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Three models of axial-vector currents which contain both octet and non-octet components are examined.
The first model is based upon the d, U= —', rule, and it forbids decays with AS = —AQ and 5S=2. The second
model conserves a "weak hypercharge, " and introduces AS = —AQ and AS= 2 terms in a specific way. The
third model assumes that the usual AT = 1 and d, T=—', rules are valid even when the octet rule is not. Although
present data on semileptonic hyperon decay are not accurate enough to determine the precise admixture of
non-octet components, they seem to indicate that such currents are restricted to the 27 representation, and
that they may form about 10'P& of the total current. Throughout the discussion the conserved-vector-current
hypothesis is assumed to hold. Some of the general theoretical consequences that would follow from the
existence of non-octet axial-vector currents are also considered.

1. INTRODUCTION

LTHOUGH present data on semileptonic hyperon
decay are consistent with the hypothesis of octet

dominance, ' they are not so accurate as to confirm
the hypothesis beyond reasonable doubt. For example,
a recent measurement of the branching ratio for

—~ Ae v is within one standard deviation of the
predicted value, but it is also within one standard
deviation of a value twice as large as that predicted. '
The resolution of this uncertainty and others like it
must await more accurate experiments; but in the
meantime it may be useful to consider alternatives to
octet dominance for the weak hadronic current.

As far as the vector part of the current is concerned,
there are attractive arguments in favor of octet trans-
formation properties. The conserved vector current
(CVC) hypothesis, which agrees well with experi-
ment, ' requires the weak vector current and the elec-
tromagnetic current to lie in the same multiplet4; the
latter, through its relationship with the charge operator,
transforms as a member of an octet, and so the former
must do likewise. Furthermore, the Ademollo-Gatto
theorem' suggests that medium-strong, SU(3)-violating
interactions do not distort the properties of the vector
current in any serious way. In the case of the axial-
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vector current, however, the arguments are not so
strong. It is true that the hypothesis of partial conserva-
tion of axial-vector current (PCAC)' and the Adler-
Weisberger relation7 point towards octet transformation
properties, but their analogs for the strangeness-
violating current are not well established. ' We shall,
therefore, assume that if there is a serious breakdown of
octet dominance, it will occur in the axial-vector current
but not in the vector one.

There are two possible ways in which such a break-
down can take place; either the current transforms
according to an irreducible representation other than
the octet, or it is an admixture of several representa-
tions, i.e., a reducible representation. The axial-vector
current, besides contributing to hyperon decay, also
gives rise to the meson decays m ~ pv and E~ pv, and
so it must contain an octet component. Consequently,
we can dismiss the first type of breakdown and assume
the current to be a reducible representation consisting
of the octet and at least one other representation. For
hyperons, these additional representations are contained
in the direct product 8 S.

The introduction of non-octet components provides
us with much latitude in constructing the current, and
it is necessary to find models which will limit our scope.
Since there is no analog of the Ademollo-Gatto theorem'
for the axial-vector current, it may happen that the
"bare" current is pure octet, and that significant
non-octet components are induced by medium-strong,
SU(3)-violating interactions. If this is the case, the
charge independence of medium-strong interactions will
ensure that the usual strangeness and isospin selection
rules are maintained, and hence it will restrict the num-
ber of components in the current. If, on the other hand,
renormalization effects are relatively small, then non-
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octet components may be intrinsic to the current, and it
will be necessary to construct other models.

One approach to the problem is suggested by the
Cabibbo theory. 4 In its original form, this theory re-
quires that the strangeness-conserving and strangeness-
violating currents belong to the same octet; as a result,
their matrix elements for hyperon decay should be
governed by the same D/F ratio. The obvious extension
to our case is to require the 6$=0 and AS= 1 currents
to belong to the same reducible multiP/et. Is then follows
that the two currents can be "rotated" into one another
by means of SU(3) transformations. Because thecur-
rents have equal electric charges, these transformations
must belong to the U-spin subgroup, and it is convenient
to use U spin, rather than isospin, as an analytical tool.

In terms of U spin, the selection rules AS=0 and
ES=AQ=1 are equivalent to

EU3= W-', , AQ= 1,

and the rules AS=2 and DS= —EQ= —1 become

AUg ——&—,', AQ= 1. (2)

and to write the axial-vector current in the form

cf COSH' —1/2+ slI18A+1/2 )

where A~y/2 are the two members of a U-spin doublet.
Equation (3) automatically excludes a 10* component
from A because EU=1+2AQ in that representation.
As far as isospin selection rules are concerned, the octet
components of A satisfy the usual AT= 1 and AT=-,'
rules; the 10 components satisfy AT= 1 and hT= ~3; and
the 27 components correspond to AT& 2 for strangeness-
conserving decays, and to AT& ~ for strangeness-
violating ones.

If we prefer not to forbid decays satisfying Eq. (2)
but merely to suppress them relative to the common
modes of semileptonic decay, we can adopt the point
of view that the hadronic current conserves a "weak
hypercharge. "'" The complete current is then ob-
tained by rotating the T=T3=1 component of each
representation through an angle 20 about the second
axis of U-spin space. The octet and 10 components still
satisfy AU= —,', but the 10* and 27 components give
rise to 2 U= ~ terms and therefore generate all possible
strangeness section rules. "

Neither of these two modified forms of the Cabibbo
theory includes as a special case the type of breakdown

N. Cabibbo, Phys. Rev. Letters 12, 62 (1964).
'08. de'Espagnat and M. K. Gaillard, Nuovo Cimento 42,

1035 (1966). See also E. de Rafael and M. Goldhaber, Phys. Rev.
Letters 20, 522 (1968); R. M. Delaney and D. J. Welling, Phys.
Rev. 176, 1841 (1968).

The simplest way to forbid decays governed by Eq. (2)
and to implement a modified Cabibbo hypothesis is
assume the selection rule

AU= 2, AQ= 1

of octet dominance engendered by medium-strong
interactions. This type requires that the isospin rules
AT= 1 and d 1'=—,

' be preserved; but for all representa-
tions except the octet, both the AU =

~ rule and "weak
hypercharge" conservation give rise to strangeness-
violating currents with d,T)—,'. Thus we have three
distinct approaches to the problem of non-octet com-
ponents in the axial-vector current.

ln this paper we shall apply these three approaches to
the phenomenological analysis of semileptonic hyperon
decay. Where possible, we shall use the existing data to
determine the specific form of the axial-vector current
and to estimate the admixture of non-octet components.
For the vector current, we adopt the CVC hypothesis
as extended by Cabibbo. 4

The QU=-,' rule is discussed in Sec. 2, and "weak
hypercharge" conservation in the third. The case in
which the usual isospin rules are preserved is discussed
in Sec. 4, and the three approaches are compared with
one another in the concluding section.

in the form

M(n &P) = (G—/v2)(P I zy„(V+ Ay&) I n)1.„, (6)

where I.„ is the usual lepton factor and 6 is the weak-
interaction coupling constant. In Eq. (6) we neglect
both the dependence of V and A upon momentum
transfer, and additional terms induced by strong inter-
actions (for example, "weak magnetism"). These cor-
rections are of order 10% and we shall comment on
them at a later stage. We also neglect corrections due to
CI' violation and treat V and A as real constants. Our
sign convention is such that in neutron p decay

(2/ V)„„=+1.2. (7)

If we now assume the AU= —,'rule for the axial-vector
current, the coupling constants for strangeness-
conserving and strangeness-violating decays, denoted

by A ( ) and A '", respectively, can be expressed in
tensor notation as (see Appendix)

2 ~'& = {F(Fp)+D(Dy')yGL 10jll"
+H)27jn2'} cos8~, (8a)

A &'& = {F'(Fg')+D'(DP)+G'[10/gg'
+H'$27jgg" }sineg. (8b)

The requirement that A ( & and A ('& belong to the same
reducible SU(3) multiplet implies that

F'/F =D'/D= G'/G= H'/H = 1.

2. LkU=~ RULE

Ke write the matrix element for the semileptonic
hyperon decay
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Amplitudes for decays of interest are then given by

A (n —+ p) = (F+D &2—H v2—G) cos4,
A ( -—~ - ') = (F D+—&2H &2G—) cos0~,

V3A (Z —+ A) = (—&2D—3H—3G) cos0~,

&3A (Z+ ~ h.)= (Y2D+3H 3G)—cos0~,

and the axial-vector current is of the form

A-SF+10.
In the other case the 10 is absent, i.e.,

and the current is

(16b)

(17a)

(+6)A(A —+ p) = (—3F D+64—2H) sin0~,

(+6)A(Z——+ A) = (3F D+6&—2H) sin0~,

A(g'~ Z+)=A(n-+ p) tan0g,

A(Z-~ n) =A(=--~ =-') tan0&,

(10b)

FA& /Alt
(13)&v)-., &v),— . v . , &v)-. — -.

irrespective of the relationship between the Cabibbo
angles Oy and 8~. As a measure of these angles we find
that

and amplitudes for other decay modes can be obtained
either from Eq. (8) or from Eq. (10) and the hU= s
rule.

The first point to notice about Eq. (10) is that the
equality

A(=-'~ Z+)/A(Z-~ n)
= —A(n p)/A ( -— ') (11)

holds for all values of 8~. If we assume the conserved-
vector-current hypothesi. s, namely,

U= (Frs cos0v+Fr' sin0r ), (12)

then a corresponding equality will hold for the vector
amplitudes. It then follows that the A/V ratios satisfy

A Ss+ Sn+ 27. (17b)

If the axial-vector current is given by Eq. (16), then
we find that

(A tan0g fA)

(U x- „ tan0vEV)„~

(A/U)x- „———0.05 s ss+'ss (19)

and indicates that this equality is not likely to be ful-
filled. Furthermore, the branching ratio for Z ~n
predicted on the basis of Eq. (16) is an order of magni-
tude larger than the observed one."Therefore, we can
discard the possibility of an axial-vector current con-
sisting of the Ss and 10 representations.

Assuming that the axial-vector current satisfies
Eq. (17), we find that

tan0v (A) fA) A(Z ~P)
+(v'l)

tan0z 4 V) x „kV)„„cos0v

From Eqs. (7) and (15) and the approximation

(20)

Since the angles 8& and 8& are expected to be roughly
equal to one another, it follows that the (A/V) ratio
for Z ~ n should be approximately equal to that for
neutron P decay. A recent measurement, however,
yields"

fAq tan0& (Aq

k V) x- „ tan0vk V)„-.— -.o

(14)
we then obtain

Og=Hy=0. 26, (21)

a=K=0, G&O (16a)

"N. Barash, T. B. Day, R. G. Glasser, B. Kehoe, R. Knop, B.
Sechi-Zorn, and G. A. Snow, Phys. Rev. Letters 19, 181 (1967).

Equations (13) and (14) do not depend upon the
choice of coupling constants F, D, G, and H in Eq. (8),
and hence they are independent of the admixtures of
8, 10, and 27 in the axial-vector current. The only as-
sumptions upon which they do depend are the

AU�=r

—,
'

ulee and the Cabibbo-type hypothesis of Eqs. (9) and
(12).In order to make further predictions, we must now
introduce additional assumptions.

As a guide for these assumptions we use the experi-
mental result that"

IA(~+~~)
I
= IA(~ ~~)

I
=(V'-,')(0.76~0.07). (15)

From Eq. (10a) we find two simple choices of coupling
constants that give rise to Eq. (15). In one case the Sn
and 27 components are absent, i.e.,

)A) =0.7 or 1.7.
kv), , (22)

"L. K. Gershwin, M. Alston-Garnjost, R. O. Bangerter, A.
Barbaro-Galtieri, F. T. Solmitz, and R. D. Tripp, Phys. Rev.
Letters 20, 1270 (1968).

"N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Soding, C. G. Wohl, and M. Roos, Lawrence
Radiation Laboratory Report No. UCRL-8030, Pt. 1, 1968
(revised) (unpublished)."J.Barlow et al. , Phys. Letters 18, 64 (1965). The sign con-
vention for iA/Ul in this paper is the opposite of ours.

The two values in Eq. (22) correspond to the un-

certainty in the absolute sign of A(Z —& A); the first
ones seems closer to the experimental value" than the
second and it also agrees with the prediction of the
usual Cabibbo theory. ' In contrast to the case of Eq.
(16), the A/V ratio for Z —+ n is now independent
of that for neutron P decay; it still satisfies Eq. (14),
and is related to the (A/V) ratio for E —i A. by means
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of the equation

(A) A) tang~
-(v -.) . A(~-- ~). (23)

(Vl -.p
— Vf s- „sin8y

It should be noted that Eq. (17) includes as a special
case the absence of a 27 component from the axial-
vector current [i.e., H=O in Eqs. (10) and (17)].
Equations (20), (22), and (23) are therefore valid for
both a pure octet current and for an 8+ 27 one. In the
pure octet case, we obtain an additional relation

«n4 pAq tan8g
+(v'6) A(&-~ &) (24)

4V)q- „ tan8v(V~„~ sin8v

which, on the basis of Eqs. (7), (15), and (21) together
with a negative sign for A(Z —+ h), predicts that'

(A) = —0.3.
EV&,— . (25)

8=0.4, a=0.7, H =0.04. (26)

These numbers are subject to a fair amount of un-

certainty because of the rather large errors in the data.
Although H is much smaller than F and D in Eq. (26),
it should be borne in mind that the normalization of the
27 currents in Eq. (8) is roughly four times larger than
that of the F-type current (see Appendix). When this
is taken into account, the admixture of 27 could be
about 20% of the total current.

To summarize, we see that if the axial-vector current
obeys the AU= ~ rule but does not transform as an
octet, the most attractive possibility is given by Eq.
(17). The most important test of this possibility is an
accurate measurement of A/V ratio for Z ~ e. The
corresponding ratios for A~ p and —& A provide
tests of the AU= —,

' assumption, and accurate data on—
& Z leptonic decay would help test the consistency

of the scheme.

The measured value of this parameter [see Eq. (19)]is
not accurate enough for us to conclude that Eq. (24)
is satisfied.

A rough analysis of the branching ratios for semi-
leptonic hyperon decay" suggests that when Eq. (17)
holds a possible set of coupling constants might be

In Eq. (28), A' and A' represent AS=0 and AS=1
currents, respectively; A ' is a current with 8S= —AQ;
and A' is one with AS=2. The last two currents both
obey the isospin selection rule AT=-,', and in A' and A',
the 10* components obey AT=1 and AT= —'„respec-
tively; for the 27 components of A' and A', however, the
selection rules are AT& 2 and AT& —,', respectively.

It follows from Eqs. (28c) and (28d) that the AS=2
current is suppressed relative to the &S=—DQ current

by a factor tang. As a result, the relations

~A(=-- ~)
~

= )A(=-' Z-)
~

tan8,

)A(=' —
& p) I

= IA(&+~~)l tan8
(29)

and the corresponding current is obtained by applying
the same rotation to the T= T3= 1, V= 0 components
of the 8, 10, 10*, and 27 representations. " Since the
I'7 axis of SU(3) coincides with the second axis of
U-spin space, the effects of the rotation upon these
components are governed by their U-spin properties.

In the 8 and 10 representations, the T= T3 1, V=——0
component is the U3= —

~ member of a doublet; in
the 10*, it belongs to a quartet; and in the 27 it is part
doublet and part quartet. Under the rotation of Eq.
(27), doublet terms are transformed into the admixture
of U3=&-,' components given in the right-hand side
of Eq. (4), and quartet terms become an admixture of
all four U3 substates with a more complicated depend-
ence on the angle 8. Consequently the 8 and 10 repre-
sentations play exactly the same roles in the conserved
weak hypercharge model as they do in the AU= —',

model (see Sec. 2). The 10"' and 27, however, do not:
they are the only representations giving rise to
AS= —AQ and AS=2 decays, and, because of the
presence of AU=~3 components, their contributions to
the usual AS=0 and 1 decays no longer satisfy the
hU=-,' rule.

The 8 and 10 components of the current are given in
Eqs. (8) and (9), and the 10* and 27 ones are

A'= cos8(E(1—3 sin'8) [10"]~q"+B"((1—2 sin'8)

&&[2/],P'+suP8[27]gg")} (28a)

A'= sin8(E(3 sin'8 —2) [10*]q"+H"((2 sin'8 —1)
&&[27]»"+cos'8[27]&3")}, (28b)

A '= —cos'8 sin8(E[10"']pa"+B"[27]q3"} (28c)

A'= —sin'8 cos8(E[10*]g233+H"[27]g233}. (28d)

3. CONSERVED WEAK HYPERCHARGE

According to the conserved "weak-hyper charge"
hypothesis, ' ' the axial-vector current points along a
definite direction in unitary symmetry space, and it
commutes with a particular generator of SU(3). This
generator is obtained by rotating the usual hypercharge
operator through an angle 20 about the F7 axis,

(27)

are valid for all values of the coupling constants E and
H"."This suppression is counterbalanced by the fact
that the rate for an electronic decay mode is roughly
proportional to the fifth power of the mass di6erence be-
tween parent and daughter baryon. "Taking this into

"The T=2 member of the 27 could also be used to generate
part of the current, but we regard it as an additiona. complication
to be included only if absolutely necessary.

"See, for example, L. Wolfenstein, Phys. Rev. 135, 31436
(1964).
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A 8v+ 10+10*, (31)

and the other is to take a current with no 10 and 10*
components, i.e.,

A-8v+ 8L+ 27. (32)

, The interesting features of Eqs. (31) and (32) is that in
both cases, the AS= —AQ and AS=2 currents belong
to a single representation Lsee Eq. (28)$.

If we assume the CVC hypothesis for the vector
current )see Eq. (12)j, then the axial-vector current
of Eq. (31) provides a reasonable fit to the data on
AS= 0 and AS= 1 decays" for the following choice of
coupling constants in Eqs. (8) plus (28):

D=H"=0, F=—0.3, G= —0.7, E=—0.21. (33)

The corresponding fit for the current of Eq. (32) is

G= X=0, F=0.4, D=0.8, H"=0.01. (34)

In both cases we have taken ay=8~=0.26. It is ap-
parent from the values of G, X, and H" in Eqs. (33)
and (34) that the admixture of non-octet current 1n

Eq. (31) is substantially greater than the corresponding
admixture for Eq. (32). Consequently, we expect that
Eq. (31) will predict a larger rate for DS= —AQ transi-
tions than will Eq. (32).

To show that this is indeed the case, we consider the
ratio

E= I'(Z+ —+ ne+v)/I'(Z —~ ne v ). —-(35)

From Eq. (33) we predict that 2=2, and from Eq. (34)
we obtain 8=0.03. Since the experimental upper limit
on R is 0.05," we conclude that Eq. (31) must be
rejected and that Eq. (32) gives the form of the axial-
vector current in the conserved-hypercharge model.

Because of the normalization of the various tensors
(see the Appendix), the value of H" in Eq. (34) cor-
responds to a 5% admixture of 27 in the axial-vector
current. It is also interesting to note that as far as
AS=0 and 1 decays are concerned, there is very little
difference between this case and the AU=-,' model of
Eqs. (7) and (26).

account, and using tani7=xa, we find from Eq. (29) that

I'( —
pe

—
v )=151'(™0 Z e+ ),

(30)I'( ' —+ pe
—

v )=0.51'(Z+ —+ zze+v).

For muonic decay modes the corresponding ratios are
slightly different.

Turning to AS= 0 and 1 decays, we find that, because
of the complicated 8 dependence in the 10* and 27
currents LEqs. (28a) and (28b)j, there are no simple
or useful relations amongst decay amplitudes. To
simplify matters, we make use of the approximate
equality between the absolute values of the amplitudes
for Z+~ A and Z ~A Lsee Eq. (15)].It turns out that
there are two ways in which this can be achieved: One

way is to omit the 8& and 27 terms of Eqs. (8) and (28)
and assume an axial-vector current of the form

4. aT=1 AND -' RULES

F/D =F'/D'. (37)

Except for this possibility, we regard all the coupling
constants of Eq. (36) as independent parameters.

"L.M. Nath and S. D. Dhar, Nnovo Cimento 49, 459 (1967)."S. Weinberg, Phys. Rev. 112, 1575 (1958).

As a third model for non-octet currents, we consider
the possibility that the usual isospin rules for AS=0
and AS= 1 decays remain valid even though the octet
rule does not. Currents corresponding to AS= —AQ
and AS=2 are not expected to appear in this model,
but if necessary they could be introduced on a purely
phenomenological basis.

One difference between this model and the preceding
ones is that there exists no SU(3) transformation which,
in the presence of non-octet components, will either
rotate the AT= —,' current into, or generate it out of, the
AT=1 current. In the octet, for example, the AT=-,'
component can be obtained from the AT = 1 component
by a rotation of 180 about the second axis of U-spin
space; however, when the same rotation is applied to
the AT= 1 member of the 27 it yields an admixture of
AT=~ and ~. This negative feature is caused by the
varying U-spin properties of different representations,
and it has as a practical consequence the lack of any
natural relationship between all the coupling constants
for AS= 0 and all those for AS= 1 decays.

To make the point in another way, we note that the
equality between the two sets of coupling constants in
the AU= —,'model comes about because we can make the
AS=1 current a particular U-spin transform of the
AS=0 current. A similar statement can be made for
the conserved-weak-hypercharge model, but it cannot
be made for the one we are considering now. This is
not to say that we cannot postulate some relationship
between both sets of coupling constants, '~ but it does
imply that any such relationship will not have much
meaning from the viewpoint of unitary symmetry.

Besides the usual isospin selection rules, we shall also
assume that the axial-vector current is first-class. "Its
general form is then given by

A'= F(Fts)+ D(Dts)
+F(L1oj»"—L 0*3»")+HI j»" (3 a)

A'= F'(Ft')+D'(Dt')
+G'(E10j "—510*3 ")+H'E27j " (36b)

The 10 component of A' is actually zero, but we have
put it down in order to emphasize the first-class prop-
erty. As pointed out above, there is no SU(3) argu-
ment which implies a simple relation between every
coupling constant in Eq. (36a) and the corresponding
one in Eq. (36b). If, however, we were to take the octet
components of A and 2' as members of the same octet,
then their F/D ratios would be equal:
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Whatever the choice of coupling constants may be,
the AT= j rule for strangeness-conserving decays and
the AT= —, rule for strangeness-violating ones are
sufficient to give the following relations among decay
amplitudes:

A (Z ~ Z') =A (Z —+ Z+),

A(Z ~n)=42A(Z' —& p),
A(=-'~ Z+) =v2A(=--~ Zs).

(38a)

(38b)

(38c)

"For comparison with experimental data, these sum rules
are more conveniently expressed as A(A. —+ p)+23(=——&p)
= (3/+6)A (Z ~ n), (+6)A (h ~ P)+A (Z —+ m) = 2A ( 0—+ g+).

20The sum rule (40b) has been obtained by several authors
under various assumptions. M. Ademollo and R. Gatto LPhys.
Rev. Letters 13, 264 (1964)7 derived it for second-class axial-
vector octet current under 6rst-order SU(3)-symmetry breaking
by &8. K. Kawarabayashi and W. W. Wada LPhys. Rev. 13?,
B1002 (1965)g and V. I. Zakharov and I.Yu. Kobzarev (Yadern.
Fiz. 1, 1050 (1965) /English transl. : Soviet J. Nucl. Phys. 1, 749
(1965))) derived the same sum rule for conserved vector current
under second-order SU(3)-symmetry breaking by X8, For a dis-
cussion on this point see E. C. G. Sudarshan and N. Mukunda,
Phys. Rev. 158, 1424 (1967).

In addition, the first-class requirement leads to one
more relation, namely, "

A(Z-~ ~)= —A(Z+ ~~). (38d)

The first three parts of Eq. (38) have yet to be verified
experimentally, but the fourth is consistent with present
data. " Further predictions depend upon the SU(3)
properties of the currents.

In order to study these additional predictions, we
consider the sum rules that hold for a pure octet cur-
rent Li.e., G=G'=iV=H'=0 in Eq. (36)j. There are
two for strangeness-conserving decays, namely,

A(n —+ p)+A( -— ') =v2A(Z — Z'), (39a)

A(n~ p) —A(g—~ g')= —(+6)A(Z ~h.), (39b)

and two for strangeness-violating ones":

A(h. —+ p) —A( —&h.)
=(&-;)tA(=- Z+) —A(Z- n)j, (40.)

A(A —+ p)+A( —~ A)

=(&-:)LA(=-'-Z )+A(Z-- )j. (40b)

If we now suppose that the axial-vector current is an
admixture of the octet and one other representation,
then there will be only one sum rule for each type of
decay. For a current of the type 8+27 Li.e., G=G'=0
in Eq. (36)j, the surviving sum rules are Eqs. (39a)
and (40a); aiid for a current of the type 8+ (10—10*)
$i.e., II=H'=0 in Eq. (36)$, they are Eqs. (39b) and
(40b).'s When all representations are present in the
current, there are no valid sum rules apart from Eq. (38).

If the CVC hypothesis is correct and the vector cur-
rent is pure octet, then the vector amplitudes will also
satisfy Eqs. (39) and (40). It follows that whenever one
of these sum rules is predicted to hold for axial-vector

amplitudes, it should also hold for the corresponding
total decay amplitudes.

We have already argued that, with the possible ex-
ception of the F/D ratios, the coupling constants in
Eq. (36) must be treated as independent parameters in
the present model. This raises a dificult problem when
we attempt to determine these parameters empirically.
In strangeness-conserving decay, only two pieces of
data, "namely, A(n +p—) and A(Z —& A), are available
to 6t four coupling constants. In strangeness-violating
decay, three amplitudes, A(A~ p), A(Z ~n), and
A( —& A), have been measured, and we can, in
principle, fit a current consisting of the octet plus one
other representation. There are, however, too many
ambiguities in the signs and magnitudes of these ampli-
tudes for us to obtain a reliable fit at present. While
it is likely that the admixture of non-octet components
is about the same as in the preceding models (i.e.,
about 10%), we cannot be certain of this without more
accurate information.

In conclusion, we would like to draw attention to
some interesting tests for the reducibility of the axial-
vector current. VVolfenstein"" ha, s shown that if the
hT= —,' rule holds, the sum rule

2L[A(h. -+ p) ~' —~A(=--~ A) ~'g

= IA(=-' Z") I' —IA(Z-- n) I' (41)

is satisfied when the current is either (a) pure 8, or (b)
pure (10—10'"), or (c) pure 27. It can also be shown that
when AT= j., the sum rule

p) I' —
I
A(=. ="') I'

= —2V3A (Z —+ A) A (Z —+ Z') (42)

is satisfied in each of these three cases. Therefore, if the
axial-vector current is an admixture of two or more
representations, neither Eq. (41) nor Eq. (42) will be
satisfied. If it should turn out that one of the two sum

rules is satisfied and the other is not, then we will be
forced to conclude that the 65=0 and 65= 1 currents
have different SU(3) structures —a possibility not
allowed in either of the U-spin models discussed in
Secs. 2 and 3.

S. SUMMARY AND DISCUSSION

Our general assumption in this paper has been that
the octet rule breaks down in the axial-vector current
but not in the vector one. Consequently, we expect that
pure vector processes, e.g. , E~ ~ ~em, will obey the
usual isospin and strangeness selection rules" (i.e.,
AT=z, DS=AQ=1; and ET=1, AS=0), and that
axial-vector processes, e.g., El,' —+ ~zev, will violate at
lea.st one of them. If, in addition, baryon decays with

2' See D. Horn, Nuovo Cimento 33, 64 (1964).
~' For the experimental situation on AS= —AQ in E» decays

see B. R. Webber, F. T. Solnitz, F; S. Crawford, Jr. , and M.
Alston-Garnjost, Phys. Rev. Letters 21, 498 (1968); 21, 715(E)
(1968).
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QS= —AQ or 6'S=2 occur (e.g. , Z+~ ne+v or
ne v ), they will be pure axial-vector transitions, and
the final-state electron will exhibit no asymmetry
relative to the spin of the parent baryon.

The occurrence of AS= —AQ and AS= 2 decays may
also help us choose between the models discussed above.
It would appear from the existing AS=0 and AS= hQ
data that in both the AU= ~r model (Sec. 2) and in the
conserved-weak-hypercharge one (Sec. 3) the axial-
vector current is roughly 90% octet together with a
10% admixture of 27. The principal difference between
the models is that the AU=-,' rule strictly forbids
DS= —DQ and AS=2 currents, whereas the conserved-
weak hypercharge introduces them in a specific way.
Therefore, the absence of both types of decay would
lend support to the AU=-,'rule, and their occurrence
together would favor the conserved weak hypercharge.

The third model we have considered (Sec. 4) re-
quires AS=0 and ES=AQ decays to obey the AT=1
and AT= —,

' rules, respectively, and it differs from the
other models in an important way. In both the AU=-,'
and conserved-weak-hypercharge cases, there are simple
relationships between currents obeying different strange-
ness selection rules, but in the third model these currents
are independent of one another. For this reason we are
not able to make a satisfactory estimate of the admix-
tures of non-octet components in the currents.

As far as AS= —AQ and AS= 2 decays are concerned,
the third model is rather ambiguous. If the non-octet
components are perturbations on a "bare" octet cur-
rent brought about by SU(3)-breaking strong inter-
actions, then only d,S=0 and AS=DQ=1 decays are
allowed. If, on the other hand, the non-octet com-
ponents are intrinsic parts of the current, then AS
= —hQ and AS= 2 currents could come into play. From
a purely phenomenological point of view the latter
possibility means that if the need arises, we can in-
troduce AS= —AQ and AS=2 currents on an ad hoc

basis. In such circumstances, however, it would be
dificult to understand why the hT=-,' and 1 rules
should remain valid for the common semileptonic
decays.

With presently existing data it is not feasible to
carry the analysis beyond this point. It is therefore of
considerable interest not only to obtain more accurate
information on processes that have already been
studied, but also to learn the empirical properties of
hitherto unexamined ™decay modes. Another reason
for caution is that in the matrix element of Eq. (6) we
have neglected both the q' dependence of the form factor
V and A, and also various induced terms (e.g. , the
induced pseudoscalar interaction). Since these effects
are expected to be of order 10%, and since the present
analysis indicates that non-octet terms may form about
10% of the current, a careful resolution between in-
duced effects and non-octet components would require
much more data than is available at present time.

We conclude this discussion by observing that the

presence of non-octet components in the axial-vector
current would raise general questions about the PCAC
hypothesis, the algebra of currents, and the current
&(current interaction for nonleptonic decay. In order
for the PCAC hypothesis' not to break down, one of
two conditions would have to be fulfilled: either the
four-divergence of the non-octet components must
vanish; or there must exist no low-lying multiplets of
pseudoscalar mesons other than the (n.,E,rl) octet. The
latter condition is consistent with the known meson
spectrum" and it ensures that at low-momentum
transfer, the pion pole is the only one available to
dominate the matrix element (n~ B„A„'~P).

The present version of current algebra" would not
remain valid because, in the presence of non-octet
components, the axial-vector "charges" could no
longer be identified as generators of chiral SU(3)
&&SU(3). Consequently, the commutation rule"

LA', (A') tj = 2V &'& (43)

would not hold, and the basis for the Adler-Weisberger
sum rule' and other important results may be lost. It
might be possible, however, to overcome this dif-
ficulty by embedding the vector and axial-vector charges
in a larger chiral algebra )for example, R(8) &&R(8)1 in
such a way that Eq. (43) is replaced by

LA', (A') tj = 2 V&'&+ V'. (44)

If the matrix element of V' between nucleon states were
zero, then the Adler-Weisberger sum rule could be
derived from Eq. (44) in much the same way as it was
obtained from Eq. (43). Whether other consequences of
Eq. (43) could be retained would depend upon the other
matrix elements of V'.

As far as nonleptonic decay is concerned, the existence
of non-octet axial-vector terms in a current)(current
interaction would affect the properties of both parity-
conserving and parity-violating amplitudes. The inter-
action would no longer possess the simple chiral SU(3)
&(SU(3) properties which hold in the usual case, and
consequently the attractive results derived from PCAC
and current algebra would no longer hold. '5 It may,
however, be possible to retain some of the results that
depend only upon the unitary symmetry properties of
the interaction, for example the forbiddenness of
E~ 2m-."
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APPENDIX

The tensors used in the body of the paper are dined
in terms of the baryon and antibaryon octets as follows:

F„~=B&~B„"—8„"8&~,

D„~=BI~B."+B„"B&~ ', o„~(B——B),

I 10)„, -=3v2(1+P„,)(1—P:)
)& LB:B,.+ ,'fI„~F& -j, (A1)

I 1O*j„, -=3V~(1—P„,)(1+P -)I B„B,-—-', S„P,-),
[271„f,~ =5&2(1+P„z)(1+Ps )

XL&."Bf s~."D—f I'.~.—"~f (B B)j

where I'„p and I'I" are permutation operators. The
normalization of the various tensor components used in
Eqs. (8), (28), and (36) are

Dll = &(1o
103ll =

III 1o*jll =2v3,

IIL»&ll = 2&»
(A2)

2' S. P. Rosen, Phys. Rev. 137, B431 (1965).

The identification between components of B„I" and
hyperon states is given in Ref. 26.
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We study the Ward identities for three-point functions of vector, axial-vector, scalar, and pseudoscalar
densities constructed in a free-quark model. Divergences in the integral representations for the two- and
three-point functions have the ef'feet that not all of the formal Ward identities are satisfied in the model.
After making full use of the ambiguities inherent in the definition of linearly divergent objects, as well as
adding known polynomials to certain of the three-point functions, we find that only the Ward identities for
three axial-vector densities and for one axial-vector and two vector densities remain unsatisfied. Arguments
are presented that for n-point functions with n&3, the Ward identities are satisfied.

I. INTRODUCTION
" 'T has been argued on the basis of the partial con-
& - servation of axial-vector current (PCAC), that the
invariant coupling constant for the two-photon decay
of the neutral pion vanishes. ' ' Recently it has been
recognized' ' that this argument must be modified
whenever the axial-vector current, whose divergence is
proportional to the pion field, contains bilinear products
of fermion fields. ' This anomalous behavior can be
traced to the presence of a three-current triangle graph

* Research partially supported by Atomic Energy Commission
Contract No. AT (30-1)2098.

f Alfred P. Sloan Foundation Fellow.
f Junior Fellow, Society of Fellows.' J. S. Bell and R. Jackiw, Xuovo Cimento 60, 47 (1969).' D. G. Sutherland, Nucl. Phys. B2, 433 (1967).' These anomalies were first discussed by J. Schwinger, Phys.

Rev. 82, 664 (1951). Contemporary examination of this problem
is found in Ref. (1) and S. Adler, Phys. Rev. 177, 2426 (1969);
C. R. Hagen, 177, 2622 (1969); R. Jackiw and K. Johnson, ibid.
(to be published); K. G. Wilson, ibid. 179, 1499 (1969).

Similar anomalies will arise in the algebra of fields [T.D. Lee,
S. Weinberg, and B.Znmino, Phys. Rev. Letters 18, 1029 (1967lj
because the divergence of the field current variable is proportional
to the Noether current, which is bilinear in the fermion fields.

which is not well defined and which modifies the
Heisenberg equation for the axial-vector current.

In the interaction picture, we may use the triangle
graph to compute the Ward identity satisfied by the
three-point function it represents. The anomaly now is
apparent in the fact that one finds that the "naive"
Ward identity expected from the commutation relations
satisfied by the currents, together with I'CAC, does not
hold. The reason for this can be traced to an ambiguity
in the two-point functions appearing in the Ward
identity.

The breakdown of the Ward identities for the neutral-
axial-vector current two-photon three-point function
throws doubt on the validity of hard-pion calculations'

~ The bibliography of hard-pion calculations is quite extensive
by now. For work on three-point functions, see H. J. Schnitzer and
S. Weinberg, Phys. Rev. 164, 1828 (1967); I. S. Gerstein, H. J.
Schnitzer and S. Weinberg, ibid. 175, 1873 (1968); L S. Gerstein
and H. J. Schnitzer, ibid. 175, 1876 (1968); for an equivalent
phenomenological Lagrangian approach, see J. Wess and B.
Zumino, ibid. 163, 1727 (1967); B. W. Lee and H. T. Xieh, ibid.
166, 1507 (1968); R. Arnowitt, M. Friedman, and P. Nath, ibid;
174, 1999 (1968). This list is not meant to be exhaustive and we
apologize to authors whose work we did not mention.


