Dipole Model of the A_2 Meson and Charge-Exchange Scattering and Polarization

T. J. GAJDICAR AND J. W. MOFFAT*

Department of Physics, University of Toronto, Toronto, Canada

(Received 23 December 1968)

The A_2 meson is described as a dipole resonance and a linear Regge-dipole A_2 trajectory is assumed to dominate the charge-exchange process $\pi^- p \to \eta n$. A least-squares fit to the differential cross-section data for four adjustable parameters is performed, and leads to a $\chi^2 = 11$ for 25 experimental points. A nonzero polarization is predicted. The multichannel problem corresponding to A_2 production in the process $\pi p \to A_2 p$ is studied and a phase-shift model incorporating a dipole A_2 which produces different peaked structures in the various decay models is given by way of example.

1. INTRODUCTION

M ISSING-MASS experiments¹ have shown that the $A_2(1300)$ meson has a two-peaked structure in events decaying into $\rho\pi$. The $\eta\pi$ decay events also indicate a double-peaked structure, but the question as to whether the $K_1^0K_1^0$ events show a similar structure is not yet conclusive.

A dipole model of the ρ meson has been investigated² and applied to the $\pi^- p \rightarrow \pi^0 n$ charge-exchange scattering and polarization, and also the electromagnetic form factors with a resulting good fit to the data with few parameters.

In this paper, we study the charge-exchange process $\pi^- p \rightarrow \eta n$, using a Regge-dipole model of the A_2 meson of the form developed in Ref. 2. We also study the properties of the dipole A_2 within a multichannel scheme and discuss a possible model of the different partial modes $\rho \pi$, $\eta \pi$, and $K_1^0 K_1^0$.

2. REGGE-DIPOLE A_2 AMPLITUDE

A double-pole model of the A_2 has already been considered,³ but we concern ourselves only with a model of the A_2 as a dipole trajectory in the *t* plane generated by the coalescing of two single-pole trajectories for all *t*, such that the dipole amplitude can be obtained from the single-pole amplitude by differentiating with respect to $\alpha(t)$.²

The single Regge-pole amplitude for the process $\pi^- p \rightarrow \eta n$ is given by

$$A = f + i(\boldsymbol{\sigma} \cdot \mathbf{q}' \times \mathbf{q}/q^2) \tilde{f}, \qquad (1)$$

where the non-spinflip and spinflip amplitudes f and \tilde{f}

² R. E. Kreps and J. W. Moffat, Phys. Rev. **175**, 1942 (1968); R. E. Kreps and J. W. Moffat, *ibid*. **175**, 1945 (1968).

⁸ D. M. Austin, J. V. Beaupre, and K. E. Lassila, Phys. Rev. 173, 1573 (1968). The model considered here results from the crossing of two trajectories arising in an eight-parameter problem. are given by

$$f = -(\gamma_A(t)/\sqrt{s})\alpha_A(t)(E/\mu)^{\alpha_A(t)} \times [-i + \cot(\frac{1}{2}\pi\alpha_A(t))], \quad (2)$$

$$\tilde{f} = (\alpha_A(t)/4M) [\gamma_A(t) - \alpha_A(t) \tilde{\gamma}_A(t)] \\ \times (E/\mu)^{\alpha_A(t)} [-i + \cot(\frac{1}{2}\pi\alpha_A(t))], \quad (3)$$

where $\gamma_A(t)$ and $\tilde{\gamma}_A(t)$ are the non-spinflip and spinflip residues, respectively. By differentiating Eqs. (2) and (3) with respect to $\alpha_A(t)$, we obtain for the dipole amplitudes

$$f_D = -(\gamma_A/\sqrt{s})(E/\mu)^{\alpha_A(t)} \{ [-i + \cot(\frac{1}{2}\pi\alpha_A(t))] \\ \times [1 + \alpha_A(t) \ln(E/\mu)] - (\frac{1}{2}\pi\alpha_A(t)) \operatorname{csc}^2(\frac{1}{2}\pi\alpha_A(t)) \}, \quad (4)$$

and

$$f_{D} = (1/4M) (E/\mu)^{\alpha_{A}(t)} \{ [-i + \cot(\frac{1}{2}\pi\alpha_{A}(t))] \\ \times [\gamma_{A} - 2\alpha_{A}(t)\tilde{\gamma}_{A} + \alpha_{A}(t) \ln(E/\mu) \times (\gamma_{A} - \alpha_{A}(t)\tilde{\gamma}_{A})] \\ - \frac{1}{2}\alpha_{A}(t)\pi \times \csc^{2}(\frac{1}{2}\pi\alpha_{A}(t))(\gamma_{A} - \alpha_{A}(t)\tilde{\gamma}_{A}) \}.$$
(5)

The scale factor $s_0 = 2M\mu$ was used to give the energy dependence $(E/\mu)^{\alpha_A(t)}$, where *M* is the nucleon mass and μ is the pion mass. The polarization parameter *P* is then given by

$$P = \frac{-2 \operatorname{Im}(ff^*) \sin\theta}{|f|^2 - (4t/s)|\tilde{f}|^2},$$
(6)

FIG. 1. Fit of $(d\sigma/dt)(\pi^-p \to \eta n)$ reduced by the branching ratio $B(\eta \to 2\gamma)$ which is the only mode observed in the data (Ref. 4). 1875

^{*} Supported in part by the National Research Council of Canada.

¹D. J. Crennell, Uri Karshon, Kwan Wu Lai, J. Michael Scarr, and Ian O. Skillicorn, Phys. Rev. Letters **20**, 1318 (1968); F. Lefebvres, B. Levrat, H. R. Blieden, L. Dubal, Maria N. Focacci, D. Freytag, J. Geibel, W. Kienzle, B. C. Maglic, M. Mastin, and J. Orear, Phys. Letters **19**, 434 (1965).

FIG. 2. (a) Neutron polarization predicted by the dipole model for $E_{\rm lab}=6$ GeV as a function of -t. (b) Neutron polarization at $t\sim -0.2$ (GeV/c)² in the reaction $\pi^-p \to \eta n$ as predicted by the dipole model along with the data points from Ref. 5.

and the differential cross section is

$$\frac{d\sigma}{dt} = \frac{\pi}{q^2} \left(|f|^2 - \frac{4t}{s} |\tilde{f}|^2 \right), \tag{7}$$

where θ is the scattering angle in the *s* channel.

3. CHARGE-EXCHANGE SCATTERING RESULTS

A least-squares fit was made to 25 differential cross section points⁴ at low values of |t|. A linear trajectory and constant residue functions were used giving rise to the four adjustable parameters $\alpha_A(0)$, $\alpha_A'(0)$, γ_A , and $\tilde{\gamma}_A$ assuming that they should be adequate to describe the essential features of the dipole model in the *t* range $0 \le |t| \le 0.6.$

The data points were used at the five laboratory momenta 3.72, 5.9, 9.8, 13.3, and 18.2 GeV/c for |t| < 0.6 (GeV/c)². (See Fig. 1.) The fit to the data resulted in a $\chi^2 = 11$. The parameter values found were $\alpha_A(0) = 0.238$, $\alpha_A'(0) = 0.412$, $\gamma_A = 0.148$, and $\tilde{\gamma}_A = 2.15$. The polarization predicted by these parameters is positive and is shown in Fig. 2 along with the few presently available experimental points.5 Our dipole model shows quite a substantial polarization decreasing slowly with increasing energy for $t \sim -0.2$ (GeV/c)².

4. MULTICHANNEL CONSIDERATIONS

The experiment performed by the BNL group¹ gives some indication that the double-peaked structure in the A_2 mass region occurs only in the $\rho\pi$ and $\eta\pi$ decay modes, while the $K\bar{K}$ events contribute only to the higher-energy peak at about 1315 MeV with a width of about 20 MeV. The BNL group has suggested that the peak at the lower energy ~ 1270 MeV might be associated with a resonance having $J^P = 1^-, 3^-, \cdots$, since this would forbid $K\bar{K}$ decay and only the higher peak at 1315 MeV would be observed. In light of recent experiments, 6 however, a $J^P = 2^+$ assignment to both A_2 peaks is favored, and though the single-peaked spectrum for the $K\bar{K}$ decay mode is by no means firmly established,⁷ a number of models in which the resonance activity in the A_2 region is 2^+ have been proposed which allow for this possibility.8

We examine a multichannel scheme in which the dipole A_2 may interfere with other channels to produce a single $K\overline{K}$ peak in the upper A_2 mass region. We use another $J^P = 2^+$ single pole to produce this interference by way of an example, but do not wish to imply necessarily that such a resonance actually exists. In our example, the coupling of this added pole to the $\pi\eta$ channel turns out to be about 40% of the $\pi\eta$ coupling to the dipole A_2 , and could be readily made smaller with the same qualitative results. The dipole Regge analysis of the $\pi p \rightarrow \eta n$ process would remain unaltered if it were assumed this coupling were negligible for the region of momentum transfers involved.

Consider the multichannel problem with the sub-Smatrix connecting states with $I^{q}=1^{-}$ and $J^{P}=2^{+}$. Assuming that the multichannel problem at about 1300 MeV is dominated by $\rho\pi$, $\eta\pi$, and $K\bar{K}$ channels, the diagonalized sub-S matrix can be represented by

$$S = \begin{bmatrix} e^{i2\delta_1} & 0 & 0\\ 0 & e^{i2\delta_2} & 0\\ 0 & 0 & e^{i2\delta_3} \end{bmatrix},$$
 (8)

where the δ 's are *real* eigen phase shifts, since S is unitary. Denoting the $\rho\pi$, $\eta\pi$, and $K\bar{K}$ states by $|1\rangle$, $|2\rangle$, and $|3\rangle$, respectively, they can be expanded in the

⁴ O. Guisan, J. Kirz, P. Sonderegger, A. V. Stirling, P. Borgeaud, C. Bruneton, P. Falk-Vairant, B. Amblard, C. Caversasio, J. P. Guillaud, and M. Yvert, Phys. Letters **18**, 200 (1965).

<sup>Guillaud, and M. Yvert, Phys. Letters 18, 200 (1965).
⁶ D. D. Drobnis, J. Lales, R. C. Lamb, R. A. Lundy, A. Moretti,
R. C. Niemann, T. B. Novey, J. Simanton, A. Yokosawa, and
D. J. Yovanovitch, Phys. Rev. Letters 20, 274 (1968); P.
Bonamy, P. Borgeaud, S. Brehin, C. Bruneton, P. Falk-Vairant,
O. Guisan, and P. Sonderegger, in</sup> *Proceedings of the Heidelberg International Conference on Elementary Particles, Heidelberg, 1967*, edited by H. Filthuth (Wiley-Interscience, Inc., New York, 1968).
⁶ G. E. Chikovani, M. N. Focacci, W. Kienzle, U. Kruse, C.
Lechanoine, M. Martin, and P. Schubelin, Phys. Letters 28B, 526 (1960)

⁽¹⁹⁶⁹⁾

⁷ B. French, in Proceedings of the Fourteenth International Conference on High-Energy Physics, Vienna 1968 (CERN, Geneva,

 ⁸ J. V. Beaupre, T. P. Coleman, K. E. Lassila, and P. V. Ruuskanen, Phys. Rev. Letters 21, 1849 (1968); Y. Fujii and M. Kato, Nuovo Cimento 58, 297 (1968).

eigenvectors $|e_j\rangle$ of S. Thus,

$$|i\rangle = \sum_{j=1}^{3} a_{ij} |ej\rangle, \qquad (9)$$

where we choose to consider i=1 and 3. The two-body scattering events can then be described by the T matrix

$$T = (S-1)/2i.$$
 (10)

From the time-reversal invariance of the S matrix, we deduce that the a_{ij} are real coefficients. We have

$$T_{ij} = \sum_{k=1}^{3} a_{ik} a_{jk} e^{i\delta_k} \sin\delta_k , \qquad (11)$$

where

$$\sum_{k=1}^{3} a_{ik} a_{jk} = \delta_{ij}.$$

$$(12)$$

For a dipole resonance the unitary S matrix takes the form 9

$$S = \left(\frac{E - E_0 + i(\frac{1}{2}\Gamma_1)}{E - E_0 - i(\frac{1}{2}\Gamma_1)}\right)^2,$$
 (13)

and if we assume that δ_1 is produced by a dipole resonance then

$$\tan \delta_1 = \frac{\Gamma_1(E_0 - E)}{(E - E_0)^2 - \frac{1}{4}\Gamma_1^2},$$
 (14)

where $\Gamma_1 \approx 60$ MeV and $E_0 \approx 1300$ MeV. We also assume that δ_2 is produced by a second, single-pole resonance with

$$\tan \delta_2 = -\frac{1}{2} \Gamma_2 / (E - E_1),$$

where $\Gamma_2 \approx 30$ MeV and $E_1 \approx 1270$ MeV. The third phase shift δ_3 is assumed to be effectively zero. We shall choose the coefficients a_{ij} to be effectively constant in the energy range considered with the values

$$a_{11}=0.9, a_{12}=0.4, a_{31}=0.4, a_{32}=-0.9.$$

Here unitarity demands that

$$a_{11}^2 + a_{12}^2 \leq 1$$

and

$$a_{31}^2 \leqslant 1$$
.

The amplitudes T_{11} and T_{13} neglecting kinematical

FIG. 3. (a) Eigen phase shifts arising from our multichannel model. δ_1 results from a dipole at 1300 MeV with $\Gamma_1 \sim 60$ MeV and δ_2 results from a pole at about 1270 MeV with $\Gamma_2 \sim 30$ MeV. (b) $|T_{11}|^2$ and $|T_{13}|^2$ for the respective processes $\rho \pi \rightarrow \rho \pi$ and $\rho \pi \rightarrow K \bar{K}$ as given by our model of the multichannel problem.

factors then describe the processes $\rho \pi \to \rho \pi$ and $\rho \pi \to K \overline{K}$. A calculation of $|T_{11}|^2$ and $|T_{13}|^2$ based on the above assumptions leads to the results shown in Fig. 3. A similar model has been considered by Rosdolsky¹⁰ based on different eigen phase shifts.

5. CONCLUSIONS

The A_2 as a dipole gives a very good fit to the $\pi^- p \rightarrow \eta n$ differential cross sections with a minimum of parameters. Not too much can be said about the predicted polarization in view of the present poor experimental situation. A further investigation of the A_2 dipole trajectory considering KN charge-exchange scattering would be an interesting study. We have also shown that within the multichannel framework an A_2 dipole would still be relevant even if double-peaked structures were not observed in all the decay modes corresponding to $I^G = 1^-$ and $J^P = 2^+$ resonances in the 1300-MeV region.

181

⁹ M. L. Goldberger and K. M. Watson, *Collision Theory* (Wiley-Interscience, Inc., New York, 1964), Chap. 8.

¹⁰ H. Rosdolsky, Phys. Rev. 180, 1403 (1969).