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With reference to a previous paper by Fronsdal, the expression for Compton scattering on
the fundamental state of the hydrogen atom is derived, taking into account the effect of the
proton motion. An example of its extension to an inelastic case is shown. The result is dis-
cussed in connection with some problems of interpretation of the formalism of the infinite-
component wave functions.

1. INTRODUCTION

The formalism of the infinite-component wave
functions has often been proposed and used in
recent years to describe systems having internal
degrees of freedom. '~2 One of the problems
arising in this formulation is to show as clearly
as possible the connection between the new mathe-
matical techniques and the older ones. The sys-
tem most commonly studied in this connection is
the hydrogen atom, since there the older formula-
tion is completely clear and the newer formulation
can be built up explicitly. In particular, Fronsdal
recently used this formalism to calculate the scat-
tering of photons by bound electrons without using
the dipole approximation, but still keeping the
proton mass infinite. Here we wish to go a step
further and study the effect of the finite mass of

the proton, which allows recoil effects and inter-
action of the proton with real photons. The main
reason for including these effects is not that the
finite-mass effect is important experimentally,
but to study, in a concrete example, how one can
describe, in the frame of the infinite-component
formalism, the interaction of a composite system
in which both the components interact. In partic-
ular, we shall see that the requirement of locality
for the interaction Lagrangian is no longer valid
and that some weaker condition should be substi-
tuted. The paper is, in a broad sense, a continu-
ation of Ref. 3, although its particular purpose
led us to choose a different starting point, i.e. ,
we use the classical Schrodinger formulation and
introduce the infinite-component functions after
the problem has been completely formulated.



G. BISIACCHI AND G. CAI UCCI

2. FORMULATION OF THE PROBLEM IN SCHRODINGER VARIABLES

Using Schrodinger variables the problem is a standard one. However, we think it useful to outline the
main steps of the formulation. Starting from the two-body wave function +(r „r2), where we use the
canonical separation of c.m. and relative variables,

@(r„r,) = (2m)-" 'e' p(r ),
where c„,=m„2/m, m =m, +m» p, =c,c2m, 5= cr, + cr» r =r, —r„wehavetowritedownthecurrents
of the particles "1"and "2" in order to express the two basic interactions with the photon. In this way,
by taking the Fourier transform, a term corresponding to the atom with total momentum p, emitting a
photon of momentum k' from the particle "1", yields a matrix element

(e /m ) 5(p —p'-k') I'q~(q)y. (q —c f')(c p —q). e(f')d'q
1 1 " f i 2 1 (2. 1)

and analogously for the particle "2." Here the Coulomb gauge condition k' ~ e {k')=0 has already been used.
Since we are considering a two-photon process, we know that, besides the interaction of this vertex, we
also have the contact term, corresponding to the original A' interaction:

(e '/m ) 5 (p —p'+ k —k') f q&* (q ) q . [q —c (f'- f )]d'q e (f ) ~ e (f')
1 1 f i 2

(2. 2)

y y*/(U-K- E)=(U-K-H) ', where Hy —= (q'/2p, —e'/r)cp =E y,P P V P V P P P

To obtain the complete matrix element we have to connect any pair of first-order vertices with the pertur-
bative denominator energy ( U —U„) and sum over all intermediate states v, including the scattering states,
and add the two contact terms. Denoting U the total nonrelativistic energy, including the c.m. kinetic en-
ergy K, and by E~ the binding energy of the atom, the denominator can be written as U-K-E„, where K
doesnotdepend, in the nonrelativistic case, on the internal quantum numbers v but only on the total three
momentum; E„on the contrary depends only on v.

In order to sum over v it is always possible to write

(2. 3)

i. e. H is the relative Hamiltonian. Since we have to use the II operator acting on wave functions which
are given as functions of q +T, instead of as functions of q [see Eq. (2.1)], we shall write

H(T) y (q +T)-=[(q +T)'/2p —e'/r] y (q +1)

With these conventions the complete matrix element is

Sg=(e '/m ') f q(q)( cp'-q) e(k')[U -Z H( cf']-'(c-p-q+c k') e(f)p. (q —c f'+c f)d3q

+(el&2/mlm2) fy*(q)(clp' —q) e(k')[U& —K&-H(-c2k')J '(c2p+q —c2k') ~ e (k)y. (q —c2k'-clk)d'q

+(el'/ml') fp+( )q(c pl—q) e(f)[U -K -H(c f)] '(c p-q —c f).e(f')y. {q —c k'+c k)d'q
Z

(2.4)

+(ele2/mlm2) fy*(q)(clp —q) ~ e(k)[U -Z -H(c f)] '(c p+q+c f).e(f')y. (q+c k'+c k)cpq

+(e '/m) fp~(q)y. (q -c (k'-f))e (f) ~ ". (f')d'q+(e -e, m -m, , c --c ].
'E

The substitution at the end of formula (2. 4) corresponds clearly to the exchange of particle "1"with "2",
the minus sign in —c, originates from the substitution z- —r. In the first and second terms, corresponding
to direct terms (see Fig. 1), we have

= (p +k)~/2m = (p'+k') /2m U =m+P /2m+k =m+P'2/2m+k'.
D

In the third and fourth terms, i.e. , crossed terms, we have

Z' =(p —f')'/2m=(p' —f) /2m, U =m+p'/2m —u'=m+p"/2m —a.

To evaluate BK explicitly, we should perform an integration over d q, instead of the original sum and in-
tegration over v, but we will transform it into a discrete, although infinite, sum.
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FIG. 1. Diagrams representing the scattering process.

The light lines refer to particle "1," the heavy ones to
particle "2,"the dashed lines to photons. The other 5
terms are obtained by exchanging the light with the
heavy lines,

3. THE INFINITE-COMPONENT FORMALISM

As done in previous papers, ' and in the same way as in Ref. 3, the infinite-component wave functions
and the "Majorana" matrices will be introduced through the operator correspondence

ax = 10 —I4, q. = a( 1 0
—I'4) ' I'. , q = a'( I'0 - I'4) ' ( I"0+I'4),0

and with the following correspondence for the wave functions and their scalar product

fy+(q) 6 (r, q) y(q+1)Pq=q (0)(1;-r,) 6(r)q(1) .

(s. 1)

(s. 2)

The constant a is real and positive, but otherwise arbitrary, 8(I') is the same operator as 8(r, q), where
the arguments have been transformed according to Eq. (3.1). The meaning of the argument in the g func-
tion will be clarified later.

The expression for SK, given by Eq. (2.4) can then be translated in this new formalism and to this end
we introduce the following five-vectors~

Q&(1)= (2p) '{2g(U& —K&) —l' —a', —2aT, —2p, (U —K ) +P a)2-

S,(T)=a '{(c,p -1)~ e, —ae, —(c,p -1)~ e), 82(1)=a '{(c2p+1)~ e, ae, —(c,p+T) ~ e) (s. 3)

with A = C, or D; e —= e (k), e'=-e (k'); and 8', and 8,', which are obtained by the substitution of e ' for e.
Note that (Qg)' & 0 and Q~'(T) =2a'(Kg —U~)jp. , i. e. Qg'(l) is independent of I, and P = —1. Moreover

Qm& 0 when the incoming photon is of sufficiently low energy while Qa & 0 for a high-energy photon, corre-
sponding to the possibility of a real ionized state. The critical point, in the infinite-proton-mass case
would clearly be 0 = —E, here the situation is a little more complicated by the presence of the c.m. kinetic
energy. Apart from final considerations we shall consider the case Q & 0, and we shall extend the validity
of the results by analytic continuation into the case Q &0. With these auxiliary quantities, and the corre-
spondences (3.1), (3.2), Eq. (2. 4) can be written as



188 G. BISIACCHI AND G. CAI UC CI

SR = (e ~/ml'))1) (0) 8'(0) I"a'[Q (-c2k') ~ I'+e~a] ' 8 (- c k')' I"(.(c k —c k')
i 2 2

+(ele /m m2) g (0)SI(0) ~ I'a'[Q&(-c2k') ~ I'+e'a] -' h (-c k') I'(. (-c k —c k')
2 2 i 1 2

+ (ele2/mlm2) ( (0) 8 (0) I"a' [q (c2k) ~ I +e'a] ' hl(c2k ) ~ I'&. (c k —c2k')
2

+(e '/mi') g (0) 8 (0) ~ I'a'[Q (c 0) ~ I'+e'a]-' h'(c k) I' )t). (c~k+c k')
i 1 2

'1 '2'
+ (el'/ml) g (0) ( l" —I 4) )j). (c k —c k' ) e (k ).e (k' ) + m -m,

C ~ —C
1 2'

(3.4)

and this equation can be put in close correspondence with Eqs. (7), (8) and (9) of Ref. 3 of which it is a
generali»tion. As shown in the quoted references, the ( function satisfies an equation, linear in the
I matrices, which is the translation of the Schrbdinger equation (2. 3). In fact (2. 3) is transformed into

[{-2E/1J,)'~'~ r e']-q(T)=O,

X=X(1)=(2ap) ~(-tu/2E) I~ (g +p —2pE, 2ai, , a~ p+2pE)

(3. 5)

(3. 8)

So it is clear that g depends essentially on X, which in turn depends both on 1 and on the internal quantum
number ) which defines E„; (|)„(T)would be more correct1y written as g (y„{T)) .

We can define also the unit vector referring to Q as —) q ~
'Q and call it. )7 (T); as a pure formal fact,

note that 8', (k) ~ S,(k') = —e''e. Before proceeding in the calculation of II, which amounts essentially to
the same steps and operations done in F, we have to make some remarks related to the fact that we have
two charged particles of finite mass. Looking at Eqs. (2.4), (3.4) and remembering that the arguments
of H or Q are connected to the momenta of the intermediate state, we see that we go, in the vertex, from
one state to another changing the argument not by the three-momentum transfer, but by that quantity mul-
tiplied by a constant, say c,. In the original formulation of the infinite-component theories it was intended
that the change of the argument, from the initial to the final state in a vertex, was just that given by a
simple kinematical transformation. This result can be obtained by just putting c, =1, c, = 0, that is, by
considering the proton mass to be infinite and discarding its electromagnetic (e. m. ) interaction. In the
more realistic case the situation is less simple, as the internal properties of the bound system are strictly
related to the appearance of the coefficients e, and c, and to the "nonlocality" of the interaction.

In order to better clarify this point let us consider the simple case of a Coulomb interaction with an ex-
ternal field. In this case we have two graphs contributing to the first order in the e. m. field, and the
corresponding matrix element would simply be

e&f4 (r, r )y. (rl, r )2 (r )Ch dr +e fy (r, r )y(r, r )A (r )dy' d~i

which can be rewritten as

(Rw) 'fqt+(r)(e e ~ +e e ' p, (r)A (k),

where as usual we defined

%'e see then that if we take into account the structure of the system we are led to define a "pseudolocal"
current which algebraically reads
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instead of the usual form

j (k)=]I) (I' —I' )e [I)., where x.=(S. —S. )/a, p —p. =k .Z' i0 i4 ' i

4. EVALUATION OF THE MATRIX ELEMENT

It is evident that Eq. (3.4) reduces to Eq. (7) of Ref. 3 when the mass of the proton is allowed to go to
infinity, in which case only the first, third, and fifth terms survive. Moreover, the other terms are
all of the same kind so that the evaluation goes exactly as in Ref. 3, to which we refer.

We wish only to sketch a point that can be of some interest. The main trick in the summation over the
intermediate statesistheintroduction of the discrete set of mathematical states g„(X)which are eigen-
states of X ~ I' with eigenvalues n+1. On the contrary the external states are the physical states, in direct
correspondence to the ones of Schrodinger s through Eq. (3. 2) and satisfying Eq. (3.5). It is convenient
to find the relation between the two sets, for a given n and X. The relation amounts to a change of normal-
ization, since the mathematical states are normalized as @m (X)9 (X)=1. Comparing the two normaliza-
tions we find that, writing [tm(X) = cm%'m(X), we must have

lc I'=e'p/a(m+1)' . (4. 1)

(4. 2a)

Another problem we have to solve, is the evaluation of the operation of the I' matrices on the states +.
In the quoted reference 2 this action has been expressed through the tensor representations of the states'~'

The explicit expression we obtain, taking into account that we always have to perform contractions
with traceless tensors, and so drop every term in g b, isab'

a a
e (~)r =[(2N+l)I!/(N+3)!][(2N+3)X. —B/BX ] X ~ ~ ~ X ~P* a, b, c0, ... , 4.

(0) C

for the fundamental state, where P, using formulas (II-16, 17) of Ref. 6 is defined by P*P =2(N+2)!/
(2N+1)!!. For the first excited state, we get analogously

(X)!' =[(2N+1)!!/(N+8)!] S![(N+ ) —N(3- ))/((N(+4)], g

(N+4) c k (N+4)
~

h c (4. 2b)

Here we write y* =y "e, where /zan(~ e(~ =B =]). X —g ', i. e. , the e(~) are unit vectors ina b ab a b ab.

the space orthogonal to X, and find

I y I
' = —4!!(N+ 3)!/N(2N+ 1)!!

In the particular case in which N= —2, corresponding to the SO(4, 1) representation we are using, ')'
we get very simple coefficients; in particular, for the ground state we found that, in the tensor repre-
sentation, the application of a I" is equivalent to the application of the operator —(B/BXc)IXI, where IXI
is to be put equal to 1 after the derivative has been obtained [see Eq. (22) of Ref. 3]. With these ele-
ments, we obtain now the formula which is the exact parallel of Eqs. (7) and (27) of Ref. 3:

((e /m )(e p, /)af & (XX ) —e p(e e /m m )
2 2 a ' 2

&&[8' (k) Z
b

(&', qD, X &) 8& (k')y g' (k') Z (]).',)7, ]). ) h (k)]} (4. 3)

where X' is the unit vector referring to the final state,

q I
———lq (—c2k)I 'q (-c2k), q 2

———lq (clk)I 'q (c k),

,=- Iq (c k')I-'q (c k'), q =- lq (-c k')Iq (-cP'),
(4. 4a)

the Ys are the unit vectors referring to the initial state with the following law [see Eq. (3.6)]
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X»-—X(- c,k +cmk'), X» =X(-c,k —c,k'),
(4. 4b)

X2~ = X(c,k + cmk
' ),

g=(1, 5, 1) .

X„=X(c,k —c,k '),
(4. 4c)

Moreover

x =-2&+ tx t- j~ t+~ ~
8

a a, a (4. 5a)

S (X', q, X)=2ie X'+ X +
~

(sin@) '(IX'I IXI)-'[X'.3 ~ x'X 8 a]
8 8

x[,F, (l, —b;1 —b;ye ) —,F, (1, —b;1 —b;ye )]
i4 -i4

(4. 5b)

The parameter 5 and the auxiliary variables y and 4 are defined in the same way as in Ref. 3:

e'p' ' (X'a X')'"(X a X)' '
b=

[2(Ã —U~)] '~' ' ( IX' I+rI X') (IXI+q ~ X) '

X''O'X
(~' ~ & ~')"'(~ ~ X)'' ' ab "a"b

3 (4. 6)

These expressions can be further simplified by the substitution of ( 8 /» ) I X I for X+ &/BX; here this prop-
erty has not been explicitly used because by using the other form it is more straightforward to obtain the
expression for excited final states of the atom.

Comparing Eq. (4. 2a) with Eq. (4. 2b) and taking into account Eq. (4. 1) we see that the amplitude for the
case of the first excited state can be obtained by substituting

1

2 ' (2g +2x 8/» +s /»"»' ) e for (x +s/»"),
ab a a

and the calculation of the more excited states amounts to the generalization of Eq. (4. 2b) (clearly the 9/»
does not act on the vector P a).

5. FINAL REMARKS

We see here that the method of calculation is
sufficiently flexible so as to allow generalization
of the calculation done in Ref. 3, both with

respect to the recoil effect and with respect to in-
elastic processes; the further obvious generaliza-
tion would be to the calculation of the three-body
final state, with the ionization of the atom. This
is less immediate than the case of the excited
bound states but still workable within this formal-
ism.

With respect to the other problem, which was
the main interesting point for us, i. e. the con-
nection between form factors and external prop-
erties of the wave function, we can repeat that,
even in this very simple model, it is less strict
than in the original formulation. '~' (The problem
of the locality of the currents, within the infinite

component formalism, has also been dealt with
by Y. Nambu, in a recent paper'). Still in any
case the Lorentz properties (here in fact the
Galilei properties) of the states define the func-
tional dependence of the form factor on the mo-
mentum transfer. At this point, the connection
between wave function and form factor in more
interesting, but still soluble, examples, namely
tightly bound systems, relativistic internal kine-
matics and possibly three-body systems, is still
an open problem. The analysis of this problem,
as indicated by presently known models, could be
relevant for high energy physics.
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Using the impact-parameter method, calculations have been done on the excitation of helium
by protons in the kinetic-energy region of 10-10000 keV. The total wave function of the sys-
tem is expanded in a set of helium eigenstates including the n= 1; n = 2, and n= 3 (except for
3 8) states. The resulting linear differential equations (up to 18) have been solved numerically
and compared with existing calculations and experiment. It is shown that for higher impact
energies the many-state cross sections tend to the Born cross sections, but that for non-
allowed transitions discrepancies exist up to very high energy. For allowed transitions„ the
agreement between theory and experiment is reasonable. Sublevel cross sections are shown
to be very sensitive to the number of states retained in the expansion; only at the highest
energies for which calculations have been done are they in agreement with Born sublevel cross
sections. This fact is also shown by a comparison of calculated and measured polarization
fractions of the emitted light induced by the excitations.

I. INTRODUCTION

Up till now the excitation of helium by protons
in the keV energy region has been calculated in
the Born and distortion approximations. Born re-
sults and a review of other work have been pre-
sented by the author in a previous paper, ' hence-
forth referred to as I. The aim of this paper is
to expand the total wave function of the system in
an increasing number of target eigenstates and
investigate whether the resulting cross sections
show any convergence and at which energy, and
how the theory agrees with experimental results.

For reasons of mathematical simplicity no pro-
jectile eigenstates were included, although it is
felt that thisseverelylimits the usefulness of the
method. The states which have been included are
1'S, 2'S, O'P, 3'P, and O'D including the magnetic
substates. The collision plane was chosen to be
the XZ plane, and the real representation of the
substates was used, so that this set yielded a
maximum of nine states. The combinations for

which expansions have been made include the fol-
lowing: 1$-28-2P [4 state], 1$-2P [3 state], 1$-3P
[3 state], 18-3D [4 state], 1$-2P-3D [6 state (2P)J,
1S-3P-3D [6 state (3P)], 1S-2P-3P-3D [8 state],
and 1S-28-2P-3P-3D [9 state].

II. THEORY

We shall only give a short description of the
theory; a more complete treatment has been
given by Bates.' Atomic units will be used through-
out, unless otherwise mentioned.

We assume that the proton is moving along a
rectilinear path with collision parameter p and
constant velocity v. The trajectory is parallel to
the Z axis of a fixed coordinate system with origin
located at the helium nucleus. The internuclear
distance is denoted by %. Defining the electronic
wave function of the system as X(r, f), where x

stands for the electron coordinates and t denotes
the time, we may expand X in helium eigenstates
4'(r) with eigenenergy E„,


