q&2 ~~2)
I

(A I
2'(J„'(x)J„(y)J),"(z)J.'(0)) I 8) . (18)

Mg4

If we take a value for the cutoff A of the order of
GpA. ' 1, we might at first expect a large El,—Eg mass
difference, namely, one of order Gp rather than G&2 in
the limit of conserved currents and, in general, of order
one rather than Gp', which would contradict experi-
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ment. That this is not so in this model can be seen as
follows: To have a AS= 2 transition, one must have a
double exchange of 8 since R' and 8'q may be
imagined as conserving strangeness in their coupling to
hadrons so, inserting the correct current indices in (18)
for a AS= 2 transition, we would have

which we shall call AM:

aM=nzp P a„(Gzh.')",
n=2

(conventional W theory
with nonconserved cur-
rents and nonvanishing
commutators)

&~ I ~&~. '(~) v.'(y)A '(.)v. (o)}~
~). (19)

Inserting (19), as labeled, into the expression (18) for
the most divergent part, to order Gp' of the amplitude,
we And a vanishing result since the equal-time commu-
tators obtained by contracting q„q„qq'q,

' into the time-
ordered product all vanish.

tv" (*),I.x'(0)j.,=o= pv, o(~),a„j„x'(0)j„=,
=2o '( ),&."(0)3..=.=I Jo"(.),~„~."(0)].,=,
=0 (20)

This ensures that even the next most divergent terms,
proportional to b„„qq'q

' or q„q„8q, vanish, when we
contract q), 'q

' or q„q„ into the time-ordered product of
currents. Ke are taking for the product t/t/"-mesons

propagators

So the matrix element, which gives the EI.—E8 mass
difference to order 6~2, is proportional to

g
o ~ ~

de d4Y de d4q d4q' e '&' »

(q' —Mg ') (q"—3fg ')

&&D&ol ~(j.x'(*)V'(S)~~ '(s) V"(0)}I&o)j (22)

By a very liberal use of techniques for ending the large-
momentum-transfer behavior of time-ordered products,
along the lines of Bjorken's20 work, we would conclude
that the integrals over q and q' diverge only logarith-
mically. It is of course an assumption, and a highly
questionable one at that, that these techniques can be
applied to the time-ordered product of four or more
currents. If they are not valid, our argument fails.

This feature of reducing the degree of divergence of
DS= 2 transitions holds even in higher orders: For an
eth order matrix element, i.e., proportional to (G.)",
one would have to exchange two 8;mesons in order to
obtain a AS = 2 transition and one may easily see, since
the equal-time commutation relations of Vo with other
currents or divergences of currents are zero, the maxi-
mum degree of divergence is g'(O'A. ')" '. YVe thus have
the following picture for the EI—E8 mass difference,

'0 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

~M=mp'Gp Q b„(GpA')",
n=l

(conventional W theory
with conserved cur-
rents)

~M=m, g' P c„(Gph'), '
n=o

(our model) (23)

"C. Itzkyson and M. Jacob, Nuovo Cimento 48A, 655 (1967);V.
Hara, Progr. Theoret. Phys. {Kyoto) 37, 710 (1967);S. Xussinov
and G. Preparata, Phys. Rev. 175, 2180 (1968).

where g, 5„, c„are numerical coeKcients and mo is a
mass which has been inserted for dimensional purposes

and depends only on the hadron properties. In a model

such as that of Ref. 13, AM would be of the same form

as in our model with the divergences being due to what

they call the diagonal interaction. Of course, logarithmic

divergences are being incorporated into the coefficients

a„, 0, c„:the quantity co, for instance, is proportional

to in'' or (ink. ')'. In addition, the models diRer in that,
whereas in the conventional theories the lowest-order

contributions to AS=2 transition are proportional to
sin28, in our model we instead have the factor y2. One

might at first be tempted to have y 1 so that, in the

roughest of approximations, namely, that all current-

current matrix elements had the same magnitude, one

would obtain an e8ective enhancement of AS= 1 non-

leptonic decays over AS=1 semileptonic decays by a
factor of 1/sin'8. Such an enhancement seems un-

necessary, however; at least in a conventional model

this roughest of approximations appears to be wrong

and one can obtain a moderately good fit to nonleptonic

weak decays without additional enhancement. "
Furthermore, it appears that p2 1 would lead to a
serious overestimate of the EJ—E8 mass difference

unless g' were very small, but g' is constrained by
g'/~w'= 10 '"/M. '. The question of an optimum value

for y is presently under examination, but probably it
should be of the order of magnitude of sin8. Perhaps it
is a good time to remind the reader that we are not

attempting to obtain a full theory of weak interactions,

but rather a model which does not contradict experi-

ment with a cutoff h. as large as 300 BeV. This does not
mean that we can choose M~ as large as 300 BeV «r
DM must be effectively second-order weak and g2, as we

said before, is constrained by g'/3E~'= 10 '/3f '. In
order for AM to be small, we must have 3f~ of the order
of magnitude of a few BeV. The effective cutoff, how-
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ever, occurs at a much higher value, where, in fact, the
contributions of higher-order perturbations are of a
possibly comparable order of magnitude with respect
to each other.

The next possible source of convict with experiment
is an eBectively strong AS= 0 parity violation. We have
already seen, to order G&A2, that there was no such
parity violation in this model, but one may ask is there
one to order (G~A.')', which would still of course lead to
an effectively large parity violation. To this end we
must examine the maximally divergent term (to order
G~') with AS=0, which is of the form

Gp2 de d4y d4s d4g d4g'

we see that even for GgA2 I, in addition to a damping
factor due to the fact that the maximally divergent part
is proportional to the breaking of SU(3))(SU(3), we
have in third order a typical factor of (1/4m')' which is
suKcient to make the parity violation quite small.

There are other schemes, one of which we will
mention in Sec. V, involving doubling the number of
vector bosons, to alleviate this problem, but we admit
they are all rather unattractive.

These arguments have a certain unaesthetic quality,
but if our calculation of the (Gph~)' parity violation is
correct, are sufficient to not rule out the model for
G&A2 1.We believe this is probably the weakest point
of this model as, curiously enough, also of the model of
Ref. 11.

e
—iq (x—y)—iq's

X gpgvg) go
(q' —Ms ') (q"—M~')

(~ I
TV.'(~)I.'(X)I~'(s)I.'(O)) I ~) (24)

i, j=1,2,4,5,6,V

The maximally divergent term, which behaves like the
matrix element of the divergence of a current between
states A and 8 and typically has a magnitude of
(G+A'/4~')', is obtained by successive contractions of
the g's and g

"s into the time-ordered product. When the
operation was performed, we found no parity violation,
namely, the final matrix element was only of the
divergence of the vector current, not of the axial-vector
current. We have no reason for this, nor can we make
an argument of why it should be true for higher orders
of Gp, it may well not be true in higher orders in fact,
though the question is still under examination. As of
now, our calculation appears to lead accidentally to no
parity violation in order (Gph.')'.

As an example, we show one of the terms obtained by
contracting the q's and the q"s. It is

de d4g' d4s eiq'
fir k

(q —M~ ) (q' M~ ) ~, q'=i, 2,4, 5,—s, 7 s, a'

&f"'q.'&~
I T(~~I"(O)I.'(—s)) I ~) (»)

The indices k, k' are either equal to one another, in
which case the calculation is identical to the one for the
maximally divergent parity-violating term to order Gp,
or else one of them is equal to three and the other to
eight. If that is the case, the maximally divergent part
is still only parity-conserving since the equal-time
commutator of Vo' with B),Aq' ' is equal to zero.

As we stated earlier, we have not been able to show
that the maximally divergent parity-violating term
vanishes to higher order. However, since the charac-
teristic expansion involves

g& g2 G~+2

m 4s. 3IIs ' 4s'v2

IV. DIVERGENCES IN LEPTONIC AND
SEMILEPTONIC PROCESSES

G,'py. (1 y,)p(Z—r,
~
J.

~
O)m),„' ln

MQ
(27)

where mq„ is the mass of the neutral lepton X„.Since we
shall assume this mass is not too large, e.g., of the order
of 0.5—1.0 BeV, we clearly may have G&A2 1 without
contradicting experiment. The reason for the cancella-
tion of the quadratic divergences is that to describe
EI,—& p+p, one must exchange one 8' and one TVq in
order to have ES=1.The Lagrangian (5) says however
that the v„contribution LFig. 1(a)j is proportional to
sinecos8 while the X„contribution )Fig. 1(b)j is propor-
tional to —sino cos0, so the leading divergences, which
are independent of the masses of the leptons, cancel.
One might worry about higher-order graphs such as the
one depicted in Fig. 1(c), which involves a ICr, —+ m7r

transition, followed by ex —+ p+p, since the mx —+ p+p,

transition is, in fact, quadratically divergent. We have
already seen, however, that the amplitude for Ez, —+ nm

is only logarithmically divergent so that the over-all
rate is proportional to G~ 1n(A'/Ms ') XGp'A' and hence
of the same order of magnitude as (27).

To see why the quadratic divergence vanishes, from
a slightly more fundamental point of view, observe that
if mq„=0, we would not be able to distinguish between

(a) As we have seen, the model is compatible for
nonleptonic processes with a 300-BeV cutoff, a value
ruled out in a conventional t/t/' model by the upper bound
for Eg —+ p+p, which sets a limit of A 50 BeV. The
diagram which sets this limit is depicted in Fig. 1 (a) and
in a conventional model has a magnitude proportional to

G,A'I-.~.(1 ~,)1 (z, I J.
~
o). (26)

In our model, there is an additional diagram, to order
Gp', depicted ln Fig. 1(b), and to leading order the two
diagrams cancel one another, that is, the quadratic
divergences of Figs. 1(a) and 1(b) cancel one another.
The logarithmic divergences do not and are typically
of the form
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K

w. ~
X~

Wb
Ve

(b)

I
W~b +

a, b + a, b +
Fio. 1. (a) and (b) Lowest-order weak graphs contributing to

Er,'~ p+y . (c) and (d) Higher-order weak graphs contributing
to EI,' —+ p+p, .

v„and A.„.In particular, if one defined v„' and X„' by

v„= v„' cos8+X„' sin8,

Xv= —vv sln8+Xv cos8 )

(28)

and similarly v, ' and P,', the coupling of leptons to
intermediate bosons in the Lagrangian (5) could be
rewritten, with j' equal to j with v, X replaced by
v', X', as

~ieutonic= g (j~+'~ +2 +.'~b )+H'c'~ (29)

so that, imagining 8„v„',v, ', and of course e and p to
have strangeness zero while 8'~+ and X„', X,' have
strangeness one, we see that the interactions of leptons
and hadrons with 8"s conserve strangeness, and hence
EJ.—+ p+p, is forbidden. "Strangeness nonconservation
is introduced by higher-order diagrams involving 8',
and by having nzz/0, in that the term m),X„X„in the
free-lepton Lagrangian is not invariant under the rota-
tion defined by (28).

(b) There are other semileptonic processes which are
quadratically divergent in order GJ' and we shall now
comment on them.

(~) (b)

Fro. 2. (a) Lowest-order weak correction to a decay.
(b) Higher-order weak correction to tM decay.

Let us now turn to the question of universality,
namely, the equality of the constants characterizing p
decay and neutron P decay. Since the leptons couple
exclusively to charged H/ mesons, one may readily see
that the only diagrams contributing to p decay of order
Gv are external line corrections as depicted in Fig. 2 (a).
To higher order, vertex corrections may also appear; an
example of this is given in Fig. 2 (b). The structure of
the corrections to a hadron vertex is of course much
more complicated. As emphasized by Gell-Mann et al."
in their analysis of the same problem, though they dealt
only with regard to what they call "diagonal inter-
actions, " there are several possibilities. One is that
conventional weak couplings are to be interpreted as the
values after the renormalization has been carried out.
A second possibility is to have the renormalizations be
universal: This will not quite work out in our scheme.
We postpone a discussion of this point to Sec. V, where
we shall discuss possible extensions of the present model.
Let us just say now that even for 6+A.' j., deviations
from universality are of the order of 3%, which is
probably compatible with experiment, given the un-
certainties in radiative corrections and in the deter-
mination of the Cabibbo angle. Intuitively this result
comes from the comparison of the lowest-order term,
equal to say G&, with the first correction which has an
order of magnitude of Gv'A'/4s' GvX1/4n'. Graphi-
cally we depict in Figs. 3(a), 3(b), and 3(c) the first

(i) E+~w+vv: In terms of primed leptons, this
would be of the form E+—+ a.+j)t„'+v„'.

(ii) v+p —b v+p.

In both these cases, the amplitudes are smaller than the
amplitude for the principal semileptonic mode, namely,
E+~ xs+e++ v and v„+p —& tt e by a factor of
GvA'/4s' 1/40, which implies the rates should be
smaller by a factor of IO '. Since the experimental
limits are that the rates for (a) and (b) are less than

5% of the principal semileptonic inode, "we see no
contradiction. Similarly, the amplitude for electron-
neutrino scattering is quadratically divergent to
order Gp2.

"The idea of having a model in which strangeness conservation
is broken by the mass of the heavy neutral leptons erst appears in
Ref. 11.IL. B.Auerbach et at , Phys. Rev. 155, 15.05 (196/).

(a)

Fxo. 3. Lowest-order weak cor-
rections to neutron P decay.
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corrections to the hadronic vertex. The 3% figure quoted above was obtained by considering

Gv g' (8„„q„—q„/Ms')
(«+veI Hweair

I
p)weair hadronic corrections =i @+i(1 'ra) v X —d q

——
I Tin„(k,q,p,p) —BMglrr) r (30)

K2 2 (2~r)' q' —3Es '

where k is the momentum transfer to the leptons, which we take equal to zero, p' and p are the neutron and
proton momenta, which are equal for k ~ 0:

T&„„(k,q,P',P) = de d4y ~i k x~—iq y

i=1,2,4, 5, 6,7
(ii I T(I cos8 (Ji'(x)+iJi,'(g))

X(J '(y) J '(0)+V '(y)V.'(0))$+sin8 (J '+iJ ')(J 'V.'+V„'J„x')}
I p), (31)

where Mq„„cancels the external line pole terms in
T»„contributing only to the weak mass renormalization
of the hadrons. (See Appendix A for a treatment of the
problem in a conventional theory. ) The q„q„ term in
(30) leads to a quadratic divergence, which we evaluate
once again by use of current commutators. The term in

(31) proportional to sin9 does not contribute to the
quadratic divergence; the term proportional to cos8
leads to a modification of the lowest-order term, which
we write as

(«+"
I &-IP)c= (Gv/~&)dvi(1 7.)v-

Xcose (itI Ji,'(0)+i''(0)
I p). (32)

This modification is of magnitude

(«+v,
I H„I p)oI 2GvA. '/v2 (4n-') j. (33)

This result has been obtained, using as normalization
for the current commutator

LJo'(*),JI'(0) j*,=o=»f""Jp" (0)~(x), (34)

where the factor of 2 arises because the currents are
V—A. We see from (33) that the correction to the
lowest-order coupling (IH„I ), are of the order of 3%
for G+A2~1. This would imply that we are skating on
thin ice with such a large value of the cutoff; reducing
it by a factor of 2 would of course ensure no contradic-
tion with experiment. However, we have not yet
calculated the weak radiative corrections to p, decay.
In Sec. V, we will show how, in a model, the deviations
from universality are smaller than the figure we have
just suggested.

V. EXTENSIONS AND VARIATIONS
OF THE MODEL

(a) The first question we should ask is whether or not
it is possible to have a model with fewer particles for
which the cutoff may still be large. There is one; it is
described by the Lagrangian of (5) with no W, mesons, '4

i.e., with altogether only four intermediate vector
mesons. The difficulty with such a model is that non-
leptonic strangeness-changing hadron decays A —+8
occur only to order G~2. The simplest graphs which
allow A —+ B with 65= 1 are those of Fig. 4. A priori
one might believe them to be quartically divergent, but
remembering the transformation (28), embodying the
fact that the semileptonic weak interactions are
strangeness-conserving to order G~2 for m),„——nsq,

——0,
we realize that the graphs in Fig. 4 are not quartically
divergent, but only quadratically divergent and propor-
tional to mq„and m~„respectively. The fact that we do
two loop integrals introduces a factor of (1/4n')2 so that
with G~A2 1, the amplitude described in Fig. 4 is too
small by several orders of magnitude to account for
nonleptonic 65=1 transitions. It is, of course, nonzero
and present even in our model and represents a per-
turbation of the principal term caused by the emission
and absorption of a H/', meson.

(b) If the commutation relations (15b), (15c) are
changed, one would get large parity violations. Suppos-
ing then that (13b) and (13c) do not hold, what can we
do? The simplest thing would be to double the number
of IVB's and label them as Wi and 1/t/ 5', where i= 1, 2, 4,
5, 6, 7. Instead of (8), one would have a hadronic inter-
action Lagrangian of the form

+hadronic =gl
i=1,2,4, 5, 6,7

(V„'W„' A„'W5 „')—
+V'(W. '+Wa, .')j (35)

(b)

FIG. 4. Some higher-order weak corrections to strangeness-
changing hadron transition amplitudes.

and the lepton currents, of course, would be coupled to
5' and 8"5.Now, aside from graphs like Fig. 4, it is the
coupling of U„which accounts for parity violation as
well as strangeness nonconservation.

~ Dr. ¹ Christ and Dr. N. Kroll have independently con-
sidered such a model. I would like to thank Dr. N. Christ for a
discussion of their work.
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(c) Another possible extension is to make the model
more synnnetrica1 looking by coupling neutral lepton
currents to I/t/', . The most symmetrical looking coupling
one could introduce would be an addition to (29) of the
form

where

Z,dd =gg. 'W. ..+H.c.,

j,'= iX„'y,(1—y5) v„'+iX,'y. (1—y5) v, ',

(36)

(37)

Stro ng

with i ', X' defined by (28). Rewriting this in terms of v

and X, one sees that one has introduced a direct neu-
trino-neutrino current which is not allowed. The next
best thing is to introduce a coupling of the form

(38)

where j, is obtained from (37) by replacing v', X' with

v, X. This leads, however, to a contribution of order
(1/4n') (GpA')' sin8 to nonleptonic DS= 1 decays, which
is both too large numerically and against the general
point of view we have adopted, namely, of reducing the
degree of divergence of strangeness-changing transi-
tions. It appears, therefore, that we may not add
neutral lepton currents in any simple way.

(d) There are of course an infinite number of models
one can construct along the same lines by introducing
more particles. For instance, instead of combining X„
and A., with y, v„and e, v, to form triplets of leptons,
one could introduce massive charged leptons, which we

might call X„+, A.,+ so that instead of two triplets of
leptons, we have four doublets. Relabeling A.„, A., now
as P„', X, , we could then form the doublets either as

(b)

Pie. 5. Lowest-order weak correction to a weak hadron vertex.

(X„,X„') or (X„+,X„').If we took the latter choice, it is

easy to see that one may construct a model in which,
e.g. , the Gp'A' divergent term in the scattering of
v„+p~ i „+p vanishes. The relevant bare diagrams
are displayed in Fig. 5. However, since there are no
models involving vector rnesons for which all the
divergences are removed, we do not believe it is worth-
while discussing models with additional charged leptons
at the Inornent. Of course, if such particles were found
experimentally, one might look at models of the type
we have described with an eye to filling them in.

(e) Before going on to the conclusions let us now
show a simple model which illustrates the main features
of our previous considerations. Consider the hadrons to
be bound states of an elementary triplet, which we may
take to be quarks and label them as q;. The leptons are
similarly classified into two triplets. The total Lagran-
gian, neglecting electromagnetism and summing over
quark and lepton indices, may be written as

oC = (gpg8gg+ley"raked&e, , p)+oCO(W)+ (q, / mass terms)+ (q strong interactions)

+ig{Lgy (1—y5)X "q+t„,.y, (1—y )(X
+ cos8+Xx+ sin8)l„, .jW, ,

+I gv. (1—y5)&x g+l„,.y. (1—y5)( —X
+ sin8+Xx+ s8c)ol„e)W i,

+LVv. (1—v~)~ 'V+@"CjW. ') (39)

W;, =A;, +(8 /3IIg)B;
"E.C. G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938).

(40)

where the X' are just the 3X3 SU(3) matrices as defined
in the texts referred to in Refs. 16 and 18. The final
term is of course the coupling of the baryonic number
current to W, and Zo(W) is the free W Lagrangian.

If we now assume that the strong interactions are very
rapidly convergent, that is, all loop integrals involving
hadrons converge for values of (momentum transfer)'
& a few SeV', we see that the weak divergent correc-
tions to P decay will come primarily from the inter-
actions of the bare quarks. To see this in terms of
diagrams, the vertex correction divergence due to the
W will be present in Fig. 6(b), but effectively cut off by
the strong interactions in Fig. 6(a). We may further
clarify the nature of the divergence by writing the H/'

fields in terms of a vector and a scalar field, a la Stueck-
elb erg":

and the propagator in momentum space of the 5' is as
usual

~";-4)=~*;-I~(c) R-c./~~')~'
I

—n(v)

8„—q,g,/Ms ')
(41)

ii' —&Vs
'

The divergences we have encountered so far are due to
the 8 fields; however, if the strong interactions of the

V~
+'a, b

X A, &

Wa b

(b)

FIG. 6. Lowest-order graphs for v„+P ~ v„+P
when new charged leptons are introduced.
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quarks do not involve derivative couplings, under the
transformation

q(g) ~ e ((—gliirw)Bco(*) q(g) (42)

we Gnd that only the kinetic energy term of the La-
grangian is changed:

qy.B,q ~ qy. 8.q i gqy—,q (B.B,'/Ale ), (43)

which introduces an additional term, cancelling the
coupling of the 8,' field to the baryonic number current
in the interaction Lagrangian. We thus see, in an
immediate sense, why 65=2 nonleptonic transitions
are less divergent in this model than they are in a
conventional one.

Calculating the leading divergences, due to the
couplings of the 8 fields, we will now neglect the strong
interactions of the q particles for the reasons given
previously and of course the coupling to the baryonic
number current. We then see that, insofar as 8-field
couplings are concerned, the Lagrangian (39), is sym-
metrical under the interchange q~ 3„„for sin0 —+0
except for mass terms and the term of the form

igqy, (1—y5) V"qW. ..'. (44)

The deviations from universality, i.e., from Gp
——G„coso

=Gp cos9 are then only due to the above term in this
model. For G~A' 1, we expect them to be less than 1%.
)For instance, keeping only i = 6, 7 in the summation of

Eq. (31), we would find the 2 in (33) replaced by —,',
and hence the deviation from universality would be

0.75%.j
VI. CONCLUSIONS

We have considered a model for weak interactions
involving three IVB's, two neutral massive leptons, and
their respective antiparticles in addition to the known

hadrons and leptons. In lowest order, it incorporates all

the usual phenomenology of weak interactions, with

respect to rates as well as selection rules.
We then go on to consider the problem of higher-order

weak corrections (it is here that the two new leptons are
necessary to reduce divergences) and find that, whereas

conventional theories require a cutoff of the order of a
few BeV, our model does not lead to contradictions with

experiment even for a cutoff of a few hundred BeV. This
is of course true only if a large number of assumptions
hold: Among them are (i) it makes sense to consider an
expansion in powers of G~A' where h. is the cutoff; (ii)
one may actually apply Bjorken techniques'0 to the
time-ordered product of more than two currents and
correctly estimate the degree of divergence of the
various pieces of diagrams involving the exchange of
two or more vector bosons; (iii) the cancellation of

Schwinger terms against the divergences of additional
terms added to the time-ordered products of currents
for covariance reasons (for possible difficulties along
these lines see Appendix A); (iv) the validity of the
particular model assumed for equal-time commutators
of currents with divergences of currents; (v) the neglect
of electromagnetic corrections; (vi) possible strong
interactions of the t/t/" mesons.

In closing, we would like to say a few words about the
spirit with which the model was constructed: If one
believes the t/' —A nature of the weak interactions to be
fundamental and does not accept the construction of
Ref. 13, involving scalar as well as vector bosons, the
limits on the cuto6 in a conventional theory are very
stringent, assuming of course the calculation of a
quadratically divergent quantity such as the El,—E8
mass difference makes sense. The hope, of course, is
that, even though each order of perturbation theory is
increasingly divergent, the sum will somehow add up to
something finite. Our aim was then twofold: erst, to
have a theory in which A, the cutoff, was large enough,
i.e., of the order of a natural length 1/QGF, so that
successive orders of perturbation theory were not too
much smaller and, second, that even if the IVB mass
limit is pushed up to say 5 BeV, one may still have a
consistent theory which does not violate experimental
limits. At the very least, even if some of our assumptions
are wrong, our model probably allows the cutoff to be a
factor of 10 larger than the conventional model. The
fact that the cutoff in our model was so large does not
allow us, however, to have a very large 5' mass, as we
said repeatedly. Rather than having G&A'«1 we
require g'«GpA' 1; the 8' mass must therefore be
smaller than, e.g., 10—20 BeV, if our model is to be
consistent with experiment.
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APPENDIX A

We would like to calculate the contributions of the
graphs in Fig. 3 in a conventional theory,

g2
(ne+v.

~
Hs t p) = ',V2iG peyi, (1 y5) v-, —

2(27r)'

8,„—q,q„/M 's
&& d4q T&.,(q,0,p,p), (A1)

q' —Mg '

taking the momentum transfer to the leptons as
vanishing.
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T~-(q,0,p,p) = d'x d'y e-' " p &elRT{LJg'(x)+i''(x)$l J.'(y)J '(0)]}R—'l p)
i=1,2

+i84(y) &e l
E2'{LJ~'(x)+iJ&p(x) jD„"(y))R. 'l p&+i&'(x) &I l ET{DE,+'(0)J '(y))R 'l p)

+i5'(x y—)&e lR T{D,+'( x)J,'(0))R 'l p) —RV„,„, (A2)

where the D functions" enter to make the amplitude
covariant. We assume that upon application of q,q, they
cancel the Schwinger terms arising from the equal-time
commutators obtained upon applying q,q, to the time-
ordered product. M), , is the part of Tq„ that contributes
only to the weak mass renormalization of the external
lines and E. is the Cabibbo-angle rotation, E.=e "'~~.

Assuming all the currents to be conserved, we 6nd
that the q q, terms lead to a correction to the lowest-
order graph, which is

&«+v, lHs l p&,= ', v2Gveyq-(1 y, )v cos—8

&&& ILJ'(o)+ J'(0)jlp&, (A3)

of
g2 g2 GgA2

&«+v. llJwl p&0&& x =&l&w[&0 . («)
Mg ' 4~2 424~2

The terms arising from nonconservation of the current
are only logarithmically divergent if one makes generous
use of Bjorken techniques. "Rather more troublesome,
however, is the term in Tq„arising from the 6„in the 8'
propagator and the second term in (A2), namely,

APPENDIX B

%e would like to discuss briefly the possible effect of
a IVY"8' coupling on the preceding calculation. Since
the coupling must be a derivative one, one might u
priori worry about possible Gv'A4 terms which would
destroy universality. A typical graph contributes to
neutron P decay and involving a WWW coupling is
drawn in Fig. 7. It is of the form

T= ( )Gveyg(1 —y5) vg' d4q de e i~'*

"o„v q„qv/M tv—bvT q.qT/Ms —'
X

q2 —M'~2 q2 —3fg'

we find that

Avv= ( 2qx~vv+qVRV+qv&zv), (ll2)

&& (—2q~~-+qA~+qA~. )

&«~IT{J. '(*)J, '(0)) lp&, (a1)

where we have taken a minimaP' 8'8'5' coupling
with coupling constant g and assumed the momentum
transfer to the leptons to be zero. Calling

i=l,2

which in principle is quadratically divergent. In a model
such as Geld algebra, '7 the Schwinger terms are c
numbers, which simplifies but does not solve these
problems. In particular, the fact that the Schwinger
term is a c number ensures that this difhculty will not
crop up in our model in strangeness-changing decays to
the order we considered, nor in parity-violating terms,
so the only place it is a real difhculty for the model is in
our treatment of universality. However, here we have
the simple Feynman-graph model. Sec. V (e), which
leads us to suspect that these difhculties are only caused
by an improper handling of the perturbation theory.
The question is under investigation currently. Clearly,
large operator Schwinger terms in the commutation
relations could invalidate our model altogether.

qvqv ITT xllv qkqIIqT+'q q/l8$T

(a)

w
' —M

q yqvqv qo ~Aov =0 ) (83)
&C&N lRT{l Jq'(x)+i''(x)]D„"(0))&lp), (A5) which eliminates the potential quartic divergence.

However,

"To see an example of the use of the D functions for corrections
to vertices, we refer to the appendices in the following paper:
E. S. Abers, D. Dicus, R. E.Norton, and H. R. Quinn, Phys. Rev.
167, 146i (1968).

2' Y. D. Lee, S. steinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).

FIG. 7. Corrections to neutron p decay
if a 8'5 S coupling is allowed.

"See, e.gv) J. D. Bjorken and S. D. Drell, Relativistic Qugntum
Fields (McGraw-Hill Book Co., New York, 1965).
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and

d'q
-d'x e "'

(II tI ~x, —giII t1.)
q' —Mg '

g

(g ~&,r —tfiII~)
(q' —Ms')'

The same reasoning may be applied to the term propor-
tional to M,S„,aq,„, so we have a quadratic divergence.
There is also the graph of Fig. 7(b) which we must
assume is cancelled by a mass-renormalization term.
The diagrams of Fig. 7(a) could lead to a violation of
universality. Of course, if we imagine H/; to have
strangeness zero, 8'~ and 8', to have strangeness one,

I + f,x+~,&,.(0) I
)&0 (&&)

and 8'WW' couplings to preserve strangeness, the
diagrams of Fig. 7 are forbidden.
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Solution of Nonrelativistic Partial-Wave Dispersion Relations*
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The partial-wave dispersion-relation (PWDR) problem is studied in the nonrelativistic elastic case. In
particular, a set of conditions on the left-hand-cut discontinuityis obtained whichis sufhcient to guarantee
that the p~og. problem has a solution. The nature of the solutions so obtained and the possible extensions
are discussed.

I. DITRODUCTION

1

can introduce dynamical information abou
~~ partia]-wave amplitudes in a relatively consistent

manner by requiring that the amplitude f(k') be
unitary, be analytic in the variable k' in the usual
twice-cut plane, and have a prescribed left-hand-cut
discontinuity which is regarded as input.

The problem consists of finding solutions to
singular, nonlinear integral equation (3.1) which are
analytic in the desired region. The problem as stated is
known not to lead to unique solutions in many cases as
a result of the Castillejo-Dalitz-Dyson (CDD) am-

biguity. The ancient and mysterious 1tf/D algorithm
reduces the problem to one which is less formidable in
appearance. In so doing, one considerably limits the
types of solutions one can obtain as a result. However,
the dynamical content (e.g. , the nonlinearity) of the
partial-wave dispersion relation (PWDR) is carefully
disguised in the E/D approach.

The rich dynamical content of the PWDR problem is
indicated by the fact that although it in general has
more than one solution, certain conditions must neces-

sarily be fulfilled if it is to have any solution at all. ' We
will illustrate this here in a simple way.

In Secs. II and III we obtain and discuss conditions
on. 5T which are sufhcient to guarantee the existence of
a certain type of solution to the P%DR problem. In
Sec. IV we study the relative eKcacy of these conditions

by examining known solutions in simple cases. The

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. 342-2865.

' A. Martin, Nuovo Cimento 38, 1326 (1965).

m-pole case is discussed in Sec. V and distinct conditions
are obtained there, Further discussion of the general
problem is presented in Sec. VI.

II. PARTIAL-WAVE DISPERSION RELATIONS

Here we will study the construction of nonrelativistic,
completely elastic partial-wave amplitudes from uni-
tarity, analyticity in energy, and knowledge of the left-
hand-cut discontinuity. That is, given the function
DT(k') defined in —~ &k'& —tt', we wish to learn
under wha, t conditions there exists a function f(k') with
the following properties.

(i) f(k') is a real analytic function of k' in the twice-
cut k' plane, where the cuts lie along the real axis and
extend over the domains —~ &k'& —p,

' and 0&k'& ~
(ii) The function f(k') —+0 ask'~ oo within the cut.

plane.
(iii) The discontinuity of f(k') across the left-hand

cut —oo &k'& —tts is given by AT(k')
(iv) As one approaches the right-hand cut from above,

f(k'+ee) satisfies the unitarity condition

Imf(ks+ee)= (ks+se)»sI f(ks+se) Is (2.$)
or

f(ks+se) = (ks+se) tse'st~'& sinb(ks) P(ks) real. (2.1')
A very simple type of necessary condition can be

obtained as follows2:
I.et p (k') be any function analytic in the k' plane with

only a right-hand cut. If p is such that ks+'fry(ks) -+ 0
2 G. Tiktopoulos (unpublished).


