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Iterations of Regge Cuts
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The Sudakov technique is used to calculate contributions corresponding to iterations of two-Reggeon cuts.
A form is found which agrees with earlier conjectures and which consistently takes into account the re-
quirements of unitarity. It is shown that the expression obtained can be used as the basis for a reformulated
multi-Reggeon bootstrap. It is claimed that this version correctly takes into account known cancellation
effects. However, it requires more input information than previous versions.

I. INTRODUCTION

' 'T is now recognized that Regge poles by themselves
i - are not sufficient to take account of the high-energy
behavior of scattering amplitudes. The e6ects of cuts
must also be included.

The simplest Feynman graph that produces a Regge
cut is the double-cross graph discussed by Mandelstam. '
This is drawn in Fig. 1, where the bubbles represent
complete scattering amplitudes. If the asymptotic be-
havior of the bubbles is represented by Regge-pole
contribution, the graph generates a two-Reggeon cut.

But the graph of Fig. 1 does not by itself give an
adequate model of the two-Reggeon cut, since it
produces a branch point that is more singular than is
allowed by unitarity. ' lt seems' that to get a realistic
model one must sum over iterations of the graph. This
sum is represented in Fig. 2, where the first term
corresponds to Fig. 1. The simplest iteration is shown
in Fig. 3, corresponding to the second term in Fig. 2. The
subject of this paper is the calculation of the contribu-
tion that the iterations make to the two-Reggeon cut.

The contribution from the eth iteration has been
conjectured' to take the form (signature factors being

omitted for simplicity)

XXX "XX
X— (1 1)

II D —~L(n'+-'g)'3 —~L(n' —sr)'j+1j

Here s is the asymptotic variable s=(P+p')', the
momentum transfer is q'=t, and the tt; are (st —1) two-
dimensional momenta running round the loops asso-
ciated with pairs of Reggeons. The functions X and X
may be regarded, respectively, as particle-Reggeon and
Reg geon-Reg geon amplitudes, corresponding to the
blobs in Fig. 2. The form (1.1) agrees with the rules of
Gribov's Reggeon calculus, ' though the iterations con-
sidered by Gribov always involve intermediate states
with two elementary particles which trivially give
product forms for repeated Regge singularities. It is
contrary to the spirit of the hybrid "Reggeized Feynman
integral" model to include diagrams with these inter-
mediate states since their presence would lead to an
essential singularity which is not present in a properly
Reggeized theory. 4 Instead, we couple Reggeons only
through third spectral function diagrams of the cross
type. This paper therefore constitutes an extension of
the Gribov calculus to diagrams with four-Reggeon
vertices, having as its immediate object the veri6cation
of (1.1). We find that it is indeed correct, though with
qualifications which we detail below.

Besides its phenomenological importance, the itera-
tion of the two-Reggeon cut plays an important role in
our understanding of the Gribov-Pomeranchuk essential
singularity at l= —1. It has been shown4 that the cut
obtained by summing (1.1) over rt has the correct

FIG. 1. Simplest Feynman diagram that produces a Regge cut.
The bubbles represent complete scattering amplitudes.

FIG. 2. Sum of iterations of
the graph of Fig. 1. The 6rst
term corresponds to Fig. 1.
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' S.Mandelstam, Nuovo Cimento 30, 1148 (1963).J.C. Polking-
horne, J. Math. Phys. 4, 1396 (1963).' J. Bronzan and C. Jones, Phys. Rev. 160, 1494 (1967).' J. C. Polkinghorne, Nucl. Phys. 16, 441 (1968).

4D. I. Olive and J. C. Polkinghorne, Phys. Rev. 171, 1475
(1968).

'V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 53, 654 (1967)
LEnglish trsnsl. : Soviet Phys. —JETP 26, 414 (1968)j.
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yields for us the definition of the functions X. In
Sec. III, we then apply the method to the graph of
Fig. 3. Properties of the function X that we obtain
here we analyze in Sec. IV, and it is compared with the
function X. Then, in Sec. V, we sketch an analysis of
the general term in the series of Fig. 2. Finally, in
Sec. VI we discuss the multi-Reggeon bootstrap pro-
gram formulated in terms of Mandelstam cuts.

We are conscious that in common with previous
applications of Gribov's method our analysis is some-
what lacking in mathematical rigor, even though the
results are perhaps compelling. A particular difhculty
that we encounter is the subject of the Appendix.

II. DOUBLE-CROSS GRAPH

FIG. 3. Simplest iteration, corresponding to
the second term in Fig. 2.

structure to eliminate the essential singularity. A par-
ticular feature of (1.1) that is necessary for this elimi-

nation is that, when the Reggeons are on the mass shell

and so, in the present model, represent physical zero-

spin particles, the functions X and X should coincide
with each other and with the coupling of the physical
particles to the l= —1 pole in the single-cross graph.
A check on this is made here.

A stronger result also holds: When two of its four
Reggeons become physical zero-spin particles, the func-
tion X becomes equal to X. To be more accurate, X
may te defined in such a way that this is true. The
lack of a complete definition of X arises because, in
addition to contributing to the second term of Fig. 2,
the graph of Fig. 3 also contributes to the first term.
The choice of which part of the contribution shall be
assigned to each of the two terms involves a certain
arbitrariness.

This arbitrariness may need consideration in another
very interesting application of the sum of the series
in Fig. 2. This is the suggestion of Chew and Pignotti,
and of Halliday, ' that infinite sums of this type, as well

as containing the two-Reggeon cut, shall also contain
a Regge pole, and so lead to the generation of a kind of
bootstrap. However, the calculation of these authors
differs from that discussed here in that they sum the
Amati —Fubini-Stanghellini (AFS) cuts' which appear
in multiparticle unitarity integrals. We shall take the
opportunity to discuss the multi-Reggeon bootstrap
program in relation to Mandelstam cuts.

The arrangement of the present paper is as follows.
First, in Sec. II, we repeat Gribov's analysis' of the
graph of Fig. 1. This provides a useful preliminary to
the analysis of the more complicated graphs, and also

' G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 (1968);
l. G. Halliday, Nuovo Cimento 60A, 177 (1969).

D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,
896 (1962); but see S. Mandelstam, ibid. 30, 1126 (1963); J. C.
Polkinghorne, Phys. Letters 4, 24 (1963).

We label the momenta as in Fig. 1, and for algebraic
simplicity assign equal mass m to each particle. This
implies that

p V=p' V=0,

p2 —p~2 —lll2+1q2= r (2 1)

The set of internal momenta will be described by
variables similar to, though not quite identical with,
the Sudakov variables used by Gribov. ' We write

where

k„=x;p+y,p'+K;,

K; p=K,"p'=0.

(2.2)

The two-dimensional vectors ~; are spacelike: ~,'~&0.
Energy-momentum conservation requires that

P x, =i, Q y, =i, P K;=0. (2.3)

In terms of the new variables, the squared momenta
in the four lines of the upper cross are given by

xly1$+ ($1 yl) r+Kl

(xl —1)yls+ (xl —yl —1)'r+ (Kl ——',q)',

$2y2$+ ($2 y2) r+K2

($2 1)y2$+ ($2 y2 1) r+ (K2+gIt)

(2.4)

R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, in The Arlalytic S-Matrix (Cambridge University Press,
Cambridge, 1966), Sec. 3.6.

where s= (p+p )' is the asymptotic variable. Similar
expressions hold for the lower cross. All these squared
momenta are external masses for the Reggeon bubbles
and, following Gribov, we suppose that these amplitudes
decrease rapidly when these masses become large, so
that as s ~ ~ the dominant contribution to the integral
comes from those values of the integration variables
that make them finite. This is an abstraction from
known properties of ladder diagrams which generate'
Regge poles in perturbation theory. Similar considera-
tions lead us to restrict the region of integration so that
the squared masses of the Reggeons are also finite.
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These are given by

(xi+x2 —1)(yi+y, )s+ (xi+x2 —yi —
y2 —1)'r

+(Ki+K2+'2q)2. (2.5)

We shall further suppose that our regions of integra-
tion are restricted to finite values of the two-dimensional
momenta ~;. Although we could proceed some way
with our argument without recourse to this assumption
we should be forced, within our present understanding,
to adopt it before the end of the paper. A similar ob-
servation has been made by Winbow' in the course of
his applications of the Gribov method. As we discuss
in the Appendix, it is possible to regard the assumption
as a further piece of abstraction from a Feynman-
integral Inodel of Regge poles.

The condition that each of the expressions in (2.4)
be finite then yields

I

in (2.4) be finite„but also their difference. j Similar con-
siderations applied to the lower cross give

x„x4=0(s '),
y3, y4 finite.

(2 7)

The results (2.6) and (2.7) automatically result in the
finiteness of the Reggeon masses (2.5) and also mean
that these may be approximated by (Ki+K2&'217)2.
Further, the leading terms irt. the energy variables
associated with the Reggeon amplitudes,

($2+$3) (y2+y3)s+ ($2+$3 y2 y3) r+ (K2+K3)

(xi+x4) (yi+y4) s+ (xi+x4 yi —y4)'—r+ (Ki+K4)',

are simply x&y3s and x&y4s. Finally, to order s ', y&, y&,

$3 $4 disappear from the conditions (2.3).
Thus, the result of the calculation may be written

in the form
x~, x2 finite,

yi y2=O(s '). (2.6)
d'KI X(K)$2sa[(x+]2) ]+a[(K 2 tl) ] 1—

7 (2.8)

LThe proof of this is facilitated by the simple observa-
tion that not only must each of the first two expressions where, apart from constant factors,

X(K) =—
2

d Kid K2 8( ) (Ki+K2 K)dxid$—2dg id@2 5 (xi+$2 —1)

Prig[+Xi'r+Ki' 423'jf $2g—1+$2 r—+ (Ki 2g) 233 j—. —

x ~[(~+kQ) Jx ~f(~—kQ)'Jg g

t xe2+»'r+K22 —~235—»02+$12r+ (K2+2q)2 —~'3

Here we have used the fact that

d4k, —+ ~sdx;dy;d'~;

as s —+ ~, and have made a further change of variable

Pys =gy $2$ =gg ~ (2.10)

G. A. Winbow, Phys. Rev. 177, 2533 (1969).
"See also J. C. Polkinghorne, Xuovo Cimento 56A, 755 (1968).

The functions g~ and g~ are the Reggeon coupling func-
tions, which depend on the Reggeon masses and the
masses of the lines in the cross. We have used (2.6) to
neglect some of the terms in the expressions (2.4).

Some properties of the function X' are explored in
Sec. IV. Here we remark that the result (2.8) agrees
with (1.1) for the case 23=2. We have not explicitly
inserted signature factors. They can be introduced as
discussed by Gribov, and lead to the conclusion that
the cut occurs in the amplitude of signature equal to the
product of the signatures of the participating Reggeons. '"
Also, a consideration of the way the poles in the y& and

y& integrations are disposed with respect to the real
axis by the (implicit) i6 prescription shows that in
fact (2.9) gives nonzero values only for xi and x, lying
between 0 and 1. This has been discussed by Gribov. ""

III. TRIPLE-CROSS GRAPH

We now consider the graph of Fig. 3, where the
momenta are labelled as indicated, and we use again
the parametrization (2.2) for the momenta k;.

The discussion of the momenta in the end crosses
exactly parallels that of Sec. II, and leads to the same
conclusions (2.6) and (2.7). For the middle cross, the
masses squared in its four lines are given by

$6y6$+ ($6 y3) r+K6-
*6y6s+ (*6—y6)'r+K6'1

—($3+*4+*6)(yi+y2+y6) s

+($3+$4+$6+yl+y2+y5) r
3.1+ (Kl+K2+K6 2(f)

—($3+*4+*6)(yi+y2+y6) s

+($3+$4+$6+yi+y2+y6) r
+ (Ki+K2+K6 —

2 (t),

where we have made use of the energy-momentum con-
servation conditions analogous to (2.3). The condition
that these expressions be finite has certain solutions
for which x6 and x6 are large pi. e., O(sr), y) Oj, pro-
vided that y5 and y6 correspond suitably. However,
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x5+x6 ——0(s—'),
y5+y6 finite.

(3.3)

from (2.6), (2.7), and (2.3) we already know that their
sums (x5+x6) and (y5+y6) cannot be large. Further, a
combination of the expressions (3.1) leads to the
condition that

(x5+*6)(y5+y6)s+(*5+x6) (yl+y2) s

+ (x2+x4) (y5+y6)s 2(—x,+x,) (y5+y6) r (3.2)

be finite [we have omitted some terms that are of
manifestly of lower order because of (2.6) and (2.7)].
This leads to three types of solution to the finiteness
requirements.

In the first we have

show that, correctly interpreted, our answers will not
suRer by it. It can only be done at all with y real if
x5+x6) 0, so we erst break the integration region into
two parts, x5+x6~~0, and in the latter make the change
of variables x —+ —x, y~ —y. The Jacobian is

dx5dx6dy5dy6 ——s 2 lns 8 (x5+x6 —1)dx5dx6dy5dg6. (3.8)

We also make the change of integration variables given
in (2.10), together with a corresponding one involving
$3 and $4.

The basic assumption underlying the Gribov method
is that one can take the limit s~~ inside the inte-
grations, provided the resulting integral is convergent.
Thus, for example, when we have made the changes of
integration variable the last expression in (3.1) is
equal to

The resulting contribution may be evaluated by
making a change of variables:

(3.9)X5y6+ (»1+K2+K6—2(()

plus functions of the S' and y that are multiplied by
negative powers of s. These we neglect, in comparison
with (3.9). With this procedure we obtain the result

X5 =As x5, x6 ——]),s x6, x5+x6 = 1.

If one works through this, one finds that the answer
must be interpreted as contributing to the first term
of Fig. 2 rather than the second, in that the dominant
contribution corresponds to the energy variables
(k6+k6)' (k4+k5)' associated with the lower pair of
bubbles being finite. This represents a model-dependent
addition to the lower X' function, corresponding to re-
placing the lower cross of Fig. 1 by the subdiagram
below, and including the middle cross of Fig. 3. Since
the latter subdiagram has a third Mandelstam spectral
function, a contribution of this form must be
expected. ' "

The second class of solutions is

1
d'Kd'»' X(»)X(K,K')X(K')4t)(K) K')s),

2
(3.10)

where K =Kl+K2, K=K5+»4, X is the function defined
in (2.9),

X(K,K')

d'K5d'K6 b"'(K+K'+»5/»6) dx5dx6dy5dg6

2 LX5g5+»52 —4252]L —X6y5+ (K'+»5 —-2'q)2 —m']

b(X5+X6—1)gig2gi g2 X5 "+' X6P
X

t X6g6+K6' —2222](—X5g6+ (K'+»6 —2q)2 —2]22]x5+x6 finite

y5+y6=0(s ') (3.4)
)(g ))[(& )6) ]g a[())'+)6) ] (3 11)

Q(K, K )s) =
2 (1+K)s lns dys(i —»~+~~

(3.12a)
se—i—s~'

=2(1+=)

and
This again results in a contribution to the first term of
Fig. 2 rather than to the second, and yields a correction
to the upper X function.

Interpolating between the solutions (3.3) and (3.4)
is the third possibility

x5+x6 ——0 (s-7),

y5+y6 ——0(s&-'), 0 &y &1. (3 3) with

This leads us to make the change of integration variables

~ =nL("+-'V)']+nHK' —le)'],
b =nf(K+-', q)']+nf(K —-,'q)2].

(3.12b)

$5 S $5 )

x6 =s 7x6 )

y5 —s g5)

y6=s' 'y6.
(3.6)

In order not to increase the number of integration varia-
bles we impose the constraint

x5+x6 1 ~ (3 7)

This procedure is manifestly asymmetric between x
and y. We shall discuss this in the next section and

H. J. Rpthp Phys. Re&. 159, 1471 (1967&.

In (3.12), is the product of the signatures of the
four Reggeons, so that —',(1+ ) is equal to 0 or 1. This
factor arises from the breaking up of the integration
region into the two parts x5+x6~~0 before the trans-
formation of variables (3.6) and (3.7). Thus, as might
be expected, there is no contribution when the signa-
tures of the two cuts to either side of the central cross
are opposite; the factor (1+ ) forbids the mixing of
signatures. When 2 (1+K)= 1 we see on inserting (3.12)
into (3.10) that we have recovered (1.1) for the
case x=3.



ITERATIONS OF REGGE CUTS 1993

Properties of the function X are examined in the
next section.

Here C=4+Xs+Xs+X4 and D is the D function" for
the upper single cross in Fig. 1, but with p replaced by
zero. The g integrations in (4.3) give b functions, and if
these are combined with the 8 function already appear-
ing in (4.3), this yields

IV. PROPERTIES OF X AND X

In this section we examine and compare the functions
X and X. Consider X, given by (2.9). Ke first note that
our result has a slightly different appearance from that
of Gribov, because of our slightly diferent definition
of the parameters x and y. It can be reduced to the
Gribov form by the transformation

Substitution of these values into the ~-dependent terms
of the exponent in (4.3) gives a contribution identical
with that which would result from omitting the 7 terms
and restoring the p dependence in D. As is explained
elsewhere, " the eBect of the variation of the coupling
functions gi, g, (which of course is crucial to the work
of Sec. II) may be taken into account by making some
weak assumptions about their analytic properties.

This result allows us to deduce immediately that,
when X in (3.11) is continued in E' to the point where

(4.1)g~g —rx.

that is,

(K'—', q)' = (K'+-', (7)' =zzz',

then X coincides with X.
However, a similar result does not follow if instead

we put the exponents of xs and x6 in (3.11) equal to zero.
This difference can immediately be traced back to the
unsymmetrical change of variables in (3.6) and (3.7); we

could equally well have replaced (3.7) by the constraint

dpi expLi)(i(xrgi+«5' —zzz')] (4.2)='t
x gi+Kl —z)z

and three similar relations. The convergence of the
integral (4.2) is ensured by Feynman's prescription of
adding a small negative imaginary part to m'. The I~:~

and ~2 integrations may now be performed, with the
result, apart from constant factors,

(4.4)p5+g6 1 )

which would simply have the result that it replaces
b(x5+x6 —1) in (3.11) by 6(y5+gs —1), giving a new
function X'(E,E').

To analyze this difference, make yet another change
of variable in (3.11):

dX&dXsdgrdgs ()(Xi+Xz—1)

XC—&xi~((~+f6)'Ix ~[(L—k6)4]

Xexp{zg ixrgi+Xsxs(T gi)

+)(sxsys+X4xi(r —ys)+C 'D]}.

z)(5 + ~z)(5 ) g6 + )(z)(6 y $5+@6 1 ~ (43)

(4 3) This yields

This removes the terms xj2r and x~'r from the first and
third factors in the denominator, and in the fourth and
second factors it replaces them by x~r and x2r, respec-
tively (we have used the 6 function in the numerator).
%e show that these terms may also be omitted, pro-
vided the terms (Ki ——',(t)' and («6+-', q)' are, respec-
tively, replaced by (Ki —p ——',g)' and («6 —p+—',q)'. We
do this in order to be able to compare X with the ex-

pression (3.11) for X, which does not have the terms
involving 7..

Initially, we treat the coupling functions g~ and g2 as
constant. Introduce "Feynman" parameters X~, X~, ) 3, X4

by using the identity

X(K,K') =—
2

(PK5(PK6 5 (K+K +«5+«6)dxsdxsdgsdgs&(

(usgsy«5 —zzz') L
—zxsg5+ (K'y«5 ——',q)s —zzzs]

8(x5+xs —1)()($5+$6—1)gigzgr gs X x5 xs tt'5 gs

(Xx,ps+«6' —zzz') L
—&5gsj(K +K6—

s g) —zzz']

where (5 is defined in (3.12b). On the other hand, X' is

given by the same expression, but with X +' replaced by
) '+'. Thus, the difference between X and X' contains

the factor X +' —X'+', which tends to zero when u —+ b.

So the difference between the integrand in (3.10) and

the similar one involving X' does not contain a double

pole in the l plane when u —+ b, but rather the slm of

separate poles. That is, the difference between using X
and X' in (3.10) is that it leads to different separations
of the total contribution from the graph of I'ig. 3 into
parts identified with the first term in Fig. 2 and with the
second term.

"Reference 8, Sec. 1.5."I.T. Drummond, P. V. LandshoB, and W. J. Zakrzewski,
Phys. Letters 28$, 676 (1969).
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~2r—i &2r--ly2r —j&~ (&2r—j. y2r —1/ 7 ~K2r—1

k2r X2ry2r~+ (X2r y2r) T+K2r

(p kl k2 ' ' k2r—1)

(X2 + +X2 ) (y1+ +y2 —1)~

+ (X2r+ ' ' ' Xir+yl+ ' ' ' y2r —1) T

+ (Ki+ K,„ 1——',q)',

x5=P "s ~x5) ys=ki "s~ ~y5)

x6=X~s Tx6) y6='A' ~s~ 'y6)

x2+x2 ——1, y2+it2 ——1, 0 & t4 & 1.

There are many other functions equivalent to I in cross are
the same sense as is X'. Instead of (3.6) and (3.7), use
the variables defined by

This term is independent of p when a=6, so all these
possibilities lead to an identical double-pole structure.

Finally, we show that when the masses of all four

Reggeons are such that n=0, both I and X are equal
to the residue of the l= —1 pole in the simple single-

cross graph. For under these conditions it is easy also
to do the x integrations in (4.3), with a result that may
be expressed in the form

dA C 'e'c '~8(X2X1—X2X4)

dsgdA. C 2e'~ '~= dsi F (si,q') . (4.7)

Here F is the Feynman integral for the single-cross

graph, with energy variable s~ and momentum transfer
q'=t. Now, since, as s~ —+~, Ii —+ 0 faster" than s~ ',
the Froissart-Gribov integral for the positive-signature
R.egge amplitude corresponding to F converges right
down to l= —1. The residue of the pole at /= —1 is
thus obtained by taking the residue of Q1(s) inside
the integral, with the result that it is just

This results in an integral like (4.6), but with X'+'

replaced by
gP &+ (& ttt) t)+&

(P kl .
' ' ' k2r —2 k2r)

(X2r 1+X2r—+1+ ' ' '+X2n) (yl+ . +y2r 2+y2r)~—

+ (X2 —1+X2 +1+' ' ' +X2 +yl+ ' ' '+y2 +2+y2 ) T

+ (Ki+ ' ' ' +K2r—2+K2r+ 2q) (5.1)

and the masses on the Reggeons connecting this cross
to the (r+1)th are

(p —ki — —k2„)'

(X2r+1+ ' '

+ (X2rg1+ ' '

+*2.) (yi+ +y2.)~
+x,„+y,+ +y, „)'T

+ (Kl+ ' ' +K2r~ 2g) (5.2)

where

a; finite,

x2„,, X2„=0(s—& ),
y2, i, y2r=0(2'"-'),

with corresponding energy variables

(k2r+k2r+1) (X2r+X2r+1) (y2r+y2r+1)2

+ (X2 +X2 +1 y2 y2 +1) T

+ (K2r+K2r~i)', (5.3)

(k2r 1+k2r+2) —(X2r 1+X2r+2) (y2—r—1+y2r+2)2

+ (X2r—1+X2r+2 y2r 1 y2r+—2) T

+ (K2r 1+K2r+2)—
We expect that the relevant solution to the condition
that the masses be finite is

2i dsi Imp (si, t) . (4 g) O=y &y & (5.5)

Expressing this as an integral of Ii over a contour
around the right-hand cut, and opening the contour,
we obtain (4.4).

V. FURTHER ITERATIONS

We have not made a complete investigation of the
general iteration, but give here an outline of how we

expect it to work out.
Label momenta k; on the lines of the crosses as before,

with k2„1 and k2„(r=1, 2, , I) referring to the rth
cross. Introduce parameters x, and y;, and momenta ~;,
as before. Then the masses on the lines in the rth

"Reference 8, Sec. 3.4.

Then the first terms in the last two expressions in (5.1)
may, respectively, be approximated by

~2ry2r —l~ ) +2r—1$2r~ )

the first term in (5.2) may be omitted, and the first
terins in the expressions in (5.3) become, respectively,

+2ry2r+ 1~ +2r—ly2r+2~ ~

Making these approximations, and the changes of
variable

+2r—I ~ +2r—1) y2r—1=$ " &g2r ] )

X2r S "X2r ) y2r =S " &g2r )

with the constraints

X2r 1+X2r—
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and integrating the y, over the region (5.5), we obtain
an expression that corresponds exactly to (1.1).

VI. MULTI-REGGEON BOOTSTRAP

The infinite sum of iterated cut contributions of the
form (1.1) represents the effects of taking into account
the requirements of unitarity in the nonasymptotic
channel. This can be seen in several ways. The presence
of Regge poles at sense right-signature integers means
that (1.1) has normal threshold singularities correspond-
ing to the two-particle intermediate states given by
the particles lying on the trajectories. These singularities
were discussed in Ref. 4, where it is also shown that one
gets a discontinuity formula of the correct unitarity
form only by taking the infinite sum. (This is exactly
analogous to the well-known fact that if one considers
normal thresholds associated with Feynman integrals
corresponding to two line bubbles, it is only the infinite
set of such interated bubbles which gives the correct
unitarity form. ) Furthermore, it is only the infinite set
which eliminates the Gribov-Pomeranchuk essential
singularity' and softens the nature of the cut singularity
to make it noninfinite and hence consistent with
unitarity. '

If this infinite sum is to be performed in other than a
formal sense, it will have to be achieved by writing an
integral equation constructed in an obvious way
analogous to the Bethe-Salpeter equation. A solution
of this equation will involve a denominator function
which can vanish for certain values of l. Thus, the
solution of the equation will not only give the unitarized
cut but it will contain within it also the possibility of
Regge poles, and hence the possibility of a bootstrap
procedure in which these poles are identified with the
poles originally used to generate the cuts. If we make the
strong and presumably unrealistic assumption that the
X functions can be approximated by a separable form,
then the integral equation becomes an algebraic equa-
tion summing a geometric series and the possibility of
poles from a vanishing denominator is immediately
explicit.

We have not written down the equations expressing
these ideas because they are almost identical in form
with the equations of the multi-Reggeon bootstrap given
by Chew and Pignotti and by Halliday. ' There are,
however, two important differences of interpretation
between their equations and those which result from
the discussion of this section:

(a) The cuts discussed by Chew and Pignotti and by
Halliday are Amati —Fubini-Stanghellini (AFS) cuts in
multiparticle unitarity integrals. It is known in models'
and also from general considerations relating to the
properties of Regge residues" that these cuts are can-
celled in the complete amplitude. Thus the presence of
the poles associated with these cuts is dubious. The
cuts which we discuss here are Mandelstam cuts' which

FIG. 4. Set of ladder insertions that would be made in Fig. T.

are actually present in the amplitude and so the poles
associated with them will be truly present also.

(b) In the AFS cut case, the kernel of the integral
equation can be expressed in terms of particle —two-
Reggeon coupling functions which can themselves be
redetermined from a similar calculation applied to the
2 —+ 3 production process amplitude. ' Thus a relatively
simple closed bootstrap is possible. In our case the
kernel of the integral equation is expressed in terms of
the four-Reggeon coupling functions. These depend
upon third-spectral-function properties, and some of the
subtleties in their calculation were exhibited in Sec. III,
where it was shown that they receive additional terms
from higher-order iterations. It is clearly not going to be
easy to And a way of calculating these functions from
simple constructs. They will have to appear as input
information and the bootstrap then used to determine
the trajectory functions self-consistently. This is a less
impressive program but we believe it is the correct one
because of the AFS cancellation phenomenon.

APPENDIX

In the text we have assumed that the dominant con-
tribution to the integrals arise from 6nite values of the
two-dimensional momenta ~. We here suggest that this
may be regarded as a further point abstracted from the
ladder-diagram model, similar to the assumption con-
cerning the behavior of the coupling functions.

Consider, for example, the set of ladder insertions
that would be made in Fig. 1.These are drawn in Fig. 4,
where it is understood that sums are taken over the
numbers of rungs in the ladders. It would be possible to
parametrize all the internal momenta by expressions
of the form of (2.2). In each propagator the two-
dimensional momenta K then appear separated from p
and p' (though not from g). Suppose now that Feynman
parameters are introduced by an expression like (4.2)
for each propagator. The two-dimensional integration
over the ~ will then produce in the integral a factor that
is an exponential involving q' but not s, the ~ having
effectively been replaced by finite values. " Thus in a
sense only finite values of the ~ are relevant to the
evaluation of the asymptotic behavior in s.


