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Reggeized Resonance Model for Arbitrary Production Processes*
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A Reggeized resonance model for a scalar n-point function is given in the form of an integral. Reggeization
and a multiple-factorization theorem is proved. Feynman rules are developed for the parent resonance
couplings and compared with the Regge results. An approximation scheme for simplifying the n-point func-
tion is suggested, and based on this approximation scheme, a Bethe —Salpeter-type equation is derived for the
multiperipheral processes.
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ECENTLY, there has been a good deal of interest
in the Reggeized resonance model. After the origi-

nal four-point function by Veneziano, ' five-, ' six-, and
seven'-point functions have been constructed. In the
Sec. II we present a generalization of these results to the
n-point amplitude, and derive some of the consequences
of this model. One important result is thefactorization
property of the parent trajectory, which we derive in
both the Regge and Feynman languages. In the last
section, we propose a truncation scheme which replaces
the complicated n-point function by simpler expressions.
It is based on the idea of correlation of momenta in a
multipheripheral graph, and gives rise to 2-, 3-, etc.,
particle correlation approximations. In the three-par-
ticle correlation approximation, we write down a Bethe-
Salpeter-type equation in the manner of Amati, Fubini,
Stanghellini, and Tonin. It is hoped that this equation
is an improvement over similar equations' ' used in

recent literature, especially for the high-multiplicity and
low-energy part of the multipheripheral model.

II. GENERAL PRODUCTION AMPLITUDE

From the explicit forms for 5-, 6-, and 7-point func-
tions given in Refs. 2 and 3, we posit the following form
for the (n+2)-point function;

an] ' ' 'dN ]I]

where n, ,,=b(P~+ +P,)z+a is the Regge trajectory
in all channels, and all masses are taken to be 1=Poz

=p '=p„+rz. The choice of (n+2)- rather than
n-point function is for notational simplicity. The
notation is further explained by Fig. 1.

Each momentum is considered to be incoming, and
the particles labeled 0 and p„+r are singled out. With
each internal line (Reggeon) we associate a suitable
variable N. In formula (1), the factors involving vari-
ables zt, , (1—I;) and (1—N, M;~r) have special exponents
and they have explicitly written out in (1).The factors
become uniform when the number of I's exceeds two,
and they can be expressed as

Typical 1'actor= (1—zt, tt,+r . zt.+&) "v"&'+"+»,

where k~2. The symmetry of formula (1) under a
cyclic permutation of indices 0, 1, , I+1 and the
existence of multiple resonances allowed by the Feyn-
man rules are shown in Refs. 8 and 9, where slightly
different but essentially equivalent forms of Eq. (1)
are independently derived. Instead, we now prove that
(1) Reggeizes in the multi-Regge limit.

' J.F. L. Hopkinson and E. Plahte, Phys. Letters 7, 489 (1969).' Chan Hong-Mo, CERN Report No. Th 963; C. J. Geobel and
B. Sakita (to be published).
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Consider the limit
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(S, ;+1$;+1,;+2)/S, ,+2= —K, = COllst. , FIG. 2. Reggeon —Reggeon-scalar coupling.

, ;=(p,+p, + "+p,)'.
In this limit, the K's factorize, "so that

(',*+ . *+,*++)/', *++ =(—') (—'+-) (2h)

The minus sign introduced in the definition of the
K's is for notational convenience. Now, in Eq. (1), we
make the following change of variables:

1—u, = exp(x;/n, ;+1), i = 1, 2, , n 1.— (3)

In the terms in (1) of the form (1—I," u, +)o202'"&~+"+',

we expand the exponential in Eq. (3) and keep only the
first two terms, which are the leading terms for large
values of n», , etc. For a justification of this heuristic
procedure for n=3, we refer the reader to Ref. 2. The
final result is

122'„~( F12) Ol( a22) Oo. . . ( a )»O, n—
&

dxl dx. 1(xl) "—' (x. 1)
—""-&—'

X1X2 '&}»
Xexp( —xl —x2 —' ' ' —x„ 1)l 1+

Q'1gtXg3

( X 2X 1 ) &on 2 n

xl 1+
&n 2, n 1O}n—l, n~- —

( Xl .Xn

xl 1+(-1)=
l &12' ' ' &n-l, n~

where the high-energy limits

x; ) x;
expl

&i,i+1 &i, i+I

and 2b(p& pj) j2j j 12&+1 j 12& j—1+12&+1j—1 j2 j have
been used. We take the limit under the intergal sign,
using

limL1+(y/n) j =e',

and obtain

&.~ (—~»)"'(—~»)"' (-~. 1,.)".-'G-, (5)
where

Now define

where G3 of Ref. 2 gives the coupling of two Reggeons to
a scalar, as indicated in Fig. 2.

In Eq. (6), the r functions appearing in the definition
of V are to be thought of as propagators for Reggeons,
so that V is free of external line poles. Factorization for
a multi-Regge exchange graph illustrated in Fig. 2 is
expressed by the equation,

Gn(&01»' ' '
&20, n—1& Kl»' ' ' Kn 2) r—( &0,1)V(oo, l&&0,2&K1)

xr(—,,)v( .. .„.,) r(—.. .)
X V(&o, n—2,&o,n—1 Kn—2)r( &O, n—1) & (7)

where we have a F for each Reggeon propagator and a
U for each vertex. To prove (7), we use induction. For
n= 3, it is trivially true, and assuming it for n —1, we

have to show that

G„=G„,xv(.,„„,„.„,)r(—,
,„,), (8)

which is equivalent to the formula

G 1VI'= dxl dx. 2(xl) "' '
(n—2 &1 ' &n~2

X(x. 2)
""-' ' exp —

I Z x~+ +-
&;=1 K1' ' 'Kn —3

X ) &&O, n—2

dx„(x 0 ""' '(&+ ~

8""'=0.
Kn 2

(9a)
Here, we use the identity

V(&l.,n', K) = Go(Q&Q &K)

I'(—n) I'(—n')
00 00

dX1dX2X1 ~ '~2 ~' '
r(- )r(- )

X1X2)
Xexp —xl+x2+ l, (6)
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—""-—' Vr
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"N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rey. Letters
19, 614 (1967).

The last step in Eq. (9a) follows from a change of
variable

Xn 2~ Xn—2L1+(Xn—1/K—n—2)j &

which converts the integral in question into formula (5).
Factorization is clearly important if one wants to

cakuj. ate couplings of various high-spin resonances,
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Fxo. 3. Resonance exchange in four- and five-point functions.

using the n-point function. It assures us that, indepen-
dent of n, we shall get the same answer for the couplings
of parent resonances. Also, if one constructs Veneziano-
type formulas for the scattering of high-spin objects
from the n-point function, the result is guaranteed to
be independent of the various ways of doing it by the
factorization property. This situation presumably does
not hold in general for the daughters.

In the next section, the results of the present section
will be reexpressed in the usual Feynman language and
compared with the Regge-Toiler formula (5). There is,
of course, complete agreement, but also this comparison,
in our opinion, clarifies the role of the Toiler variable
~ and relates it to orbital angular momentum. Further-
more, the rules for the coupling may be more useful
in the usual Feynman language.

III. FEYNMAN RULES FOR THE
PARENT RESONANCES

First, we consider the original Veneziano model,
where external momenta are labeled in Fig. 3.

A typical pole in the 12 ~ 34 channel has the form

and the couplings at each vertex,

(2b) J/2
2'P(J) = (P2)P(&)

(J ()1/2

(2b)"'
&"("(P P )= (P )"'".

(J()"'
Here, (P2)P(~) stands for the product P2»P2P'. P2».
Instead of (11), one could use the Hermitian coupling
2i(P2 —pl) and 2i(P3—p4), which would give the same
result, but in view of later developments there is no
advantage in doing this. It should be realized that the
various ways of writing this coupling are the same
as far as the highest-angular-momentum component
(parent) is concerned.

We now write the graph for the five-point function of
Fig. 3(b), with angular momenta J, and J2 exchanged in
the internal lines. The pole corresponding to this reso-
nance exchange has the form'

k =~(n (&»~2) 1 1 /'n23+ Jl k)z
Jl —n12 J2 n43 k —J'1—k )

/'n34+J2 —k) /'2b(pl'Pp) —b —{2+k—1)
XI J —k )4 k

(12)

Again, the highest components of spin come from the
leading powers in the mornenta. To reproduce (12),
the coupling of spin J~ and J2 to a scalar must be given
by

/

J—n12( J
(Jl!J21)1/2/!(:=min( JI,J2)

2'P (&1),v ( J'3) (pp)—
(yo)

where J is the angular momentum of the resonance
exchanged and

//n23+ J) (n23+J)(n23+J—1) (n23+1)
! J )

(Jl—k)!(J2—k) Ik!

X(2b)(J1+Jk/2) —
k(p )P(J1—k)(p )v(J3—k)g P(k) (13)

The symbolic expression (pp)P( ' k)(pp)"( 2 k)g„P(k)

stands for the tensor,

g Plg P2. . .g PkP3Pk+I
. . ~ P3PJ P3 lk+1. . ~ P

'vJ

is the generalized binomial coefIicient. This residue
contains all values of angular momentum ~J, but the
coefiicient of the highest-spin resonance (parent) comes
from the highest power of (p2 p3) in (10).This coefficient
is (2b) ~/J!. We wish to write a Feynman graph for the
resonance with mass n»= J, and we are only interested
in the coupling on the mass shell, since off-mass-shell
coupling is essentially arbitrary.

We denote by
+„,„,...„P1P2" P&(P)

v

the covariant projection operator for spin J at mass
s~——(J {J)/b= p'. lt is sym—metric and traceless in the
vector indices p& .p, z and v& vz separately, and,
dotted into p, gives zero. For simplicity, we denote it
by the shorthand notation d „p(~) (p), and we shall never
need its explicit form. In Fig. 3(a), we then use the
propagator

(J—n12) '&vP(~)(pl+ p2)

Here, !Jl—J2!+2k is the orbital angular momentum
between the Reggeons. One can similarly calculate the
coupling of the parent to (n+ 1) scalars by expanding the
integrand in Eq. (1) with respect to the last variable
24 1 and looking at the highest power of momentum p„.
This situation is indicated in Fig. 4. For the parent
resonance, only the highest powers of the various mo-
mentum transfers (P P 1), . (P Pl)count. We find

g &
p(J) (J/)1/2 Q (pl)pz(kz). . .

/!k1+@2+'"+I('n-1=~

X (pn —1) +n—1(npl klv n02 kl k2v

Xnp, n 2
—kl —kn —2', 2b(pl pp), —)

X1/(k '" k.—.) (14)

In the definition of the B„~function appearing in
Eq. (14), the exponents involving npl ' ' ' np, 2 in
Eq. (1) are shifted by kl, kl+k2, , etc. , and all other
exponents stay unchanged. One can now further expand
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the integrand involved in the definition of B„~function
of Eq. (14) in terms of the variable g„2, and obtain
the coupling given by (13) in an alternative way. The
agreement of the two different ways of calculating the

Reg geon-Reg geon-scalar coupling provides a more
direct proof of factorization. Of course, the couplings
given by Eqs. (13) and (14) must be multiplied by the
appropriate spin-projection operators acting on the
external legs to project our unwanted lower-spin

components. For example, (14) has to be multiplied

by h„&(s&(p„), where p„= pe —p—~
——p~ g.

Finally, we compare directly the three-point coupling
given by Eq. (6) with the one given by Eq. (13).This
will establish a correspondence between the Toiler
variable (( and the tb that appears in Eq. (13), and in
our opinion will help clarify the role played by the
Toiler variable. Integrating the right-hand side of
Eq. (6) with respect to x(, we obtain'

V(n, n', k) = dx,
~
1+—

~

~;-'-"-* . (15a)
I'( —n') o 4 (()

Now set o.= Jr=integer and expand the first factor in

(15a) in power series,1» Jg! F(—n'+m)
(15b)

I'( —n') =e m!(J&—m)! (I()

Now set o.'= J2,

V(J),n', I() =

J~lJ2lmin( Jy, Jg)

V(J(,J2,1() = . (15c)
m!(J(—m)!(Jg—m)! (—t()"

Comparing (15c) with (13), we see that they agree up
to a factor of (A!J'2!)'", which can be absorbed in the
external-line normalization if one identifies the variable
k in (13) with variable m in (15c).Therefore, the Toiler
variable (—1/I() is conjugate to the orbital angular
momentum t; different powers of (—1/I() give the dif-
ferent orbital angular momentum states of the two
resonances of spin J~ and J2.

2miA, (s,t) = Q A„(s,t),
n=j

A„(s,t) = d4qg d'q tt+(qP 1) . 8+(q„'—1—)

IV. MULTIPERIPHERAL MODELS

In the original multipheripheral model of Amati,
Fubini, Stanghellini, and Tonin, the absorptive part
of elastic two-particle scattering amplitude is written
as a sum over an infinite number of terms in the
following way:

0

FIG. 4. Production amplitude
with an external particle hav-
ing spin.

n-I

P, P, p4

~ s channel

process. The relevant diagrams are given in Fig. 5.
For simplicity, all the masses are taken to be 1.

For E„, Amati et al. took the multiple-particle-
exchange graph given in Fig. 5. The major defect of
such a model is that it does not Reggeize, hence it
cannot be expected to be valid in the high-energy,
comparatively low-multiplicity region, where the sub-
energies can be quite high. A recently proposed model
replaces the multiple-particle-exchange graph of Amati
et al. by a multi-Regge exchange graph. ' ~ However,
in the high-multiplicity, low-individual-subenergy region
where direct s-channel resonances are expected to be
important, the validity of such a model is doubtful.
Chan et al. constructed a model which extrapolates
between high- and low-energy regions and apparently
gives good results.

In this section, we propose an alternative model for
the multiple-particle production amplitude E„which
both has high-energy Reggeism and low-energy reso-
nance features correctly built in without double count-
ing. An ideal solution would be to use the amplitude
given by Eq. (1) for E„;unfortunately this leads to an
infinite number of coupled Bethe —Salpeter-type equa-
tions which appear unmanageable. So we define a set of
truncations of the function B„which yield a manageable
set of equations. To this end, we define

&( &' '(P~ P2 8 "
q )

1 l
~ ~ ~ dig ~ ~ ~ d/ / +(u& Ql) &I +(&1 Q2)

0 0

&(pl Qe—1) &(1 —g~) ~12 (. . .

X(1—gn —1) a —&,.—1. . . (1 glg2' ' ' g ) 2b«em+&. —. .

X(1 g . . .g ~)
—2ben en—m (17)

where m&N —1, n(pg, qb)= n((p~+—q(+ +qb)'), n(2
—=n((q~+q~)') as before. Equation (17) is identical to
Eq. (1) for the factors that involve products of up to m
u's; all the factors involving more than m I's are omitted.
For m=n 1, (17) c—oincides with (1). For m=1, it

X+n(plyp2j qly' ' 'qqn)ltn (peqp4j qly' ' '&qn) y (16)
Pa Pa

where A, (s, t) is the absorptive part of the two-
particle scattering amplitude in the s channel, and

E(p&,p2, q&,
~ ~ ~,q„) is the amplitude for 2 &-+ I-particle

An

FIG. 5. Multiperipheral graphs.

"Chan Hong-Mo et at. , Nuovo Cimento 49, 157 (1967).
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reduces to a product of simple Veneziano models, so
that

+( ) '(pl, p2 (tl ' ' '
g ) )-l2(—(2(pl gl) (212)

)-t2( (2(pl&(&2)& (223) ' +2( (2(pl& gn —1)& (rn —1 n) &

(18)

where 82 is the Veneziano function. This function
clearly Reggeizes in all the final momenta q1, -, q;
it also contains the two-particle resonances in the same
channel as dictated by duality. However, it has multiple
poles that are not allowed. Moreover, the model has
no three-particle correlation at all; for example, there
is no dependence on the Toiler variable in multi-
Reggeization. We shall see later that these defects are
removed when one goes one step further in the trun-
cation scheme.

To derive a Bethe —Salpeter-type equation of A, (s, t)
in this approximation we define the following function:

A (pl, p4, P,pl, p3) = d'ql d'q 5+(ql' —1)

Xt)+(q-' —1)&(.+1)(pl, —Pl —&V—»Cl V- P)

X&(.+1)(P4 P4+Ee+—Q' 8 ' ' '
I(' )

(»)
which satisfies the recursion relation

A n+1(pl&p4& P&p2&p3)

which leads to the equation

A&&(pl&P4&P& p2&p3) Al(pl&p4&P&p2&p3)

I'(—~(P2+P)')I'( —~(P+P')')
+ d4P'(1+(p" —1)

N —((p,+P) )—.(P+P ) )
I'( —(p, —P) )r(—(P+P') )

X
I'( —n(P3 —P)' —(2(P+P') 2)

XA.(p„p.; P; p2, p3), (2o)

where A, (s, t) =A, (P1,P4,0,P, ,P,) with s=(P,+P2)2 and
t= (Pl+P4)'. In the next-order truncation, we have

lt (n) (Pl&P2& $1»' ' ' (tn)

dl1. ~ .dN 111 (Pl& Ql) ~ ~ ~ I 1 (P1& Qn—1)

X (1 —Nl) &2 1 ~ ~ ~ (1—I„ 1)

X(1 N1242) 2(&(21.24)+n+b

X(1 N„2N 1)
—23(2n—2 2n)+n+3 (21)

First of all, the two-particle poles are correctly given
by (21), so that there are no simultaneous poles in
variables (q,+q;4.1)' and (q;~)+It,4.2)' which share a
momentum, as is required by Feynman rules. This
feature was of course absent in the previous order of
truncation. We now show that (21) Reggeizes in the
limit (212 +~ ' ' '& (ln —l, n~'3)& Kl=((212(323)/(213& etC.
If one changes variables by

d4P'5+(P" 1)A „(pl, p4,—P'; p2+P, p3 P)— 1—g1 gkg/a12

1
—g*n—1/ &n—1,n

(22)

X&2(~(( 2+P)',~ P+ )'
in a way similar to Eq. (3), upon expending various

XB2((2((p3—P)2,(2(P+P')2)), (19b) terms in lowest order in xl/n)2, etc. , we have

I(:-")(PlP2 Vl
. V-)= dxl dx„ 1(—n(2) o""' (—(2„ l „) (""""expL —(xl+x2+' ' '+x 1)]

—23(2& 23)+n+3
t& X„X„1 q

—23(2 —2 2 )+n+3

X» '» '1' ' x--1 '» 2"-1' 'I 1—
A] 2CX23 O'n —2, n—1n —1,n

(23)

Taking the high-energy limit as before, we have

K„(2)(pl p2 (tl. . . It„)~( (212)+n(u&, 2&). . . ( (2„1„) (»&, 2n-&) dX1. . .dX„1(X1)—»(l&l 2&)—l. . . (X„ 1)
—n(»&, 2n-l) —1

K2K1 Kn —2

(X)X2 X2X3 ~n—2+n—1
Xexp —

( + + + +xl+ +x. 1 ~, (24)
i

which proves multi-Reggeization. Although this order of truncation Reggeizes correctly and has the correct two-
particle resonances, it does not contain three-and-more-particle resonances correctly. It can be easily shown that
the kth-order truncation contains k-particle resonances correctly, but no higher. Instead of discussing higher orders
of truncation, we shall now derive a multiperir)heral equation based on (21), which we believe to be an improvement
over (20).
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Define

E[n) (pl) p2; ql, ' ' ',qn&Q)+) —= dN~ dl yN~ "'~' "' ' I

and

XM af[P2+Q)2] —l(1 Nl) a12 l. . . (1 24 l) an-1 n—l(1 —I) a[(2n+4]) 1

X(1—I[242) 23[21'28)+a+b. . . (1 24 224 l)
—2b[gn—2 2n)+a+b(1 I [24)

—2b [2n—l 4])+a+b (25)

A [2]= d ql d'q„ lb+(ql' —1) g+(q l —1)

xl~. "&(pl,p2; ql, ,q l, q, Q,~)& "'(p3, p4; —ql, , —q. l, —q, —Q, &), (26)

which satisfies the recursion relation

A [n+l) (plpp2; p3)p4, q)Q)N, V) ='d q 5+(q —1) dg d[I

XA ['&(Pl P +Q' P —Q P 24'n' q' Q'=q)24 a[[22+—0+2)2] lP a[—(23 —O q)2—] 1—(1 -~)—a[[2'+2)2]—1

which leads to the equation
X(1—24'I)—2b[&' @]+n+b(1—p'p) —»«' @&+n+b (27)

A s (PlqP2] P3P4&q&Q&24+) 2 A n (Pl~P2~P3yP4qq, Qq24p) =A 2 (Pl~P2qP3qP4qqqQq24q&)+ d q h (q 1)
%~2

where

X24
—a[[p2+Q+2)2]—1&

—a[[p3-4]—2)2]—1(1 I)—a[[2'+2)2]—1(1 &)
—a[[2'+2]2]—1(1 24&24) 2b[2'Q—)+n+b

X(1—2'v) ' ' '"'+'+'A, "(pl, p2+Q; p3 —Q, p4, 24', ~', q', q), (28)

A 2 (plyp2yp3yp4yQ)qual)~) = d qlb (ql 1) dN1 d& I —a[(yy+ql. ) ]—I& —a[(y4—q1) ]—1

X (1—I,)—a [«+4]]2]—l(1—pl
—a [2+4])2]—l(1—24224)

—2b [2l 4])(1—ply)
—23 (4] m]

and

A, (Pl,P,,P„P4)
=—A, (pl, p2, p3, p4, Q=O, q=0. v=O, 24=0).

The derivation of equations using higher truncations is
now straightforward; these equations will always
involve the same number of variables of integration
(d4q' and dv'd24') but a larger number of "hanging"
variables.

V. CONCLUSIONS

We have demonstrated this property of factorization
for the coupling of an arbitrary-spin resonance to n
scalars and also for arbitrary-spin —arbitrary-spin —scalar
vertex, and only for the parent resonance. It would be
interesting to extend factorization to more complicated
processes.

Finally, the various truncations of the n-point func-
tion discussed in the last section may prove useful in the
case of elastic processes, especially for the calculation
of the Pomeranchon trajectory.

We have presented Reggeized resonance models for
arbitrary production processes, with only the provision
that the external particles carry spin zero. One can then
easily compute similar expressions for external particles
with spin, by letting the scalar external particles form
resonances in pairs (or in higher multiplicity). Different
ways calculating the same process must give the identi-
cal result if there is a general factorization theorem.
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