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Using the multiperipheral integral equation at zero momentum transfer, we construct a model in which the
dynamical interrelation of Regge poles and cuts can be studied. Chief attention is paid to the region near
J= 1 in an elastic forward amplitude. A consistent solution is found in which the Pomeranchuk pole appears
at J'=1—a, with a&0.01, while the Amati-Fubini-Stanghelhni (AFS) branch point appears at 1=1—2a.
To a good approximation, the pole residue corresponds to the inelastic part of the total cross section, while
the integral over the AFS cut corresponds to the elastic cross section.

I. INTRODUCTION

t
'HE relationship of Regge cuts and poles remains

uncertain, with regard to both relative strength
and relative location. Recently, it was realized that the
multiperipheral integral equation may be able to shed
light on these matters, ' and we here report a preliminary
investigation of the Regge singularities in a forward
amplitude, employing the model of Chew and Pignotti'
(hereafter designated CP) to suggest a simplified kernel
and inhomogeneous term for the integral equation. The
chief emphasis here will be on the region near J=1 in
an elastic amplitude, but the model can be extended to
lower J regions and to inelastic amplitudes.

II. FACTORIZABLE MODEL

The multiperipheral equation derived in Ref. 3,
after projection onto angular momentum J,4 takes the
form

B,&'(t',J)=B„p&'(t',J)
0

+Q dt B,&(t,J)G»'(t, t',J), (2.1)

with the absorptive part for the forward elastic process
ah~ ab given by

(2.2)

transfer associated with that pole. ' The kernel
G»'(t, t',J) includes the internal coupling between
adjacent poles y and y', together with the Regge
"propagator" associated with y'. For our model, we
assume the factored form

where

J,(t) =2~, (t) —1, (2.4)

ov(t) being the "input" Regge trajectory associated
with y. We are keeping in (2.3) only that J dependence
associated with the leading pole resulting from the
projection of formula (4.5) of Ref. 3. This projection
actually contains additional J singularities and a more
complicated t' dependence, ' but the most essential
characteristics are represented by (2.3) if g&(t) is
taken to be a function that does not vanish at t =0 and
that decreases rapidly (e.g. , exponentially) as t —+ —~.
The corresponding form to be assumed for the inhomo-
geneous term in (2.1) is

If (2.5) is substituted into (2.2) one gets the well-
known Amati-Fubini-Stanghellini (AFS) cut as a
"Born approximation" to the absorptive part. Evi-
dently the solution to (2.1) may be written as

B"'(t',J) =b."'(J){g'(t')/LJ —J, (t')3 (2.6)
with

The superscript y (or y') labels a particular "input"
Regge pole, while t (or t') labels the squared momentum

b &'(J) =X.&'+P b.&(J)p&(J)h»', (2.7)
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p'(j) = (g'(t) j'
dtJ—J (t)

(2.8)

(2.10) to be that of the "Born approximation. "

A.b(J) ——P X.&XP.
J—«oo J (2.17)

In order to construct the absorptive part, we also
need the "end-vertex" function Gb~'(t'), which for CorresPonding to (2.17) is the sum rule

consistency with the above should be taken to be

Gb&'(t') =XP'g&'(t') .

The final result is then

A. (j)=E p'(J)f. '(J)~ ',

(2.9)

(2.10)

ImA, b(J)dJ

+sum of residues of poles on physical sheet:

(2.18)

with b,&'(J) the solution of the linear algebraic equation
(2.7).

Since the functions p&(j) have no poles, the poles of
A b(J) evidently coincide with those of b &(J) and thus
with zeros of the dete;.minant ~8» —p&(j)V&'~. Note
that these pole locations are independent of the
"external" indices a,b. Assuming linear input trajec-
tories, the function p&(j) may be rewritten as

where

p'(j) =—
Jp (0) Imp&(J')

dJ'
J' —J (2.11)

J—J., (0)
Imp&(j) = ——g&

2Ap 20!p
(2.12)

p& (J) —1/J,
J«oc

(2.13)

or in other words, such that

J, (o)

O'JIni &p( J)=1. (2.14)

Note that a, rapid falloff of the functions g&(t) as t —+

produces a corresponding rapid decrease of
Imp&(j) as J—+ —~.

A second important property of the function p&(j) is
the infinite logarithmic branch point at J=J~(0)

p&(j) ~ (1/t1~) inta~/(J —J~(0)], (2.15)J—«J& (0)

where

exhibiting the branch point at J=J~ (0) and the
associated cut along the negative real axis running to
J= —~. For convenience we shall choose the normal-
ization of the functions g~(t) to be such that

b.&'(J) 'r, &'/(J n;), —
J—«&i

(2.19)

then the dependence of 'r, &' on the two indices a and
p' will factorize. It follows from (2.10) that in the
corresponding residue of A b(J) the dependence on the
two indices a and b will factorize.

III. SINGLE-INPUT POLE

Kith a single-input pole, the solution of Eq. (2.7) is

b.(j)={&./LI —~p(j)3},

the superscript y becoming superfluous. The corre-
sponding absorptive part is

A«b(j) ={l.~bp( j)/L1 —l p(j)]) . (3.2)

Remembering (2.13) and (2.15), if P.)0, there rmist be
a, pole of A, b(J) on the real J axis to the right of
J~(0) =J;„; this can be shown to be the only pole on
the physical sheet.

Two limiting situations are especially interesting:
(i.) X so large that the pole falls into the region

J—J;„))6,where p(J) can be approximated by

p(j)=1/(j —j -), (3.3)

where, evidently, J;„&J;„.The absorptive part in this
region then becomes

A. b (J)=X.Xb/(J —j;„—X), (3.4)

This rule will be helpful in assessing the relative
importance of poles and cuts.

A Anal general remark concerns the factorizability
of pole residues. From (2.7) we see that if a pole
occurs at J=n;, such that

6, '—= —(1/vr) Imp&I J,(0)]
=(2 .') 'Lg, (0)7'.

the pole occurring at
(2.16)

n.„,=j;„+X, (3.5)

The general structure of .'1„b(J) then is tha1 it is a
real analytic function of J, with branch points at the
various J~(0) (associated cuts running to the lett),
poles at zeros of the aforementioned determinant, and
an asymptotic behavior easily inferred from (2.7) and

with residue A. P ~. This residue exhausts the sum rule
(2.16), leaving zero average weight for the cut dis-
continuity. The cut in the total absorptive part is,
thus, much weaker than that in the "Born approxima-
tion. "
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(ii.) X so small that the pole falls into the region
J—J; &(6, where p(J) can be approximated by (2.15).
The pole residue here is approximately

iX„Xb(d,/X') (a —J;„), (3 6)

which approaches zero as o.~ J;„.In this limit, then
the cut carries the full weight and the pole is negligible.

If X is negative (as is possible for inelastic amplitudes)
there are no poles on the physical sheet, but if —X is
su%ciently large there will appear a complex pole on the
next sheet near the cut. In particular, if the pole occurs
in the region where J;„—ReJ))A, then in this region
(on the upper side of the cut)

p(J)=(J J-) '—p~(J),—

where q(J) as given by (2.12) is very small compared
with the first term. The condition 1—Xp(n) =0 requires
that Imp(n) =0, or

pole is small. The real part of the pole position is given
by

Reo,.„,=J;„+7 (3 8)

and the residue is approximately X P ~, exhausting the
sum rule. The cut is then negligible except in the
vicinity of the pole, where the discontinuity can be
approximated by a 8 function with integrated strength

IV. CHEW-PIGNOTTI TWO-INPUT-POLE MODEL

A more realistic model for forward elastic amplitudes,
proposed by CP,' contains two input trajectories, op'" to
represent the Pomeranchuk and e~'" to represent all
lower trajectories. The internal coupling matrix is
positive definite (since each term in the iterated
solution of the integral equation is a separate partial
cross section) and has the form

1m&= —Ren(~) I
J;„—~I'

= —
g (Ren) (J;„—Reo,)',

(3.7) (4.1)

so that the negative imaginary displacement of the leading to

y M7 MpM( J)+y Py PpP(J)L1 g zpb (J)j+ (g gb +g ' g )gp p (J)pP(J)
A.b(J) =—

1 g, 'p (J)—gp'p'(J)p —(J)
(4.2)

Notice that at; a zero of the denominator of (4.2) the
numerator takes the factored form

p..~+X.~gi'p~(n)]I Xbbr+Xbpgr'p~(n)]p~(n) . (4.3)

Let us suppose that 2air'"(0) —1 lies sufficiently
below J= 1 so that near J= 1

p"'(J)=(J—J~) '

Multiplying numerator and denominator by J—J~
then brings (4.2) to the form

where
~. (J)=» (J)/D(J) (4 3')

» b(J) =X ' Xb" +p Xb (J—np)

+(X ~X P+X "P ")g 'jp~(J) (44)

D(J)=J np gr'pp(J), — —

pip =Jail +g M

(4 S)

(4.6)

Let us assume that the highest-lying zero of D(J)
occurs at a value J=n, where 1—o((.AP. This point
must be reexamined later for consistency, but if
accepted it allows us to write

where p=gp/hp. We may also note that D'(o)=1
+p/(1 n). It follow—s that np(n(1.

Now it was shown by CP that gp'(&1 (they estimated
gp'=0. 02 on the basis of measured diffractive dissocia-
tion cross sections as well as Deck-model calculations),
while an estimate for Ap can be obtained from a
typical momentum transfer width At together with the
Pomeranchuk slope o.p'.

Ap = 2 (At)ni. '.

Thus, if the Pomeranchuk slope is anywhere near a
"normal" value, the value of e will be very small. For
example, if Op =1 GeV At=0. 2 GeV and gp =0.02&

then a=10 '. The value of n then has to be extremely
close to one in order for the logarithm in (4.8) to play
a signi6cant role.

Two characteristically different situations may be
envisaged. The dynamically more "natural" situation
is when p«1 n. In that case, n=n—p and D'(n) =1.
The pole residue is then

gM yF'

p'(J) = (1/~~)»L~p/(J J~)j—(4 7)

for J nearn Now Ji =.2ur'"(0) —1, so if we require that
n~'"(0) =a, we have the determining equation for n,

0=D(n) =n —np —p 1nhp/(1 —n), (4.8)
to be compared with the sum-rule value P, ~~X b

"~

+X, Xb The missing. part X ~Xb" evidently resides in
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n «=4(1)+4(1—2~~)

1—
8

(4.11)

We recall the Cabibbo et al.' assignment of 1—o.,f f 0.07,
which would correspond to 6I =0.6, a reasonable value.
Of course as the energy increases the ratio of elastic
to inelastic cross section decreases and the effective
pole position approaches that of the true pole.

A different possibility might seem to be 1—o((t. In
that case, the residue of the pole is much less than the
sum-rule value, so the cut carries most of the load.
Close examination, moreover, reveals the existence of a
complex pole near Reo. =oo which carries a residue
=) ~P b~. Hence this pole, which was not included as
one of our input poles, dominates over the one at o.=1,
and we are in trouble with self-consistency.

One might try to avoid this inconsistency by suppos-
ing o.o to lie so far below one as to have no connection
with the Pomeranchuk phenomenon; instead the pole
near o.o could be identified with the input meson pole.
The difhculty with such an approach lies in the fact
that the pole near o.o has residue ='A ~X~~~, leaving

for the integrated weight of the singularities
near J =1 (recall the sum rule 2.6). Now X,PXb~ corre-
sponds to the elastic part of the total cross section (see
Fig. 1), therefore, the situation we are considering is an
unrealistic one in that the total cross section becomes
almost entirely elastic at high energies.

This last result can be understood much more
directly. To see it in its simplest form let us return
to the single-trajectory model of a self-consistent weakly
coupled Pomeranchuk trajectory. With gI' smail we
have a weak-coupling situation, in which the AFS
diagram of Fig. 1 dominates over those with additional
particles in the intermediate state. Hence, the total
cross section is almost entirely elastic. This argument is

P. G. O. Freund and P. J. O'Donovan, Phys. Rev. Letters 20,
1329 (i968).

9 N. Cabibbo, L. Horwitz, J. J. J. Kokkedee, and Y. Ne'eman,
Xuovo Cirnento 45A, 275 (1966).

\

the cut. In this small g~' situation, in fact, the absorp-
tive part can be written

Agt, (J) X~~Xp /(J —no)+X +happ(J) ) (4.10)

since the M and P channels are almost decoupled.
Furthermore, one can identify the pole contribution
with the inelastic part of the total cross section and the
cut contribution with the elastic part, a decomposition
suggested some time ago by Freund and O'Donovan. '

Note that although we have assumed 1—o))~, if
~= 10 3 this condition is satisfied for 1—n& 10 '.
Needless to say a deviation from unity of the order 0.01
would not have been noticed. Note further that at
moderate energies (say 20 GeV lab) the cut, with an
average position =1—-', A~, has a typical integrated
strength of =—„' that of the pole. Thus a pure-pole
phenomenological fit would place the effective pole at

FIG. 1. The AFS elastic contribution to
the unitarity sum.

only a rewording of that given by CP, ' that the single
weakly coupled trajectory model convicts with observed
multiplicities.

The intermediate situation when 1 —n is of order c

leads to the same sort of consistency problem in which
the leading pole fails to represent most of the cross
section. This difficulty is avoided only for the first case
discussed, in which e(&'1 —o, .

V. SUMMARY AND DESCUSSION

The most satisfactory of the models we have con-
sidered is a variation of the two-trajectory model of
Chew and Pignotti, which we have shown to be a self-
consistent solution of a factorizable model of the multi-
peripheral integral equation. It turns out that this
solution is practically identical to the weak. -coupling
limit where the internal coupling of the Porneranchuk
vanishes, gp' ——0. The forward amplitude (see Eq.
(4.10)j takes the form of a Pomeranchuk pole, whose
residue corresponds to the inelastic part of the total
cross section, plus the AFS cut, which corresponds to
the elastic part. ' The most significant effect on this
model of the small but nonvanishing g~'=0.02 is to
prevent the Pomeranchuk intercept ni (0) from being
exactly equal to unity.

Many readers will be disturbed on esthetic grounds by
a Pomeranchuk intercept that is not exactly at J=1.
The presence of a small parameter 1 —ni (0) is indeed
surprising in hadronic physics, but when one recalls
that we have already been forced to introduce one
small parameter gI', the second one comes as less of a
surprise. Since it seems impossible for the internal
Pomeranchuk coupling gp' to be exactly zero, ' theorists
must look for a different kind of simplicity. Perhaps
the most promising direction is to link a variety of
phenomena which suggest the presence of small
parameters.

One such phenomenon is the apparently small role
of the Pomeranchuk trajectory in bootstrap models of
the finite-energy sum rule or Veneziano type (this is
obviously related to the smallness of gp'), as well as
the zero-resonance-width approximation on which such
models generally depend. It is an established and not at
all understood fact, in other words, that hadron

"It is evidently necessary now to repeat the phenomenologicat
Regge analysis of forward elastic scattering, since the cut contri-
bution will alter the apparent residue of the I" trajectory.
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coupling constants are small. We assert that this
smallness is no less mysterious than the smallness
of 1 —0.1 (0), and we suggest that the two mysteries may
be related.
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We construct a model of high-energy p — and g-meson photoproduction in which the incident photon
produces a charged pion (kaon) pair near the target. The photon coupling to the meson pair is just the
electric charge e. A virtual meson undergoes diffraction scattering from the target and the p (p) is seen as
a 6nal-state interaction of the meson-pair. There are no free parameters in the model. Agreement with
presently existing high-energy experiments is quite good.

I. INTRODUCTION

~ 'HERE now exists persuasive evidence in support.
of the vector dominance viewpoint' toward

photon interactions with hadrons. The essential feature
of this viewpoint is the supposition that the interacting
photon behaves as though it contains a coherent mixture
of all nonstr ange, vector, isosinglet, and isovector
mesons. The hadronic interactions of the photon then
occur by means of the strong interactions of the
photon's own hadronic content. As a consequence,
the interactions of photons with hadronic matter,
especially at high energy, are economically param-
etrized in terms of experimentally determined vector-
meson —photon coupling constants and independently
measured (in principfe) strong interaction amplitudes.

Despite its successes, however, it seems to us that the
vector dominance viewpoint should not be an exclusive
one. For one thing, it is an essentially phenomenological
construct, and it might be possible to gain additional
insight (and prediction) from an alternative and more
detailed way of looking at the same phenomena. Also,
on the basis of esthetics, at least, one might raise the
objection that the vector mesons in a free (zero mass)
photon are far from their "mass shell, " and the connec-
tion between the strong interactions of virtual and
"physical" vector mesons is by no means obvious. Thus,

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

f Permanent address: University of Hamburg, Hamburg,
Germany.
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the question of "measurability" of the vector meson
interactions may require some clarifIcation.

The p-photoproduction process is a particularly
convenient one for examining the consequences of an
alternative point of view. As a matter of observation,
the physical p meson is simply a highly correlated
system of two pions. ' As one moves the energy "off
shell" (which is to say, when one considers the two-pion
system at energies different from that corresponding to
the p peak) the degree of correlation is reduced, as is
indicated by the behavior of the p-wave scattering
amplitude. Near the two-pion scattering threshold, in
fact, a pair of p-wave pions is essentially uncorrelated,
and it seems somewhat presumptuous to speak of a
p meson (a,s distinct from a, pion pair) in this energy
region. Thus, with reference to a massless photon it
should be 3t least as meaningful to speak of its "two-
pion content" as its "p content. " In this way we are
led to consideration of the general problem of producing
pion pairs' by high-energy photons with small momen-
tum transfer to the target. Thus, the essential ingre-
dients of the model are the photon coupling to the
charged pion pair, pion-nucleon scattering at high
energy and low rnornentum transfer, a.nd the p.-wave
pion-pion interaction.

We consider, then, photoproduction of a pion pair
from a proton calculated according to the diagrams of
Fig. 1(a). The a+n- pair must, of course, be emitted
by the photon in a, relative p wave to conserve angular
momentum. If the pion-nucleon scattering which
"realizes" the virtual pion is strongly diRractive, as
would be expected at high energy, then the scattering

' M. Gell-Mann and F. Zachariasen, Ref. 1.
~ S. D. Drell, Phys. Rev. Letters 5, 278 (1960); P. Soding,

Phys. Letters 19, 702 (1966); A. S. Krass, Phys. Rev. 159, 1496
(1967).


