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Schwinger and Adler have discovered that if the A&-co-p o6-shell vertex function is linearly divergent,
then the axial-vector Ward identity for the A&-co-p vertex contains an extra model-dependent term. It is
shown here that no extra term occurs in the Ward identities for the A &-p-x system when the A &-A &-p vertex
is linearly divergent.

I. INTRODUCTION
'

~
SSENTIAL to the hard-pion calculations of

~ Schnitzer and Weinberg (SW)' are a set of Ward
identities relating the AI-AI-p vertex to the m--AI-p

and 7r-sr-p (off-shell) vertex functions. Investigations
by Schwinger, ' Adler, ' and Bell and Jackiw' put these
Ward identities into question. Specifically, one might
expect the Ward identities to be modified if the vertices
defined by Schnitzer and Weinberg are divergent. The
A ~-A «-p vertex is linearly divergent in quarklike
models of current algebra (i.e., models in which the
currents are bilinear products of free-fermion fields). In
these cases, the A &-A &-p vertex function is given by
a linearly divergent triangle graph similar to graphs
discussed by Adler et a/. ' 4

The analysis of Adler et al. was concerned with the
m -co-p and A I-co-p vertex functions. They showed
in effect that the Ward identities are irreversibly
modified when the AI-co-p vertex is divergent. That
is, there is no way one can regularize the AI-co-p

vertex so that it satis6es the same Ward identities as
the unregularized vertex. A contrary result will be
obtained here for the A&-A&-p vertex. Namely, it is
possible to regularize the AI-AI-p vertex so that it
satisfies the original Ward identities of SW. That the
A &-A &-p vertex behaves differently from the A &-co

-p vertex is due to its different kinematic structure-
at least on the surface. The author has not found any
more fundamental reason for the difference. In this

paper, the two vertices will be analyzed in parallel so
that the contrast will be manifest.

It is assumed in this paper that vertices containing
pions are convergent. This disagrees wiht the quarklike
models for which the pion 6eld is a bilinear product of
fermion fields (in quarklike models the sr-sr-p vertex
is also linearly divergent). However, this assumption
sirnpli6es the analysis; in addition, the assumption is
true for the recently proposed non-Lagrangian models
of current algebra' if the pion field has dimension less

* Supported in part by the Ofhce of Naval Research.
' H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1968);

see also S. Brown and G. West, Phys. Rev. Letters 19, 812 (1967);
Phys. Rev. 168, 1605 (1968); R. Arnowitt et al. , Phys. Rev.
Letters 19, 1085 (1967).' J.Schwinger, Phys. Rev. 82, 664 (1951),especially Eqs. (5.15)-
(5.25). (I thank R. Jackiw for this reference. )' S. L. Adler, Phys. Rev. 177, 2426 (1969).

4 J. S. Bell and R. Jackiw, Nuovo Cimento 60, 47 (1969).' K, G, Wilson, Phys. Rev. 179, 1499 (1969).

than three. The p and AI propagators are permitted
to be quadratically divergent, as in quarklike models;
propagators involving pions are assumed to converge.
The analysis given in this paper does not assume
specific triangle-graph models for the A1-A 1-p or
AI —co—p vertices; the only assumption is the qualita-
tive one that both vertices are linearly divergent.

In Sec. II, regularized AI-AI-p and AI-co-p vertices
will be de6ned and Ward identities obtained for
these vertices. The regularization procedure is chosen
for its simplicity only, and leads to modi6ed forms of the
Ward identities for both vertices. The most general
forms are given for the extra terms in the Ward identi-
ties. In Sec. III, modifications of the regularization
procedure are examined which might simplify the
Ward identities. Modifications are permitted only if
they do not change the physically relevant parts of the
vertex functions. These modifications restore the SW
form of the Ward identities for the AI-AI-p vertex,
but leave an extra term in the axial-vector identity for
the AI-~-p vertex. This extra term is the term found

by Schwinger' and Adler. '

Let

. Fe~""t(x,y) = (TA.~(x)A &"(y) VP(O))
(A r-A i-p vertex), (2.2)

p F (+ y) =&ry. (~)A, (y)VP(O))
(sr-A i-p vertex), (2.3)

6 The metric used here is (+ ~ ) and the currents are normal-
ized to satisfy the usual commutation relations.

II. SUBTRACTED VERTEX FUNCTIONS

In this section, a set of subtracted vertex functions
and propagators will be de6ned for the AI-p-7I- and
A &-p-co-vr systems. Then Ward identities will be
obtained for the subtracted functions. The method of
subtraction is chosen for its simplicity, not to preserve
the form of the Ward identities. The subtractions will

later be modified (in Sec. III) to simplify the Ward
identities.

The SU(3) XSU(3) currents will be denoted as
follows: V,"(x) is the p current, A o(x) is the Ai
current, V&(x) is the co current; a is an isospin index.
The pion field is P, (x) and the partial conservation of
axial-vector current (PCAC) condition is'

B„A:(o:)=F.nt.'y. (oc)
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s «F (x y) (~tt' (x)4'«(y) V (0))
(~-ir-p vertex), (2.4)

& «F~""'(x,y) = (2'~."(x)V"(y) V«" (0))
(A, -ce-p vertex), (2.5)

Also one defines

D~"(p) = e'p *G~"(*).

(2.12)

(2.13)

~. F ""( y)=(T4.( )V"(y)V "(o))
(ir-~-p vertex) . (2.6)

The vertex functions used by SW were de6ned as
unsubtracted Fourier transforms of F&""(x,y), etc.
When these Fourier transforms are divergent, one
must introduce a regularization procedure. The triangle
graphs of quarklike models can be regularized by
subtracting their small-momentum behavior: To be
precise, one subtracts through first order in a small-
momentum expansion because the graphs are linearly
divergent. If this subtraction method is used, then the
subtracted Fourier transform of F"""(x,y) is

U"""(q,p) = (e's *e 'p " 1 iq x.+—-ip —y)

XFp""(xy), (2.7)

where we use the notation f,= fd'—x. A function
Uz""«(q,p) can be defined analogously by substituting
F~I'"" for FI""". The assumption that these vertex
functions are at most "linearly divergent" will be
defined to mean that these subtracted integrals con-
verge whether or not an unsubtracted Fourier trans-
form exists.

The p and A~ propagators will be assumed to be
quadratically divergent (at most), as they are in
quarklike models. This means one can define finite
subtracted propagators. Let

q.U"""(q,P) = i—$e"*e '" " 1 i'q—x+—ip y

The pion propagator will not be needed in this paper.
The basic assumption being made when one assumes

convergence of the subtracted. integral in Eq. (2.7)
is that the divergence of the unsubtracted integral
occurs for x and y both going to zero. In the case of
triangle graphs, it is easy to see that the divergence
is of this form. For a triangle graph, F&"«(x,y) is just
the product of three fermion propagators, say
S~(x)S~(y)S~(x-y), apart from y matrices. If y is of
order x and both are small, this product scales as x '.
This singularity cannot be overcome by phase space
(d4xd'y) and the unsubtracted Fourier transform di-

verges. However, with subtractions, the subtracted
exponential behaves as x' for small x (with y x) and
this factor combined with phase space makes the sub-
tracted integral converge. One might also look for
divergences for @~0, for fixed y, or y —+ 0 for fixed

x, or x~y. But in this case (at least for triangle
graphs), the integrand behaves as x ' or y

—' which is
compensated by phase space without subtractions. It
is assumed in this paper that these other limits do not
cause trouble in non-free-field cases.

One can now obtain Ward identities for the subtracted
vertex functions. Consider, for example, q„U&""(q,p).
One can write

and define

8.«G,""(x)= (TV."(x)V«'(0)),

b.«Gg""(x) = (TA."(x)A «"(0)),

(2.8)

(2 9)

'(iq * ip y)-'5-'7*F"""—(*,y) (2.14)

Note that one must subtract the exponential through
order x' and xy before applying V'„ in order to have
subtractions of order x and y after diGerentiating.
Integrating by parts in the usual way, one gets~

D,""(p)= I
e'p' 1 ip —x+—,'(p x)'5G-""(x), (2.10)

q„U&""(q,p) =iF m ' [e's'e '" " 1—sq. x+tp y'—

U""(q,p) = e2Q xe 2P PFvx (x y) (2.11)

and likewise U«(q, p) and U@""(q,p) are unsubtracted.

and analogously for Dz""(p). The subtracted functions
D, and D~ are assumed to exist whether or not the
unsubtracted propagators exist and furthermore they
are to contain no noncovariant terms (noncovariant
terms should be removed by the subtraction method).

Vertex functions and propagators containing pions
are assumed in this paper to be convergent so they can
be Fourier transformed without subtraction. Thus, one
defines

——', (iq x—ip y)'5F""(x y) — {e'« »p 1— —

i(q P) y+l (q y-Py-)') G.""(y)—

+ (e '" p 1+ip y ', (ip y)'—)Gz"«(y). —(—2.15)

'One can ask whether it is mathematically legitimate to inte-
grate by parts when there are singularities in the integrand.
A careful analysis shows that the integration by parts is legiti-
mate here. The analysis involves defining all integrals as the
limit for s —2 0 of integrals with the regions ~x~ &2, )x—y( &2,
or ~y( & e, excluded (cf. Ref. 5).
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P""(q p) = iF.m—.' [1+iq x ip —y.

The equal-time commutator terms exactly correspond
to the dehnition of the subtracted propagators. How-
ever, the integral of F"~(x,y) does not correspond to
U"" because of the subtractions. Let

These identities involve only unsubtracted vertex
functions and propagators.

The Ward identities just obtained differ from the
SW Ward identities by polynomials in p and q such
as P""(q,p). To complete this section the most general
form for these polynomials consistent with Lorentz
invariance will be given

—-,'(q x—p y)')F""(x,y); (2.16)

then the Ward identity is

q.U"""(qp) =P""(qp)+ F- -'U""( p)
D,""(—q p)+D—~""( p) —(2 17)

The term P""(q,p) is caused by the presence of sub-
tractions; it is a second-order polynomial in p and q.
Such a term can occur only in connection with a parti-
ally conserved current; no su'ih term occurs in Ward
identities for the vector current. The analogous vector
Ward identity is

The analogous Ward identities for the A ~
—or —p vertex

function are

q„U~I'""(q,p) =P~+(q,p)+iF m 'U~""(q,p), (2.19)

p„U,~""(q,p) =0, (2.20)

(p —q).U~"""(q,p) =0 (2.21)
with

P~""(q p) = —iF.m ' [1+iq x ip y—.

', (q x py)—')F—~""(x—,y). (2.22)

The Ward identities for the vector and axial-vector
propagators in the presence of subtractions have the
form

(2.23)p,D "(p)=0,

p.Dg""(p)=Q"(p)+iF m 'D~"(p), (2.24)
where

Q"(p) = —iF-m-' l.l+ip ~—k(p *)'
—-,'i(p x)')G "(x). (2.25)

p„U""(q p) = iF m 'U" (q p)+D&"—(q), (2.26)

(P q)~U""(q,P) = D~"(P)—+DA" (q) — (2 27)

The corresponding identities for the m-co-p vertex are

p U "'(qp)=0

(p —q).U~""(q,p) =0
(2.28)

(2.29)

In addition, D,+(p) and Dz""(p) are even in p and sym-
metric in v and X, due to Lorentz invariance.

The following Ward identities unchanged from SW
are indeed:

P""(q p) = (~+&p'+Dq'+F p'q) g""+&p"p"
+Fquqx+Gq~px++qxpv (2 30)

(2.31)

Qx(p) It p) +Ip—2p) (2.32)

where A —H, J, E, and I. are constants. These forms
incorporate the restriction that I' and I'~ be second
order in p and q, while Q is third order in p.

IIL SIMPLIFICATION OF THE WARD IDENTITIES

In Sec. II, regularized forms of the A~-A~-p and
A ~-cv-p vertex functions were defined and Ward
identities derived for these vertex functions. A regular-
ized vertex function is usually an ambiguous vertex
function, the ambiguity depending on the choice of
regularization. The question now is whether one can
use this ambiguity to simplify the Ward identities. To
be specific, is it possible to redefine the regularized
vertex functions and propagators so that the redefined
functions satisfy the original SW Ward identities)
The answer is that one can get back the original SW
Ward identities in every case except one, the axial-
vector identity for U~"""(q,p).

The starting point of the proof is to assume the most
general form for P@(q,p), etc., as given at the end of
Sec. II. The constants A —H, etc. , are to start with,
completely arbitrary. But there are consistency condi-
tions that the Ward identities must satisfy, and these
consistency conditions reduce the number of arbitrary
parameters. Then one can use the freedom of redefining
the regularized vertex functions to eliminate further
parameters.

The redefinitions will consist in adding linear combin-
ations of p and q to U""" Uz""", and quadratic forms
in p and q to the vector meson propagators. These
redefinitions do not affect any physical quantity be-
cause the functions U"""(q,p) are complete vertex
functions which have poles when any particle is on
the mass shell, and all physical quantities obtainable
from the vertex functions have at least one particle
on the mass shell (the A~ form factor, for example,
has two particles on the mass shell). Changing the
complete vertex function by a polynomial in p and q
does not change the residue at any pole.

The consisted:cy conditions are obtained by combining
pairs of Ward identities. For example, from Eqs. (2.17),
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(2.27), and (2.23), one gets vector and axial-vector propagators:

(P q)—bq. V"""(q,p) = (P q)—»""(q,p) D vx (p) ~ D vx(p)+i(g 2/m 2)gv'b

F=-'t-- D"(p) D'(q)j D. (p) D '(p) (K+Lp.)+ (P-q)D""(-P), (3 1) " " ' .
(

(3.9)

while from Eqs. (2.18) and (2.24), one has
By adding these'polynomials in p to the old propagators,

q (P—q)b V"""(q,p) = —q.D~""(P)+0"(q) one changes the Ward identities for the propagators;

+iF m 2D& (q) (3 2) the new ProPagators satisfy

One can replace D~""(—p) by D~""(p) in the first
equation and then subtract the two. Vsing Eq. (2.24)
again, one has

(P—
q) bP""(q,P) = —0"(P)+0"(q) . (3.3)

There are two other consistency conditions, involving

q„P.V"""(q,P) and P, (P q)bUl'""—(q,P). These two condi-
tions can be replaced by a single symmetry condition,
which results from 2 b.F&""(x,y) being symmetric to
the exchange of the two axial-vector currents A,&(x)
and 3b" (y). This results in U&""(q,p) being anti-
symmetric:

U"" (qP)= U"" ( P q). (3.4)

This means that p,q„U"""(q,p) must be antisymmetric
to the exchange p —+ —

q, q
—+ —p. If this condition is

satisfied, as well as Eq. (3.3), then one can obtain the
Ward identity for p, U"""(q,p) by symmetry and all
three consistency conditions will be satisfied. From
Eqs. (2.17), (2.26), and (2.24), one has

P.q, U"""(q,P) =P.P""(q,P)+F'm-'U" (q,P)
+iF m 2Dg" (q) p„D ""(q—p)—

—gb( —p) —iF.m 2D.i(—p). (3,S)

U"(q,p) must also be antisymmetric to the exchange

p +-+ —
q, so one must have

P,P "(q,p) q.P "( P, q-) =e"( -P)+-0"(q) —(36)

pvD~v" (p) =i(g '/m ')p"+iF m 2D~" (p), (3.11)

p„D &(p)=i(gp2/F2) p", (3.12)

(P q)bU"""(q—,P) =L(q' P')g""—
D" (P)+-D" (q) (3.13)

and the polynomial P""(q,p) in Eq. (2.17) is changed
from Eq. (3.8) to

Pvb (q p) gj (p .pgvX pvpi) D (q .Qgvb /vs)
I (q2gvk, P2gvbgpvqb+ pvpb) (3 14)

The other Ward identities are unchanged.
The final step in simplifying the Ward identities is to

redefine the vertex functions U&""(q,p) and Uz&""(q,p).
In addition, a further modification of D,""(p) will be
made. The modifications of V"""(q,p) and Ug"""(q,p)
must be linear in q and p in order that the modifications
to P""(q,p) and P~""(q,p) be quadratic. The most
general modification consistent with I orentz invariance
and the antisymmetry requirement on U is

which are precisely the identities satisfied by the SW
propagators. ' The addition of a polynomial in p to a
propagator does not change any physically measureable
quantity; the physical observable is the absorptive
part of the propagator which is unaffected by the
change. Using the new propagators, the Ward identity
(2.18) is changed to

The corresponding consistency conditions for Pz""(q,p)
are simply

U"""( P) U"""(qP)+ (q+P )g""

+p(qvgpi+ppgvi)+v (qpgvX+pvgpb) (3 15)
(3.7)

U """(q,p)+ """'~~p.+~q.),
P.P~""(q,p) = (P q)»~""(q,p) = o—.

(3 16)
The consistency conditions for Pz""(q,p) are all

satisfied for the form (2.31). The first condition (3.3) where ~ rl are arbitra—ry constants. The modification

on P@(q,p) limits the form (2.30) to be of D,""(q) will be of the form

PA (q p) Kgb+

$3�
(p .Qgvi pvpb) D (q .Qgvi pvqli)

I (q2gvb+ pvqb+ pvpb) (3 8)

where K and L are the constants of Eq. (2.32), and
8 and D are arbitrary; k= p —q. This restricted form
satisfies the second consistency condition (3.6) identi-
cally.

Now one can try to simplify the Ward identities by
redefining the regularized propagators and vertex
functions. First, make the following redefinitions of the

D.""(p)~ Dp""(p)+~(g""p' p"p") (3 17)—

which does not change Eq. (3.12).
The constants o.—8 are now to be chosen, if possible,

to eliminate the L term in Eq. (3.13) and t.he poly-
nomials P""(q,p) and P~""(q,p) from Eqs. (2.17) and
(2.19). To eliminate the L term from Eq. (3.13) one
inust take n=L and y= —P. The function P""(q,p)

SThese identities are satisfied by the covariant propagators
of SW in the pole approximation.
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Lgiven by Eq. (3.14)) is completely removed from Eq.
(2.17) if one chooses P=D—B 2L—and tl= —(B+L).
With these choices for rr, P, y, and 6l, all the Ward identi-
ties in the A» —p —x system have their original SW
form. In contrast, a modification of Ug""" according to
Eq. (3.16) does not work. In order not to change Eq.
(2.20), rl must be zero, and in order not to change Eq.
(2.21), 5 must be zero also. So U~ cannot be modified,
and the extra term F~""(q,p) remains in the identity
(2.19).

One could eliminate Fz"~(q,p) from the Ward identity
(2.19) by redefining the z.-co-p vertex Uz+(q, p),
namely, by letting

U~vx(q p) ~ U&vx(q p) i(F&m 2) 1JevxP—aq p (3 1g)

Unfortunately, this change is unacceptable. The reason
is that the added term violates the smoothness condition
that the z--re-p vertex U~""(q,p) must satisfy in order
to calculate the m 0

—+ 2p decay rate by current algebra. '
The current-algebra calculation requires that U~""(q,p)
have the following form, for small q and p

Up""(q,P) = (P'—m.s)-'s""& q,P.T(q,P), (3.19)

where T changes only by a small percentage for changes
of q and p of order m . But the redefinition of U~""(q,p)
is equivalent to changing T by

T(q,p) —+ T(q,p) iF„t (p'/m —') 1jJ. (3.2—0)

Because of the factor p'/m ', the added term changes
rapidly when p' changes from m, ' to 0. There is no
reason to doubt that the original unsubtracted x-~-p
vertex satisfies the smoothness condition, so the rede-
fined vertex violates the smoothness condition. '

'M. Veltman, Proc Roy. S.oc. (London) A301, 107 (1967);
D. G. Sutherland, Nucl. Phys. B2, 433 (1967).

"The factor (m 2) ' would be cancelled if J were of order
es 2 or smaller. But at least in the model discussed by Adler (Ref.
3) J is of order i.

vapo'J &P m 2 x&y Fp""(x,y). (3.22)

This integral has been analyzed elsewhere. ' The J term
in Eq. (3.21) can be regarded as a generalization of the
equal-time commutator terms that appear in other
Ward identities.

Because the subtracted vertices of the A» —p —m

system can be defined to satisfy the Ward identities
of SW, the SW hard-pion analysis applies to these
subtracted vertices without change. The question
whether the assumption of p and A» dominance holds
for these vertices" is a low-energy question (energies of
order the Ai mass or less) and need not be affected by
the problem of subtractions which is related to the
high-energy behavior of the vertex functions.

It was assumed in this paper that all pion vertices
are convergent. The analysis becomes considerably
more complicated when the pion vertices diverge,
because one must introduce subtractions in these
vertices without violating the smoothness condition.
The author has not carried through an analysis of this
problem.
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The Ward identity for the A»-co-p vertex, with the
extra term, is

q„U~"""(q,p) =Je"I"qpp,+iF m 'U~""(q,p) . (3.21)

The constant J can be related to the short-distance
behavior of the product of three currents. The starting
point is Eq. (2.22), which reduces by Lorentz invariance
and parity requirement to


