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Chiral Lagrangian Model of Single-Pion Photoproduction*
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We have constructed a chiral-invariant Lagrangian model for single pion photoproduction. We have
used this Lagrangian to calculate threshold values for the differential cross sections. These threshold results
were found to be in reasonable agreement with recent current-algebra calculations. For the cases where
data were available, the comparison with experiment was favorable.

I. INTRODUCTION

ECENTLY, current-algebra techniques have been
used to obtain threshold theorems for photopro-

duction which are in good agreement with experiment. ' '
The derivation of these threshold results is accompanied
by two types of difhculties: one inherent in current-
algebra calculations, and the other peculiar to photo-
production. The former concerns the extrapolation of
the amplitudes from off-shell to on-shell, and the latter
is the question of gauge invariance when the pion is off
the mass shell. Although these difhculties are surmount-
able, we would like to point out that there is another
way to obtain these threshold results which avoids the
above difhculties altogether. It is the chiral Lagrangian
approach.

For soft-pion processes, as is well known, ' ' one can
construct chiral-invariant Lagrangians that are equi-
valent in their content to the current-algebra hypo-
theses. Because the pion field is assumed to transform
nonlinearly under chiral transformations, ' these chiral
Lagrangians are highly nonlinear. Effectively, however,
one always deals with these Lagrangians in the tree
approximation. 4

By using a Lagrangian formalism the gauge-invari-
ance problem is very simple to solve. All that one must
do is to either couple the electromagnetic potential A

to conserved currents or to couple the system directly
to the gauge-invariant electromagnetic field tensor F p.

A Lagrangian formalism also avoids the problem of
extrapolation, since one always obtains physical ampli-

tudes. In this context we should perhaps remark that
the Lagrangian method contains a built-in extrapolation
og the mass shell and that this extrapolation is smooth.
In current-algebra calculations one obtains an off-mass-
shell amplitude, and then one extrapolates, presumably
smoothly, to the mass shell. Thus the use of a particular
chiral Lagrangian is equivalent to an assumption of a
particular method of extrapolation in the corresponding
current-algebra case.

II. CHIRAL-INVARIANT LAGRANGIAN
FOR PHOTOPRODUCTION

with

@el+ ~wlv N+ ~ m tv N

To construct a chiral-invariant Lagrangian for photo-
production we make use of the usual chiral Lagrangian
for pion-nucleon scattering' ' and introduce a coupling
to the electromagnetic field by a minimal substitution
8 —+ 8 —ieA . for charged particles. This substitution
guarantees that we couple A to a conserved current,
and therefore preserves guage invariance. We further
add terms to the Lagrangian that describe phenomeno-
logically the interaction of the electromagnetic field
with the nucleon magnetic moments. Finally, since we
also want to take into account the effects of the N*(1236)
at threshold, we add a phenomenological E*Ey inter-
action. Of course, then we must retain a corresponding
E*Ex term in the pion-nucleon Lagrangian. ' Our total
Lagrangian for photoproduction is then

g,~= eA (e,,si) rrrr, +N[s (1+re))y„N+ (f&2/m)Ny ys(r+sr rrr+)N I—
+eF P((z„/4M)Nop[ ', (1+re)]N.+(—n„/4M)Na p[ ', (1 rs) jN+(tc*-/4M—)[Ns*"(ip g) p iypgq—

-»N+N '~-g ~ g -+l -~)~N*"»
2 Ntr (f/m)Ni7 ysr;N——8~7r, ,

Z.~~ ——(ih/m) [N;"(4g P+y pP)N N(4gP +pe )N—,*)r)p7r, ,
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' M. S. Bhatia and P. Narayanaswany, Phys. Rev. 172, 1742 (1968).
3 S. Weinberg, Phys. Rev. Letters 18, 188 (1967).
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' R. D. Peccei, Phys. Rev. 176, 1812 (1968).

181 1902



MODEL OF SINGLE —PION PHOTOPRODUCTION 1903

where

1 ~X++—X'/K3q /@+++&V'/~3q

v2 4 1V+/v3 —1V ) &2k 1V+/V3+N i
~E+y~.*=—(dl)l'
&Xo)

Two comments are in order. First, the contact inter-
action in Z, i comes about from the minimal replace-
ment of 8 in „~~. It has a crucial effect in preserving

gauge invariance. Second, the particular structure dis-

played by the E*Ep and S*Sxvertices is dictated by
the requirement of coupling the Ey and E~ systems
only to the spin-~3 part of the E* field, both on and off

the E*mass shell. ' In particular, the terms yea py5 and

y yp for the E*Ey and Ã*Ex vertices have no effect
when the S* is on the mass shell, but they contribute
off the E~ mass shell.

For completeness we record below the numerical

values of the various coupling constants and parameters
used:

f'/4ir =0.080&0.001, e'/4ir = 1/137
h'= 0.290~0.006,

a„=1.79, ~„=—1.91, ~*=5.0.

The value of ~* varies depending on the particular
analysis of photoproduction considered. Dufner and
Tsai' give ~*=5.02 based on Dalitz and Sutherland's

analysis. ' Matthews' gives ~*=4.90. Gourdin and Salin"
obtain ~*=6.10. Huang, "using a static-model compari-

son, has ~*=4.31. And, finally, the 5U(6) prediction'2

is ~*=3.95. We shall see later that the threshold results

do not depend very much on the S~ contribution, and
so the value of ~* adopted is not particularly critical.
Perhaps it is worth mentioning here that the extra term
that we have in our S*Xy vertex does not affect the
determination of ~*, since this parameter is evaluated
at the resonance. A similar situation occurs in the
g*Em vertex, where the value of h' is independent of
whether we take the vertex with the extra y yp term
or not. '

III. THRESHOLD RESULTS

To proceed we decompose the photoproduction ampli-

tude in the usual CGLN way. "
T=u(po)[Ay qk+B(P kq. e P«q k)—

+C(q ey k qky e)—
+2D(P. ky e P. ey. k+My ey k—))yoN(pi),

' A. J. Dufner and Y. S. Ysai, Phys. Rev. 168, 1801 (1968).
'R. H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180

(1966).' J. Matthews, Phys. Rev. 137, B444 (1965).
"M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963);

27, 309 (1963);Ph. Salin, ibid. 32, 521 (1964).
11H. %. Huang, Phys. Rev. 174, 1799 (1968).
"M. A. B. Bdg, B. W. Lee, and A. Pais, Phys. Rev. Letters

13, 514 (1964)."G.F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

where pi and po are the incoming and outgoing nucleon
mornenta, k is the photon momentum, q is the meson
momentum, and P= o(pi+ po).

The isospin content of the amplitude 2 is given by

A=A+Sea+A Xokre, ro)+Aore,

with similar relations holding for B, C, and D. Here P
is the isospin of the outgoing nucleon.

The amplitudes for physical processes are then given
by

T(H- p ~ p+. ~o) T++.To

T(y+n ~ n+m') = T+ T'—
T(y+ p —+ n+7r+) =v2(T'+ T—),
T(y+n~ P+7r )=&2(To T).—-

At threshold the differential cross section in the
center-of-mass system is given by

to t'do) 1 M' t'2Mm+m') '

Iql «fl& .-. 16~o (M+m)oE 2M

X lmD —A w(D+C) I', —

where w=
I kl =m(2M+m)/(2M+2m) at threshold.

To obtain the desired threshold results we need only
compute the amplitudes A, C, and D in the appropriate
isospin combinations and make use of the above formula
for the differential cross section. These amplitudes,
along with 8, are given in the Appendix and can be cal-
culated in a straightforward manner from our chiral
Lagrangian. We find, in this way,

(w/I q I) (do/dQ)(y+ p ~ n+vr+)
=XL1+r'(a, +«„+]~*))',

(w/lql)(do/dQ)(y+n~ p+~—
)

=XL1+2r —r'(g„+ lr„—]g*))',

(~/I al )(do/d0)(v+ p ~ p+~')
= 2zr'L1 —r(.,+g'.*))&

(to/I rll )(do/dQ)(y+n ~ n+7ro) =2Xr'I ~ —&'ir*)'

where

e' f' 2M' 1 m

4~r 4m (M+m)' m 2M

k (2M+m)o

f3(M+m)M*'

r 2MmLM*(M+m) +M')
XI 2M*+M

l 3DM*+Mm)(M+m) M~)'-
)=1.41,
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and TAsLE I. Reduced cross section (~k(/~q~)do/dQ for threshold
pion photoproduction, in pb/sr.

Ir (2M+m)m

f 3(M+m)M*' Process
Chiral

Lagrangian
Current
algebra Experiment'

2M(2M+m) [M*(M+m)+M']l

3$(M~'+Mm) (M+m) —M']

y+P ~ n+7r+
2++ P+
p+P ~ P+x'
y+n ~ n+~0

16.4
21.7
0.13
0.0027

16.79
21.96
0.116
0.0018

15.6&0.5
b

$' = —0.040.

We remark that Bhatia and Narayanaswany' obtain
the same results as ours by current-algebra methods,
except that their X* contribution at threshold differs
from ours because of the different E*Ãy and %*Ex
vertices adopted in our work. . Nevertheless, in both
cases the contribution is small. We find that the E~
contributes about 8% for the charged-pion photopro-
duction, 3'%%uq for vr' photoproduction by protons, and
about 25% for m' photoproduction by neutrons.

In conclusion, we record in Table I our final results
at threshold obtained by the chiral Lagrangian model,

a Reference 14.
b What is measured is the Panofsky ratio.

da' dtJ'
R =—(y+m ~ P+m ) —(y+P ~ n+7r+) =1.265+0.075.

dQ dQ

We obtain R =1.32.

and we compare them to the current-algebra work and,
when possible, to experiment. "

ACKNOWLEDGMENT

We would like to thank Professor Kenneth Johnson
for his constant guidance and encouragement.

APPENDIX

We give below the chiral Lagrangian contributions to the twelve CGLN amplitudes:

ef 1 1 l 1 h K* 1 4M l4M'

A+ = 2M +
~

—(Kp
—K~) ——— 4t+ (s—M'+2m') + (s—M'+m')

~

2m M' —s M' —u/ M f 3M M*' —s 3M* 3M*'

+(s —+u, t~ t)

ef —SM h «*( 16 16
&+=— +- /, +

2m (M —s)(M —u) f 3M EM+s —s Ma —u/

ef ( 1 1 l h K*- 1 ( 4M' 2M
C+= («„—K )~

— ~+—
~

2M+4M* — (—s 2M'+—2m') (s +u—, t —+t)—
2m kM' —u M' —s/ f3M M*' sk- 3M* 3M~'

ef 1 1 l h K* 1 l4M'2M
(Kp K~) + ~+ 6M+4M*+ + (s—2M'+2m') ~+(s~ u, t +t)—

2m M' —u M' s) f3M M*—' s-3M* 3M*'

ef ( 1 1 l h K*- 1 ( 2M 2M'
A = 2M~ — ~+—

~
2t+ (s —M'+2m')+ (s —M'+m ) —(s~ u, t~ t)

2m kM' —s M' u/ f3—M M*' —sk 3M* 3M*'

ef-SM 1 1 l h K* 8 88=
2m m' —t ' —s M' u/ f 3M M*' —sM*' u/— —

ef 1 1 l h K* 1 ((.„—..) — ——
~

——
~

M+2M*-
2m M' —u M' —s/ f 3M M*' —sk

2M' M
(s—2M'+2m'))

3M* 3M*2

+(s~u, t +t)—
ef ( 1 1 h K* 1 ( l2M'M

(Kp K )~ ~
3M+2M*+ + (s —2M+2m )'

2m ~' —s Ms —u f 3M M*' —sk 3M* 3M*'

—(s~ u, t +t)-
'4 J. P. Burq, Ann. Phys. (Paris) 10, 363 (1965).
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ef ( 1 1 ) 1
— ef-

Ao 2Ml + I (xv+x ) 8'=
2m- W' —s M' —u] M 2m (M' —s)(M' —u)

ef ( 1 1 ef — ( 1(,+ -)I —,D'= (..+..)l +
2m (M' —w M' —s 2&m (M' —u M' —s)
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A sum rule for the I= 1 xw amplitude is written at the symmetry point, s= t =u = -', m ', under the assump-
tion that 8A'(l, U)/BU satisfies an unsubtracted fixed-t dispersion relation, where l and U are the energy and
momentum-transfer variables. From the symmetry-point conditions, BA'/Bt and BA'/Bt are obtained and
compared with the current-algebra estimates.

'ERE we present a sum rule for the I=1 xx ampli-
tude from which one can obtain sum rules for the

derivative of the I=O and I=2 xw amplitudes at the
symmetry point, s=t =I=—,m '. The sum rule has the
property that the contributions of high-mass resonances
drop off very rapidly.

The derivative relations at the symmetry point for
the amplitudes Al(t, v), where l is the energy variable
and V=s(s —u) are (we take h=c=m =1)'

BA'/Bt(-;, 0) = —2(BA'/Bt) (-'„0) (1)

=RA'/Bv (e 0) (2)

Now if A (t, v) —+P(t)v"" as V —+", then since
ar(t)(1 for I=1 and t&m, ' we can write an unsub-
tracted, fixed-t, dispersion relation in the neighborhood
of t=-'„

BA' 1
-(t, V) =— dv'Av'(t, V')

BV
1 1

x — + l. (3)
(V —V)s (V+V)si

Using crossing symmetry for the absorptive part A&' we

get at t= —,
' and V=O,

aA~ 2 ~ dV'
(s,0) =— —

LstImA'(V', l)+-', ImA'(V', l)
BV x y, V"

g a1(t)—1

—
e ImA'(V', l) j+c(l)—,(4)

1 —ni(t)
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where ImAr(v, t) are the imagninary parts in the s
channel, and the second term on the right-hand side of
(4) is the Regge term.

An important point to notice in relation (4) above is
that the I=O and I=1 contributions, as well as the
Regge contribution, are all posvt& e Since no. resonance
in I=2 has been observed, the derivative BA'/Bv is
positive and, therefore, from (2) BA /Bt is positive at
the symmetry point.

In Table I we have given the contributions of differ-
ent xm resonances to the right-hand side of the sum rule
(4). In addition to p and fo, we have also included higher
resonances such as g (the recurrence of p) and h (a possi-
ble recurrence of f'). The experimental value of the nn-
partial width of the g meson is not known precisely. It
varies between 30 and 75 MeV. ' The values in Table I
correspond to F,=100 MeV, F,=30 MeV, and m, '=2.6
BeV'. Experimentally very little is known about h, but
we expect the fo trajectory to be roughly parallel to the
p trajectory, so that a recurrence of f' should exist
around m~'=3. 6 BeV'. The values given in Table I
correspond to FR=100 MeV and I'~=30 MeV. The
main point we want to emphasize about the sum rule
(4) is that the contributions of higher resonances fall
off very rapidly and, therefore, the value of BA'/Bt ob-
tained through (2), is nol sensitive to the contributions
of g, h, and other higher resonances.

For the upper limit of the g partial width we have used 50'Po
of the value of g total width PA. H. Rosenfeld et al. , University
of California Radiation Laboratory Report No. UCRL-8030
(rev. ) 1968 (unpublished)g where it is indicated that the 2x
decay mode is dominant. For the lower limit we have taken the

artial widths given by T. F. Johnston et al. , Phys. Rev. Letters
0, 1414 (1968); D. J. Crennell et al , ibid18, 323 (1967.); an,d

N. N. Biswas et al. , ibid. . 21, 50 (1968).


