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The K, vector form factor is estimated using Sakurai’s vector-dominance model. For the first time,
all lowest-order Feynman graphs which contribute to the process have been included. The vector form
factor is found to be between —0.96 and —1.4, depending on the methods and experimental numbers
used. Comparisons with previous estimates and present experimental data are made.

INTRODUCTION

HE K s-vector form factor will be estimated ac-
cording to Sakurai’s vector-dominance model.!
Vector dominance is of course a rather simple model;
however, it has been successfully applied to many other
processes.>® Hence, it is interesting to see if it can be
applied to K4 In order to do this, it is necessary to
include all relevant vector resonances which may con-
tribute. Previous calculations®=® have only considered
the p resonance [Fig. 1(a)], while here both the p and
K* contributions are considered [Figs. 1(a) and 1(b)].”
Also, at the present time, there does not seem to be a
successful calculation of the Kys-vector form factor using
more sophisticated models (as we discuss further below).
The vector form factor is defined by the relation®

(2K°2¢1°2¢:°) 1 %(xH(g)m(g2) | V4(0) | KH(K))
= iEM)\UyK)\QIQQZyd/sz .

(M

We assume the |AI| =% rule. Vector dominance means
here that the Feynman graphs of Fig. 1 are assumed to
give a good approximation to the matrix element in Eq.
(1). Assuming SU(3) symmetry, the following Lagran-
gian can be used to calculate these graphs:

Lint=gvrpr TI‘(V“[P,G#PJ)—FgVVP Tr(PaaVﬁa,yV(s)E,,gys
+ (G/\[Z)gK *evK*)\ﬁe')/k(1+'Y5)uv ) (2)

where P is the octet of pseudoscalar mesons, and V is
the octet of vector mesons.

The assumption of SU(3), like constant couplings,
is a rather simple approach; however, SU(3) has been
remarkably successful, and it is interesting to see if it
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can be a.plplied to K4 The relevant terms of (2) are

Line=gvrp[K,*(K=0,7")+V2p, (71 9,77) ]
+ gvvpeapys T 0K 5400, K5t
+A/V2) K=K+ ,ps" 1+ (G/V2) g * o K*MiLe
X(1+vs)u,. (3)

Then, by straightforward perturbation theory, one finds
for the form factor d:

—2¢vvPEvPPLR* MK 1
1= N C))
(K—q1—gq2)?—mx* (q1+q2)?—m,?
—2gvvpgvPPER* MK’ 1 )
2= ,
(K—q1—gq2)'—mg=* (K—q1)*—mx+
d=d1+d., 6)

where d; is the contribution from Fig. 1(a), and d» from
Fig. 1(b).°

To determine gyvep, gvpp, and gx *.», one can proceed
in two different, but theoretically equivalent, ways. In
the first method, called method 4, one can determine
gonr from the experimentally known p width, and hence
gvpp. In fact

T(p— wm)=(gons?/6mm,2)[ (3m,) —m* ]2,
gvpp= gpmr/\/7~
Using a p width of 100 MeV, one finds g,».~24.89; using
a width of 140 MeV, g,,,~5.78.1% To estimate gyyp
and gx*., the Feynman graph of Fig. 2(a) is used to
give :
®)

Q)

€8upnLor/Mp = €Zuny s

9 The quantity d» can be written as de=ds'+ds"’, where
d = —2gvvPgvPPEK*oMK®
P (K-~ ) —mx*

xl[ 1 1 ]
2l (K—q1)2—mg*  (K—q2)?—mg*2 |
3y = S 28VVPEVPPEK e’

(K—q1—g2)*—mxg*

e
2l (K—g)*—mg® " (K—g)*—mx* |
Then, dy’ gives the contribution to d; from the I=0, d-wave
final state of the pions, and dy" is the =1 p-wave contribution.
dy’ is small and will be neglected here; we assume that the out-
going pions are in an I =1 state, and take dy''~d,.

10 See Ref. 13 for a discussion of the p width. Note that recent
experiments show this width varying from 90 to 150 MeV, but
seem to favor a value close to 100 MeV.
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F16. 1. Feynman graphs used

to calculate d.

(a)
and the SU(3) relations
gapr=(2/2/6)gvvp/sin\, ©
8K *ev=gpy SN0 (10)

are used, where §= Cabibbo angle,!* and A= w—¢ mixing
angle. (sinA>~1/v3).1? Experimentally, T'(w — my)~1.2
MeV,*? which gives g,.,~2.96X10~2 MeV~!. Putting
this together gives the following:

method A

2mr’gvvpgvrrgK *e=2.24 X101 MeV*
for T'(p— mm)=100 MeV
=2.65X101! MeV*

for T'(p— mm)=140 MeV. (11)
Alternatively, one can proceed by method B, in

which the Gell-Mann—Sharp-Wagner? model is used to

estimate g,,-. Then the graph of Fig. 2(b) yields?5

€gorGorn/ My’ =e. (12)
From I'(w— 37)=11 MeV," and using?
Gopr T(w— 37) [Gmy)2—m, 2] 23
4r (oo 2n) (me—3me)t  mpmam(3.56)" 3

one finds

Lopr=2.03X1072 MeV—!
=1.73X10"2 MeV—!

for I'(p — wm)=100 MeV
for T'(p — ww)=140 MeV.

Fi1c. 2. Feynman graphs used to
estimate strong-coupling constants.

(a)

1 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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(b)

method B

2mk*gvvrgvrrgr te=2.15X 1011 MeV*
for T'(p— ww) =100 MeV
=2.68 X101t MeV*

for T'(p — nm)=140 MeV. (14)

The difference between the two sets of numbers in
Egs. (11) and (14) is due to the fact that Eqs. (8) and
(12) are not completely consistent with experiment.
Combining these two equations, one would predict for
I'(p— mm)=100 MeV,

(15)

compared to the value of g,,,~4.9 which one would
deduce?® directly from I'(p — #7)=100 MeV. The situ-
ation improves as one increases the p width; for
T'(p— )= 140, inspection of Eqs. (8) and (12) shows
that they are consistent. However, one does not neces-
sarily expect much better agreement than Eq. (15)
gives for vector-dominance calculations.?

From Eqs. (4) and (5), it is clear that d is a function
of (g1+¢2)? (K—q1—¢»)? and (K—g1)%. The lepton
momentum squared (K—g—gz)? varies from m2o~0
up to (mx—2m,)?. This is small compared to mxg*,
and furthermore, phase space is largest at the lower
end of this range; hence we can reasona.bly set
(K—¢1—¢2)*=0. The quantity (K—g¢;)? varies from
my? to (mx—m.)?; using Egs. (5) and (11) (i.e., method
4), one finds that d, varies from —0.35 to —0.41.°
[In this discussion we use I'(p— 7r)=100 MeV.1¥]
Hence, an adequate estimate is dy~—0.38. From

8prr= g(.,,,,r/gw,,.,&6.8 ’

(b)
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method B, one finds dy~—0.55. The quantity (g, gz)?
varies from 4m,% to mg?, which results in d; varying
from —0.53 to —0.79. However, d has been measured
experimentally by determining the factor of cos¢ in the
observed ¢ angular distribution,® determined from the
angular correlation scheme of Cabibbo and Maksymo-
wicz.!* This term is multiplied by the phase-space factor
U(x?), (where x*= (¢1+¢2)?/mx?), as defined by Cabibbo
and Maksymowicz. Then, from Fig. 3 one can see that
the most important contribution is around x=0.65. For
this value of #? one finds dy=~—0.58 using method 4,
and di=~2—0.82 using method B. Finally, our best esti-
mates are!®: For I'(p — 77)= 100 MeV,

d1=—0.58, dy=—0.38, d=—0.96 (method 4);
d1=—0.82, dy=-—0.55, d=—1.37 (method B).
For I'(p — wm) =140 MeV,
di=—0.68, d=—045, d=—1.13 (method 4);
d1=—0.69, dy=-—047, d=—1.16 (method B).

There have been numerous previous estimates of d.
Mohanti and Marshak?* have estimated d by current-
algebra and soft-pion techniques and found d~~1.5.1
Sarker,'” using a Ward-indentity approach combined
with a soft-pion approximation (i.e., setting 9,4*=0)
of some matrix elements (including the neglect of all
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conventions and standard perturbation theory. Most previous
estimates appear to be concerned only with the absolute value of
d,. Hence, it is the absolute value of our result that is to be compared
with the results of others.

16In obtaining this estimate, Mohanti and Marshak neglect
what they call a “higher-order” term which is quadratic in pion
momenta; this seems to be a most dubious procedure since the
matrix element is itself quadratic in pion momenta. See, for ex-
ample, S. L. Adler and R. F. Dashen, Current Algebras and A ppli-
cations to Particle Physics (W. A. Benjamin, Inc., New York, 1968),

. 121.
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“o-type” terms), has found d~5.07. The only justifi-
cation for his neglect of the o terms is that the results
are not inconsistent with experiment.

Previous vector-dominance calculations of & have
only considered d;. Mohanti and Marshak* have esti-
mated d,~~0.7. Berends, Donnachie, and Oades,’ using
method 4, obtained a value of dy~1.24. However, they
relate g, directly to a pKev vertex by the relation

8oKev= (\/%)gmm, sinf sin\ ,
while we have found

8oKK*= gVVP/\/Z
=2V3gurp SIDA,
and hence
8K *ev8pKK*= l\/s_gwﬂpgpy Sin0 sin)\.

Earlier estimates, such as that of Ilioupoulos,® have
changed because of newer experimental data.

The experimental situation of d is uncertain. A pre-
liminary analysis of 310 events gives a value of d>~10
+4.% However, this analysis assumes that all K;4 form
factors depend only on (g1 ¢2)%. Also, the value of d
depends to some extent upon what assumptions are
made concerning the axial form factors and the m-m
interaction. Thus, although our estimate is smaller than
the current (preliminary) experimental estimate, the
experimental situation seems uncertain, and hence the
status of the vector-dominance model in K4 seems also
to be still open.

Note added in proof. A recent experimental analysis'®
finds that the values |d|~1.38 or |d|~0.68 fit the
present experimental data.
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