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Regge Poles and an S-Matrix Theory of the Lamb Shift
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The Lamb shift in hydrogen is calculated by means of dispersion theory. Relativistic invariance is main-
tained throughout the calculation, and electron spin is included, although the spin of the proton is neglected.
Divergence problems which have plagued other calculations are eliminated by the exploitation of the Regge
behavior of the amplitudes which appear in the dispersion integrals. The preliminary results are in excellent
agreement with the lowest-order values given by Yennie and Erickson.

S INCE the experimental determination by Lamb
and Retherford of a difference in energy between

the 2Slf2 and 2P1/2 levels of hydrogen, ' and the subse-
quent theoretical explanation by Bethe, ' the calculation
of the I.amb shift has become an important part of the
theoretical physicist's repertoire. One of the major
successes of quantum electrodynamics (QED) has been
the extremely accurate evaluation of the Lamb shift in
hydrogen and in other atoms. 3 ~ It would be desirable
if this important quantity could be calculated with
comparable accuracy by means of dispersion theory,
since this would provide both an independent check of
the perturbation calculation and a convenient proving
ground for dispersion techniques. While there have been
several attempts recently to develop a dispersion theory
of the Lamb shift which would present an acceptable
alternative to QED, ' ' for the most part, these efforts
have met with indifferent success. At best, they have
indicated the possibility of a dispersion treatment of
the Lamb shift, but so far the quantitative results have
not been particularly encouraging.

The Lamb shift is due principally to the effect of the
inelastic electromagnetic contributions to the right-hand
cut (RHC) of the electron-proton scattering amplitude.
In evaluating them, one needs explicitly the photo-
electric effect (PE) amplitudes. The simplest approxi-
mation to the PE amplitude, a single s-channel pole,
yields a shift of the 25 state of nearly +1600 Mc/sec. 5

A nonrelativistic calculation of the Lamb shift employ-
ing a dipole approximation to the PE amplitude yields
a value of +1523 Mc/sec, which represents a small
improvement, although here a cutoff is apparently
needed to give finite results. Both of these numbers,

* This work was completed while the author was a NASA
trainee at the University of Florida.

'W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241
(1947).' H. A. Bethe, Phys. Rev. 72, 339 (1947).

~ D. R. Yennie and G. W. Erickson, Ann. Phys. (N. Y.) 35, 271
(1965).

4The discrepancy between the theoretical and experimental
values for the Lamb shift in hydrogen is now, however, larger
than three standard deviations. See, for example, R. C. Barrett,
S. J. Brodsky, G. W. Erickson, and M. H. Goldhaber, Phys. Rev.
166, 1589 (1968).

~ J. McEnnan (unpublished).
6X. Artru, J. L. Basdevant, and R. Omnes, Phys. Rev. 150,

1387 (1966).
' H. D. I. Abarbanel, Ann. Phys. (N .Y.) 39, 177 (1966).

181

where Re is the residue of fe at the pole, and De' ——dD/ds
is the derivative of the unperturbed D function. If we
write the perturbed amplitude f(s) = fe(s)+ Sf(s)
=.V (s)/D(s), then

h(s) =e '~&" (EDe—DXe) (2)

where i)(s) is defined below. ' To first order, h(s) satisfies
the following dispersion relation '.

1
hi(s) =—

Imh, (s')
ds

I
cuts

(3)

where the cuts are essentially those of waif&(s)

The quantity [EeDe"(s„)) '
may be obtained from

the ''solution of the Dirac equation with a Coulomb
potential. If we substitute the correct two-particle

SR. F. Dashen and S. C. Frautschi, Phys. Rev. 135, B1190
(1964).

'h&(s) is essentially the function B(k') of Ref. 6, except for
kinematical corrections,
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however, are rather far from the observed shift of
+1058 Mc/sec.

A problem which has prevented any real comparison
with QED or with experiment has been an infrared
divergence associated with the left-hand cut (LHC).
We shall show in this paper that the LHC divergence
is eliminated and the accuracy of the calculation greatly
improved if the Regge behavior of the amplitudes which
appear in the dispersion integrals is properly exploited.

Relativistic covariance will be maintained throughout
the calculation which follows. In addition, we will
include electron spin, although the spin of the proton
will be neglected. We will give here only the results of a
first-order calculation. In the future we hope to have
available the results of a more accurate evaluation.

In order to calculate the Lamb shift in hydrogen, we
will use essentially the bound-state perturbation theory
introduced by Dashen and Frautschi. ' 8 Thus, if the lth
unperturbedpartial-wave amplitude fe(s) =Pe(s)/De(s)
has a pole at s=s„due to a zero of De(s), then the
change in the position of the pole bs„due to inclusion
of additional (electromagnetic) intermediate states in
the unitarity, is given to first order in the energy
shift by

bs„=h (s„)/ReDe" (s„),
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FIG. 1. This term should be added to the
t-channel unitarity to give the perturbation
in that channel. It will contribute only to the
LHC of the partial-wave amplitude.

kinematical factors for electron-proton scattering, ti(s)
=s—m, '—nz„'/2W, which is equal to the reduced mass
at threshold and q(s), the c.m. relative momentum
then the parity-conserving partial-wave amplitudes

may be written

where
fi ~(s) = (27rW/2iq) (e"'&'+&—1), (4)

D~(s) =e "&'+& ~I' '(J—i»)I' '(-,'+i») ~, (6)

)ROD "(s„)i—'= (—1)t. '"(woP/2s„k!n)
&&I'(2J+k)&'(1+&') ' (7)

For j=-'„(7) reduces to (wp/2s„)n'/u', neglecting
higher powers of n. In (7), n=k+j +, is the p—rincipal

quantum number wo=2m, tv~ and t =n/k+ J. We see
that (7) is already of about the correct order of magni-
tude, has the correct 1,/'m' dependence on the principal
quantum number and the correct sign. One difhculty
of a previous calculation~ was an irregular sign depend-
ence which is removed by our particular definition of
the unperturbed D function. For future reference, we
also note that for s near threshold, so,

D, (s) (q/p) J '" sin~(J —i») . —
(g)

It is believed that the amplitudes represented by
Eqs. (4) and (5) are exact except for (i) the effects of
the transverse components of the electromagnetic
field (s channel), and (ii) the effects of massive particle-
antiparticle pair exchange (t channel). We will take as
perturbation the least massive two-body corrections
to the unitarity. For the LHC, this means we will
include an electron-positron pair in the intermediate
state (Fig. 1). For the RHC, we will sum over inter-
mediate states comprising one photon and one hydrogen
atom in an excited state E&, (Fig. 2).

We consider. first the LHC, which should be equiv-
alent to the anomalous magnetic moment and vacuum-
polarization contributions of perturbation theory. We

8(t, a; s) —X(s)
=argl'(J —iq)+ tan-'y„+7r (j+-',—J'), (5)

J = L(j+-',)'—n'$'", and»(s) =ay(s)/q(s);
e"'"=(i+2~in')I(J+in)

and»'= (q' n')—'" Note that with the phase shift (5),
we have multiplied the usual Dirac amplitude by an
angle-independent phase, e"&= I'(-', +i»)/I'(-', —i»). T»s
has been done in order to reduce the singularity of
the Coulomb D function at threshold; it will have no
observable effect in the physical region, and D, (s) will

still have the proper zeros. Kith the phase shift given

by (5), we can define

write the unitarity equation corresponding to Fig. 1
for the invariant spinor amplitude in the t channel

1 —1 I'(1—iP(u)) t —'+'e& &-
t 2iq ' I'(1+iP(u)) 2q„'

1 —1 I'(1—iP(t)) —u) '+'e&'&

u 2iqP I'(1+iP(t)) 2q,PJ

(10)

where —1+ip = —1+in&i/q is the leading positronium
trajectory. The amplitude obtained by the replacement
(10) is scot the exact relativistic amplitude, but it does
exhibit the correct asymptotic behavior in the t and
n channels, the proper positronium Regge poles, and it
will be antisymmetric with respect to exchange of
identical electrons. Moreover, the amplitude generated
by (10) will have a partial-wave expansion so that the
integral (9) will exist. If we write the left-hand side of

"We have found it convenient to use the two-component
spinor formalism developed by A. O. Barut, The Theory of the
Scatteririg Matrix (The Macmillan Co., New York, 1967).

t'&M t'&M—t =ip2(t) dQ'M. + ~ D'"(B ')

SD'&'(B ')M ~—, „+„t—. (9)

D'"(E) is an element of the two dimensional irreducible
representation of the homogeneous Lorentz group, and
8 is the squa, re of the "boost" function from the rest
frame to the c.m. frame. ' 635 is the change in the
electron-proton scattering amplitude due to the new
t-channel intermediate state. It would be convenient
if the amplitudes on the right-hand side of Eq. (9) could
be approximated by their pole terms. However, the
m pole in the elastic electron-positron scattering ampli-
tude causes the integral to diverge unless the photon
is given a small mass. This is due to the fact that the
Born term for the Coulomb amplitude has no partial-
wave expansion. In perturbation theory, this infrared
divergence is canceled by a similar term in the brems-
strahlung contribution, but this avenue of escape is
closed to dispersion theory. It is, however, possible to
avoid this divergence in a manner which is consider-
ably more satisfactory then introducing an arbitrary
cuto6. If we consider the electron-positron amplitude,
we realize that all of its Regge-pole trajectory functions
are known explicitly (and, except for radiative correc-
tions which are assumed to be small, exactly). If, in
addition, we remember that the full nonrelativistic
scattering amplitude can be obtained exactly in closed
form by solving the Schrodinger equation with a
Coulomb potential, and that it exhibits typical Regge
asymptotic behavior with omly the leading trajectory
contributing, then we might surmise that the exact
relativistic amplitude should be very closely approxi-
mated by its leading term. With this in mind, we replace
the simple pole terms in the electron-positron amplitude
by the leading Regge-pole terms; i.e.,
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(9) as

RV bM—t =2i Im,bA (s,t,u) Yi(E)
+2i Im, bB (s,t,u) I'«(Z), (11)

where the I';(E) are the two-component forms of the
spinor-basis functions appropriate to spin-2 —spin-0
scattering used by Chew, Goldberger, Low, and Nambu
(CGLN), " then we find from (9), using (10) and
neglecting recoil

Im, 5A (s,t,u) =p«(t) $4«r'm, m«, n'/tqi'P (t)]
X e '«Lm, '(cosbi —cos8«) 1,

Im, )B(s, t,u) =p«(t) l «r'm, m„n'/3tq&'P (t)$
X e—««L2(t+2m «) cosb«+4q (3 cosli+cos8«)$) (12)

where

p«(t) = q,/(2«r)'Qt, 4qP = t 4m '—
Bi(t)= 2 argl'(1+1 —iP)+P ln2.

The convergence factor e ' & is necessary to damp out
the oscillation of the cosh terms at threshold. At the
end of the calculation, the limit c~ 0+ ma.y be taken,
and the result will be finite and independent of ~.

The discontinuity functions represented in (12) are
rather complicated; it would simplify matters consider-
ably if one could make an expansion of (12) in powers
of n, the fine structure constant. However, when one
attempts to project out of the expansion of (12) the
LHC contribution to the partial-wave amplitudes (cf.
Eq. (15)j, one finds that, after the lowest-order term,
all the integrals are infinite; even though the sum-
represented by the integral of (12)—.is finite. This is
due to the essential singularity at q&=0 which appears
in the cosb terms. In (12), the cosine merely oscillates;
but the expansion yields an infinite series in q&, each
term of which diverges at threshold in (15). Actually,
this should not be surprising, as it is known from
perturbation theory that the Lamb shift cannot be
developed in a simple power series in e, since the expan-
sion contains terms of the form o," ln~n. Thus, if one
desires more than first-order accuracy, it is necessary to
deal with (12) explicitly and do a rather difficult
numerical integration. However, even though the
higher-order terms in the expansion of (12) give rise
to (spurious) divergences, the lowest-order term is
finite, and can be given a rigorous mathematical
definition. Moreover, the resulting expressions are
considerably simpler. For the purposes of this paper,

Fro. 2. The major part of the Lamb shift is due to the inelastic
two-body contributions to the s-channel unitarity. These terms
contribute only to the RHC of the partial-wave amplitudes.

» G. F. Chew, M. L. Goldberger, F. Low, and Y. Nambu, Phys.
Rev. 106, 1337 (1937).

a lowest-order calculation will suffice. We find that
Im, 8A (s,t,u) 0,

Im, 3B (s,t,u) «rm~t '~'(t —2m, ') . (13)

Using (13), the LHC contribution to the Lamb s»ft
can be written

1 E„+m, W —m.
bs(N, ta) Lno =

EpDO me

ds P.„m, W„+m—,
X— e ""DPImr, &B,+i)«+

oo S—
$7', me Sly

1 ' ds
e '«"DP Imr, eB;gi)«, (14)

71 ~ S—S~
where

Imr 3Bi+it«(s) = (—1/4q ')
—4qs2

me 2

«P+ i (1+t/2q')

XIm,bB(s,t,u) . (15)

From)'(13) —(15), we find that the change in the c.m.
binding energy of the 25ii«state is —51 Mc/sec, and
of the 2Pi~«state, —17 Mc/sec. We see that these
values are of the correct sign and order of magnitude
for the magnetic-moment and vacuum-polarization
contributions to the Lamb shift.

Future work on the dispersion calculation of the I.amb
shift should see a more accurate evaluation of the
dispersion integrals as well as inclusion of the electron
anomalous magnetic moment, which should yield the
higher-order contributions to the LHC. It is possible
that additional trajectories may have to be included
in the amplitudes appearing in (9), but it is not antici-
pa, ted that this will lead to any additional theoretical
difhculties.

As we have said, it is the RHC which contributes
the major part of the Lamb shift in hydrogen. Referring
to Fig. 2, we see that it is necessary to know the ampli-
tudes Mi(s, s) for the process e+p —+ Hi,*+y, essen-
tially the photoelectric effect. On the basis of pole-
dominance assumptions common to dispersion theory,
one might predict that a reasonable first-order calcu-
lation could be made using only a simple s-channel
pole approximation to the PE amplitudes (Fig. 3).
However, if this is done, the resulting Lamb shift is
about 1600 Mc/sec, 60% larger than that which is
observed. 5 In Ref. 6, Artru et al. have indicated that a
nonrelativistic calculation of the Lamb shift may be
made using the ordinary dipole approximation to the
PE amplitude. Presumably, one could extend this to

H

p&
FIG. 3. A simple s-channel pole approximation to the PE am-

plitude has the effect of treating the hydrogen atom as if it were
an elementary particle; whereas, it should appear as a Regge pole.
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eX H Pro. 4. The elementary-particle poles of
p the PE amplitude correspond to the proton

and electron, and appear in the t and m

p ~ channels, respectively.

g," I'(1—iy(s)) m '—f) '+' t'l
Ag(s, s) =

2qqg I'(1+i'(s)) 2qqr. I

r." r(1—&p(s))(»&.
'—

«)
—'+' &'&

8I, (s,s) =
2qqg I'(1+i' (s)) 2qqI,

(17)

the relativistic case. However, apparently the high-
energy behavior of the dipole approximation is such
that a cutoff is necessary to keep the dispersion integrals
6nite. Moreover, the result quoted, 1523 Mc/sec, is
larger than the observed energy shift by about 50%.
We are forced to conclude that neither of the approxi-
mations outlined above affords a satisfactory value for
the Lamb shift in hydrogen. It is obvious that another
approach must be explored.

Our s-channel pole approximation to the PE ampli-
tude treated the hydrogen atom as if it were an elemen-
tary particle; however, we know this to be incorrect.
Hydrogen is a bound state of the electron and proton;
it should appear in the scattering amplitude as a Regge
pole, rather than as a fixed pole. On the other hand, if
we examine the PE amplitude we note that it does
have elementary particle poles in the t and I channels
at the masses of the proton and electron, respectively"
(Fig. 4). As a matter of fact, we can go a step further.
Since we know explicitly the hydrogen atom Regge-pole
trajectory functions (except for radiative corrections),
we thereby know precisely the asymptotic behavior
in the t and I channels. (We note that the hydrogen
poles are the only bound states of the PE amplitudes. )
The t- and u-channel poles can be made to furnish a
natural basis for the Reggeization of the PE amplitudes
in exactly the same way that the photon poles of the
electron-positron amplitude provided a point of de-
parture for the Reggeization of that amplitude Lcf.
Eq. (10)$. Thus, if we assume that, as with the Coulomb
amplitude, only the leading trajectory contributes ap-
preciably, we can write

Mq(s, s) =AI, (s,s)UI, (E)+81,(s,s)Wt(E), (16)

where Ur(E) and Wr. (E) are the appropriate spinor-
basis functions, and

momentum of the final photon-hydrogen atom pair.
We note that the amplitudes (17) have the correct
bound-state poles, the appropriate asymptotic behavior
in t and u; and, in lowest order in n, the correct fixed
electron and proton poles. Moreover, the total cross
section calculated from (17) is essentially the same as
the total cross section obtained from the usual quantum-
mechanical treatment. "We shall find that the ampli-
tudes (16) and (17) provide a suitable basis for the
calculation of the Lamb shift.

The unitarity equations corresponding to Fig. 2 may
be written

where Wf is the change in the electron-proton scattering
amplitude due to the new electromagnetic states
included in the unitarity, ps ——ql/(2')'W, and the sum
is over the lowest-lying members of each hydrogen-
atom Regge trajectory. If we write the left-hand side of

(18) in the form

bM —bMt=2i Im, 8A (s,t,M) Vr(E)
+2i Im, 88(s,t,sr)Fs(E), (19)

where, as before, the notation is essentially that of
Ref. 11, then we find, neglecting recoil,

Im, bA(s, s) =Im, b8(s, s) =s P pI, (s)g(2t+1)P)(s)

ki kg k2 k3
X —

I
a('(s)

I
'+ Lat"*b('+a)'bg" ]

me 2 7SQSSp

where aP(s) and bP(s) are the partial-wave projections
of (17), and are discussed in detail in the Appendix,
and E~(s) is the I.egendre function of the first kind.
The change in the RHC of the parity-conserving
partial-wave amplitudes may be found from the partial-
wave projections of (20), with which the RHC contri-
bution to the Lamb shift can be written

bs(e, la) =
Epap" p S—S~

bM bMt =i Q—pp(s) dQ'MI, (s,s')D'

@Ds'M t,
t (s,s"), (18)

g," is the residue at the pole, and is given by I g, '/tts;I'
= 4rrrrr, m~n fP, where fI,

' Ro/mI, ', and——Ra is the
residue of the Coulomb electron-proton scattering
amplitude. —1+i'= —1 i+/nlaiqs the leading Regge
trajectory, g is the relative c.m. momentum of the
initial electron-proton pair, and q~ is the relative

E +m,

E'Q fÃ g

H/'„—m,
ImzbA, +r(s+ ——Imnb8, pg(s

ms'

W„+m.—Imps, ~t(s+ Img88, pr&,
mu

'2The electron and proton are certainly elementary particles
if we remain within the framework of electrodynamics. Whether
they may themselves be composite in some global bootstrap
scheme does not seem to be particularly relevant here.

(21)
3 See, for example, H. A. Bethe, Intenssedjate Qugntlsn Me-

chanics (W. A. Benjamin, Inc., New York 1964).
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In (21) we have neglected the short integration from
sj, to threshold so, since the integrand is strongly
damped there. Because of the threshold behavior of
e "&~D,~2 LEq. (8)j, and of the partial-wave ampli-
tudes (A4), there is no infrared problem. Moreover, the
integrand behaves asymptotically as s 'lns, so that
there is no need for a cutoff. As with the LHC, however,
we cannot develop the discontinuity functions in a
power series in o, , since all terms after the first contain
additional powers of tt

' which give rise to (spurious)
infrared divergences in (21). We hope in the future to
be able to give the results of a numerical calculation
involving the amplitudes (17), which should give
higher-order corrections to the Lamb shift; but, because
of the difficulty of that calculation we have only
attempted, thus far, a lowest-order evaluation of (21).
(As we noted before, the lowest-order term can be
defined mathematically, and does give a finite, reason-
able result. ) We find, using (AS), that (21) yields a
shift in the 2Si/2 state of +1090 Mc/sec, and of the
2Pi/2 state, +4 Mc/sec. If we add to this the LHC
contributions, we find that the difference in energy
between the 25&/2 and 2E&/& states of hydrogen, to
lowest order, is equal to 1052 Mc/sec. This is, within
our limits of error, precisely the first-order result
obtained by Yennie and Erickson. '

As we have seen, the divergence difficulties which
have been associated with the dispersion theory of the
Lamb shift can be removed by exploiting the known
Regge behavior of the amplitudes which appear in the
dispersion integrals. Moreover, we have found that the
accuracy of the calculation is thereby improved to the
point that a meaningful comparison with perturbation
theory may be made. Work is now proceeding on the
inclusion of the electron anomalous magnetic moment
and reduced-mass and recoil effects, in addition to the
more accurate numerical evaluation of the dispersion
integrals. It is also possible that, in addition to the
leading trajectory, other trajectories may have to be
included to bring agreement with the experimental

.situation. On the basis of work done, we are conhdent
that these refinements may~be -,:,,'--included without
introducing any additional theoretical difficulties. We
thus feel that this work will result in a convenient and
accurate means of calculating the Lamb shift, and one
which is entirely independent of the usual perturbation
treatment.

The author would like to thank Mrs. J. Lipofsky for
the numerical evaluation of k(s), and Professor A. A.
Broyles and M. McEnnan for their helpful comments
and suggestions.

APPENDIX

The partial-wave projections of the amplitudes (18)
may be found using the fundamental (integral) defini-

tion of the hypergeometric function. "We find

2'g„' I'(/+1 —iy)P (3+1)/ 1
—'—'+'&

at" (s) =- 11+—
2/tq F (1+i')P (21+2) k 2/„

b/2(s) is obtained from at"(s) by multiplying it by
(—1)' and replacing p by e everywhere; we will thus
omit bid(s) from the discussion which follows. In (A1),
2/~=q/E„ is the relativistic velocity of the incident
proton in the c.m. frame. Eq. (A1) can be rewritten
in a more convenient form using the relation between
the hypergeometric function and the generalized
Legendre function of the second kind":

r 2
F~ 1+i -tt, 1+i;2+2t;—

s

2P (2v+2) 1+S +i S 1 e/2

P(1+i)r(1+2+/i) 2 s+1

We find
Xe *~&Q &(s) (A2)

P(l+1 ip)e &—gy
a, '(s) =

2qq2 P (i+1+iP)P (1+i')

The threshold behavior of aP(s) is given essentially by
the asymptotic behavior of the Legendre function. We
And that for s near threshold, so,

a,"(s)~ q'e*" (A4)

and similarly for bid(s). Thus, these amplitudes have
the usual threshold behavior except for an infinite phase
which is characteristic of electromagnetic processes.
Finally, if we expand at"(s) in a power series in n, the
fine-structure constant, we 6nd that the lowest-order
term is given by

«'(s) = (fp"/2Ã. )Q/ (1/~n), (AS)

"M. AbraInowitz and I. A. Stegun, Handbook of Mathematical
FNnctions (National Bureau of Standards, 4'ashington, D. C.,1964).

re A. Erdelyi, IIigher Transcendenta/ Fnncteons (McGraw-Hill
Book Co., New York 1953), Vol. I.

where Qt(s) is the ordinary Legendre function of the
second kind.


