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Electromagnetic Radiation in Accelerated Systems
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A generally covariant set of electromagnetic 6eld equations and associated constitutive relations is
developed to deal with electromagnetic radiation in arbitrarily moving media. The equations are suSciently
general to include dispersive as well as nonisotropic media. Several special cases are investigated to illustrate
the method and to demonstrate the consistency of the formulation.
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EVERAL recent papers on the subject of electro-
magnetic radiation in uniformly rotating systems

have stirred interest in the general problem of radiation
in arbitrarily moving systems. Such interest has two
aspects: First is the problem of extending the theory so
that it is logically consistent and, in the appropriate
limit, it reduces to the usual form. Second is the possi-
bility that experiments involving laser beams may prove
of such precision to permit a choice between competing
theoretical results.

The original rotating interferometer experiments were
of three kinds. The details of these experiments have
been amply reported in the review article of Post, ' so
that only their general nature will be outlined here. All
the experiments involve a closed optical path incorporat-
ing both a light source and an interferometric detector.
The light path may or may not, depending upon the
type of experiment, be contained within a dielectric
medium. The experiments of Sagnac, ' Harras, ' and
Pogany' were all alike in that the interferometer and
the dielectric medium rotated together. These investi-
gators found a fringe shift between the clockwise and
counterclockwise beams. The experiment of Dufour and
Prunier' was of another type in that the medium was
stationary while the interferometer was rotating.
Finally, the experiment of Kantor' was of yet another
type in that the medium rotated while the interferom-
eter was stationary. A fringe shift due to rotation was
also observed in these modified experiments, but its
magnitude was found to depend upon the type of
experiment.

The early theoretical investigations of the Sagnac-
Harras-Pogany experiment were based upon kinemati-
cal and geometrical optical considerations and were
provided by Harzer, Einstein, ' von Laue, ' and Lange-
vin. " Recent investigations have been based upon
physical optical considerations and generally fall into

' E. J. Post, Rev. Mod. Phys. 39, 475 (1967).' G. Sagnac, Compt. Rend. 157, 708 (1913); 157, 1410 (1913);
J. Phys. (Paris) 4, 177 (1914).' F. Harras, dissertation, Jena, 1911 (unpublished).

4 B. Pogany, Ann. Physik 80, 217 (1926); 85, 244 (1928).' A. Dufour and F. Prunier, J. Phys. (Paris) 3, 12 (1942).' W. Kantor, J. Opt. Soc. Am. 52, 978 (1962).' P. Harzer, Astron. Nachr. 198, 377 (1914); 199, 10 (1914).' A. Einstein, Astron. Nachr. 199, 9 (1914); 199, 47 (1914).
s M. von Laue, Ann. Phys. (Paris) 62, 448 (1920)."M. P. Langevin, Academic des Sciences, Seance du 7 Novem-

bre, 1921, p. 831 (unpublished).
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two broad categories. Heer" has applied the machinery
of general relativity to the problem of resonant fre-
quencies in a rotating electromagnetic cavity. The chief
inadequacy of his work lies in the ad hoc nature of the
constitutive relations he employs. Post, Yildiz, and
Tang' ""have used the naturally covariant form of
the electromagnetic field equations to investigate all
three types of rotational interferometer experiment.
For reasons of computational e%ciency, their approach
is clearly superior to the general relativistic treatment.
However, their method of selectively transforming the
free-space portion and the matter portion of the con-
stitutive tensor in different ways is an ad hoc and non-
covariant procedure and can be shown to lead to
inconsistencies.

The immediate motivation of the present paper is to
develop a systematic procedure for handling the con-
stitutive relations which will eliminate the inconsisten-
cies of Post, Yildiz, and Tang (PYT) and which will be
applicable to arbitrarily moving observers and media.
In addition, equations capable of describing electromag-
netic radiation in arbitrarily moving dispersive media
will be obtained as a natural extension of the method.
Lastly, the consistency of the present method will be
demonstrated in the special case of uniform linear ac-
celeration for which, in the limit of zero acceleration, the
result is known.

The general procedure to be followed may be con-
cisely stated: First, the naturally covariant form of the
electromagnetic field equations and constitutive re-
lations will be presented. Second, the generalized
Minkowski constitutive relations will be explicitly de-
veloped. Third, Maxwell's equations will be written
down and solved for various cases of uniform rotation
and linear acceleration. Finally, the results will be
checked for consistency and compared to those of PVT.

II. NATURALLY COVARIANT ELECTRO-
MAGNETIC THEORY

Following Cartan, ' Weyl, ' and Post, " we write
Maxwell's equations in a form which is covariant under
"C. V. Heer, Phys. Rev. 134, A799 (1964)."E.J. Post and A. Yildiz, Phys. Rev. Letters 15, 177 (1965).'s A. Yildiz and C. H. Tang, Phys. Rev. 146, 947 (1966).
'4 E. Cartan, Ann. Ecole Norm. 41, 1 (1924).
~5 H. Weyl, Space-Time-Mutter (Dover Publications Inc. , New

York, 1951), pp. 110 and 220."E. J. Post, Formal Stricture of Electromugnetics:, .'~Jorth-
Holland Publishing Co., Amsterdam, 1962).
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all holonomic coordinate transformations.

trav, p1

p, v 0, V (2)

vector 6elds E, 8, D, and H. Evidently, one has

I',„ul'= 0) 0"u~=0,
X)&u„=0, B,u =0. (12)

Here F„„and g&" a.re the antisymmetric tensors repre-
senting E, 8, and D, H, respectively. Observe the occur-
rence of the ordinary partial derivatives rather than the
covariant derivative in Eqs. (1) and (2). The equations
as written will preserve their form under any coordinate
transformation of the form

One can easily show that Eqs. (9) and (11) together im-
ply that

P„,= b ~„,E up —e„„pS u~, (13)

and similarly one obtains from Eqs. (10) and (12)

g""=P" tJX) ns e"—" I'H I~.

F„„.= A„.pA„Fp,

~

A"'.
~

g""'=A",A"'.g",
(3)

(4)

If Eqs. (13) and (14) are substituted into Eqs. (1) and
(2), then an alternative form of the electromagnetic
field equations results:

where A&'p and the condition of holonomicity are given,
respectively, by

(~",e n )„(~"—-sZ u, ) =0
(b~".&S us), „—(e" sH.Np), „=0.

(13)

(16)
A" p= Bx "(Bxl',

(6)

It should be clear from Eq. (4) that g&" is a density of
weight +1.

We should point out here that while Eqs. (1) a,nd (2)
hold for arbitrary coordinate systems, the problem is
to discover the physical significance of such frames of
reference. In inertial frames, the coordinates are un-
ambiguously associated with inertial measuring devices.
This is not the case for accelerated frames of reference.
In Sec. IV we shall discuss this problem in detail.

The necessary connection between the two tensors
F,„and g&" is provided by the constitutive tensor. Thus,
one writes the most general linear, instantaneous, and
local relation between the two tensors as

pv —& XPv pop
2 p0 ~ (7)

Relation (7) is capable of describing the general linear,
nondispersive medium and so in particular neither the
frame of reference nor the medium need be inertial. The
constitutive tensor x&"p must transform as a density of
weight +1 in order to ensure consistency of the
formulation:

h =F ~ e.=-' ""I'
P PV 2 pr (9)

n~ = g~"u„, H.= -,'e„„.g~"u~, (10)

where u& is the local four-velocity of the medium and
is the Levi-Civita density. Only if the medium is

stationary in an inertial frame will the spatial compo-
nents of E„, S&, X)&, and JI„reduce to the ordinary

~

A"'„~x~'"'~"'= A~'.A"'sA~'„A",x s

The subsequent development crucially depends upon
the explicit construction of the constitutive tensor which
will be valid for an arbitrarily moving medium in an
arbitrary coordinate system. With this goal in view, one
introduces the following vectors and vector densities:

Both Eqs. (15) and (16) take the form of a vanishing
divergence of an antisymmetric second-rank density of
weight +1. Thus, these equations are form-invariant
under any holonomic coordinate transformation and
offer a set of equations equally as valid as Eqs. (1) and
(2).

X)l"= e""8„V)

IIP, =P P V(Q".

(17)

(18)

Here, both the generalized dielectric constant e&" and
the generalized inverse magnetic permeability p, „v may
be functions of the coordinates x&, the local medium
four-velocity u&, and derivatives of uI'. We shall com-
pletely ignore derivatives of u& in the following develop-
rnent because of the absence of experimental results re-
quiring such derivatives for an explanation. In the case
of a medium stationary in an inertial frame, we shall

"H. Minkowski, Gott. Nachr. 53; Math. Ann. 68, 472 (1910).

III. CONSTITUTIVE RELATIONS

A. Nondispersive Media

The quantities E„, B„,S&, and S& each have three
independent components by virtue of Eqs. (11) and
(12), and so these vectors have the important property
of completely characterizing the electromagnetic field.
This fact suggests that one can find suitable consititu-
tive relations between these vectors. The simplest as-
sumptions concerning these relations are first, that they
are linear in the field quantities and second, that, in any
inertial frame in which a region of the medium is locally
and instantaneously at rest, they reduce to their non-
relativistic form. These requirements are met by the
Minkowski'~ form of constitutive relations suitably rein-
terpreted to account for the lack of isotropy and homo-
geneity of the medium owing both to its structure and
to its acceleration. Accordingly, one takes the constitu-
tive relations to be
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see that relations (17) and (18) reduce to the usual
result,

Qr ~r sag (»)
Hr= p re''. (20)

gPv —L(g Pvupeuaukb iPaebrvap'up+ i ~u e—cxP+)F (21)

The constitutive tensor X&"p is thus seen to be

XPvPP —$ Pvupe !Ku0xf PK ePv&pupti 1 )u eKKP 0 (22)

In order for x&"p to satisfy the required symmetry
properties"

(23a)X+V PO' —XPO'PV — XPVO'P — QVP PO'

yll vpol =0

it is necessary that e&" and tU, '„„be symmetric:

gPV —~V@,
')

(23b)

(24a)

It is possible to exhibit the constitutive relations in
the form of Eq. (7) by introducing Eqs. (17) and (18)
into (14) and employing the definitions given by Eq.
(9). The result is

S&, S&, and H„were defined for an arbitrary system of
reference and in terms of the local four-velocity of an
arbitrarily moving medium. Furthermore, the constitu-
tive relations as introduced in Eqs. (17) and (18) are
the most natural for any coordinate system. One is
drawn to conclude that Eq. (22) is the most general
constitutive tensor for a linear, nondispersive, homo-
geneous, isotropic medium so long as derivatives of the
local four-velocity are excluded. If derivatives of NI" are
permitted to occur in the consitutive relations then, of
course, there are many other possibilities.

B. Disyersive Media

In order to extend the preceding analysis to account
for dispersion, we must modify Eqs. (17) and (18) to
include the noninstantaneous contribution of the fields
to the polarization of the medium. The development is
most .easily carried out by means of the co-moving
Lagrangian coordinates (r, g) = P fixed in the medium.
Then in any other frame of reference the world line of
a given point of the medium will be given by

—1 —I
p pg=p Op. (24b) X~= x~(r, (). (29)

Equations (12), (17), (18), and (24) together imply
the following relations:

N„et"'= e"~N„=0, (25a)

Npp 'p, =p,—' pup=0. (25b)

opt"= e~p= 0 )

If the medium is stationary in an inertial frame, Eqs.
(25) require that

(26a)

We shall assume that in the co-moving coordinate sys-
tern the relation between the fields and the polarization
is purely local in space. This choice is ma.de for conveni-
ence and simplicity and may easily be changed to include
nonlocal as well as noninstantaneous effects.

The natural generalization of the constitutive rela-
tions (17) and (18) in the oo moving s-ystem is taken to be
the integral relations

p pp= p pp= 0) (26b)

and so Eqs. (19) and (20) are obtained as a consequence.
In all the special cases to be investigated subsequently

we shall be dealing with homogeneous, isotropic media

for which

&"(r,g) - dr' ""(r,r')E„(r', (),

H„(r,g) = dr' V, '„„(r,r')gy(r', g-).

(30)

(31)

e~"= ( g) '"e(g"" u"u—"), —(27a)

=(—g) '"I '(g —u u.) ~ (27b)

where e and LM are scalar quantities and g is the determi-

nant of the metric tensor g„„.The constitutive relations

(21) may then be written in the simplified form

g&"= ( g)'t'peb~p&"upF '—u.
~V, 'e""~PupV, "e«„F"j. (28a)

By making use of the properties of e&"p and 8p pI"" we

can cast (28a) into the following convenient form:

8""=( g)"'b 'F—""+(e V')—
X(F"u.u" F" u u~)]. (2—8b)

It is evident that ci"" has the correct transformation

properties.
One must emphasize the generality of the explicit

form of X&"& as given by Eq. (22). The field vectors E„,

The procedure of integrating the above expressions
along the world line, )=const, is relativistically covari-
ant provided e""(r,r') and V, '„(r,r') transform
appropriately.

(32)

I
~ "~ (r') ll '" (...') =&.~(r)&, (r')p i,(r,r'). (33)

If Eqs (32) and (33) hold, it is straightforward to show
that in any other frame of reference the constitutive
relations take the form

&"(+(r,g)) = dr'e""(x(r, g),x(r', $))E„(x(r' ()) (34)

&~( (r~4)) = dr'V ',.(&(r,K),*(r',())S"(x(r',g)) (35)
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where we have suppressed the superscript on the co-
ordinate xl". If the co-moving reference frame is inertial
and the medium is isotropic then Eqs. (30) and (3&)
tak.e the familiar form

K) ('r) = dr 6(rir )E (r ) &
(36)

H, (r) = dr' p
—'(r, r')(B,(r'). (37)

However, we do not obtain quite this simple form if the
co-moving reference frame is noninertial. The reason for
this can be traced to the implied parallel transport of
the vectors g„and S& in the constitutive integrals. To
see how this comes about let us look at Eq. (34) speci-
alized to a noninertial, isotropic medium viewed from
an inertial frame. For this case, Eq. (34) becomes

n"(x(r, ())= dr' e(r, r')q""E„(x(r',()), (38)

where g&" is the metric tensor for an inertial frame with
nonvanishing components q"= —g"=—g"= —g"= 1.
After we transform to the co-moving reference frame,
we have instead of Eq. (38)

XT~'"'(r, r', g)E„.(r', g), (39)

where we have defined a transport tensor

(40)

which parallel-transports the vector Z„(r',g) from the
space-time point (r', () to the point (r, g). This is proved
in the Appendix.

The constitutive relations may be expressed in a form
analogous to Eq. (7) if we insert Eqs. (34) and (35) into

Eq. (14) and employ the definitions of Eq. (9). The re-

sult is

where

1
g~"(x) =- dr'X~""(x x')P (x')

2
(4&)

»""( , x)x= 8.p~"I (x)—~p"(x,x')I"(x')S„„"
—e&" pl (x)p, 'p (x x')Ng(x')e"~& . (42)

For an isotropic medium Eq. (42) reduces to the
following:

ypvpr(x x ) E(x x )g pp"I (x)Z p"(x x )I (x )g ~p

—p
—'(x,x') e&" pu (x)Tp.(x,x')Ng(x') e""& . (43)

1

Here again we see that parallel transport is built in to
the constitutive relations.

IV. COORDINATE TRANSI'ORMATIONS

A. General Remarks

We have developed a general mathematical formalism
for describing electromagnetic radiation in arbitrarily
moving media by means of arbitrary reference frames,
the motion of which need not coincide with the motion
of the medium. Before this formalism is applied to
specific cases it is necessary to decide upon the appropri-
ate description of the motion of either an accelerated
medium or an accelerated reference frame. This is most
conveniently done from the point of view of an observer
in an inertial reference frame. In the first case, the in-
ertial observer specifies the world line of each point of
the medium as a function of the proper time r along
each trajectory. In the second case the inertial observer
specifies the world line of each clock in the noninertial
reference frame as a function of the coordinate time 3'

recorded by the accelerated clock. Let $" specify a given
point of the medium and x'" specify a given clock in the
noninertial frame. Then if x& are coordinates in the in-
ertial frame, we have the following equations for the
world lines:

x~ = x~(r, ("),
x~= x~(t' x") .

(44a)

(44b)

It is important to realize that in neither case can the
equations for the world lines be given a priori as they
can be when we deal with unaccelerated media or refer-
ence frames. The trajectories of points in a medium are
determined by the equations of motion once we know
the relevant forces which act on the medium. In general,
we can expect the motion of the medium to be quite
complex. Thus in the case of a rotating solid there must
be compression and/or shear motion, " particularly if
the system is large, to prevent the outer regions from
exceeding the speed of light. The motion of the non-
inertial clocks may also be very complex because each
clock may, within reasonable limits, move indepen-
dently. What we shall do to avoid much of this complex-
ity is to choose simple families of trajectories for both
medium points and coordinate clocks which seem to be
reasonable candidates for the description of observed
types of accelerated motion. The correspondence of the
description with actual systems can only be judged by
observation.

Once we choose a family of world lines, i.e., non-
inertial reference frame, there are three kinds of obser-
vations we shall consider:

Case I, observer inertial, medium accelerated;
Case II, observer accelerated, medium inertial;
Case III, observer and medium coaccelerated.

"See, for example, B. Kursunoglu, Proc. Comb. Phil. Soc.,
47, 177 (1961).
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t $2tq 2
t $2x 2

g&8~= — = —82 x
Ear') Ear'

(45)

This may be satisfied in the usual way by the assignment

8't/Br' =a(x') sinha(x') r,
8'x/Br'= a(x') cosha(x') r

The boundary conditions at r = 0 are taken to be

t(0) =0, x(0) =x',

(46a)

(46b)

B. Constant Linear Acceleration

We consider now the types of coordinate transforma-
tion of the form x&=x&(x'"), which describe constant
linear acceleration. In general, there are an infinite
number of inequivalent descriptions which fit the con-
dition of constant acceleration. By constant accelera-
tion we mean that the proper acceleration of each point
x'" does not depend upon the proper time v. For one-
dimensional motion along the x direction in the inertial
frame the condition for constant acceleration is

pendent of x', the 6eld equations can be solved exactly
in closed form. For this reason we shall take the trans-
formation equations to be those appropriate to (49a):

t=u ' sinhar,

x=x'+ a—'(coshar —1),

(50a)

(50b)

(50c)

(50d)

Observe that (50b) may be rewritten with the aid of
(50a) in the following form:

(52)t'=u ' sinhag,

so that the transformation equations take the form

x=x'ya-'L(1+a~t2) «2 —q. (51)

Also, by virtue of (50a), the planes of simultaneity in
the inertial frame are planes of simultaneity in the ac-
celerated frame. This means we can relabel the time
measure in the accelerated frame to obtain a simpler set
of transformation equations. We take the new time
measure to be

BT 7-=P BT ~=p

=0
7 (47)

t= t'
7

x= x'+a 'I (I+a't")'t' —1$

(53a)

(53b)

and are easily satisfied by the relations

t =a '(x') sinh—a(x') r,
x= a,

—'(x') cosha(x') r+x' —a '(x') .

These equations, along with

y=y 7

S S 7

(53c)

(48a) 8=8'. (53d)

(48b) One should note that t' no longer has the significance of
proper time. Equations (53) represent no loss in gen-
erality and a considerable gain in computational sirn-

(48c) plicity. At the end of our calculation we can always
transform back to the situation represented by (50).

are general transformation equations for constant, one-
dimensional acceleration.

The function a(x') may be chosen arbitrarily, but
only two choices are of immediate physical interest.
These are

a(x') =a= const,

a(x') = 1/x'.

(49a)

(49b)

Of these two alternatives, the first, (49a), has the virtue
that the velocity of any point x'" depends only upon v

for any inertial observer, while the second, (49b), has
the virtue that x'" and v yield directly meter-stick and
clock measurements in the noninertial system.

Which of the two alternatives we choose depends
upon the physical conditions of the problem. For ex-

ample, if the medium were a gas of noninteracting par-
ticles, each of which were independently accelerated by
an applied force field, then the proper choice would be
(49a). On the other hand, if the medium were a solid
dielectric and we wished to preserve the Born condition
for a rigid body, then the choice would be (49b). Be-
cause the condition (49a) implies a velocity field inde-

0= 0'+ Qt',

(54a)

(54b)

(54c)

(54d)

where the primed coordinates refer to the rotating sys-
tem. In Cartesian coordinates the transformation is

t-t',
x= x' cosQt' —y' sinQt'

7

y=x' sinQt'+y' cosQt',

(55a)

(55b)

(55c)

(55d)

C. Uniform Rotation

%e turn now'to a choice of coordinate transformation
representing uniform rotation. Because our present in-
terest in this type of motion is simply to compare the
results of the present method with those of PYT, we
adopt the same transformation as those authors. In
cylindrical coordinates, the transformation is
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TABLE I. Constitutive relations for all three cases of consturlt
linear acceleration calculated according to Eq. (28b).

Case I

Case II

Case III

D=gEy(g —p ')v'[vXB —vX(vXE) j
H=&-&8+(.—i-')v'LvXE+vX(vXB)]
g= &E—~vXB
H=p '8 —evXE+gvX(vXB)
D=~E—p 'vXB —(e—p ')v'vX(vXE)
H=y '8 —p 'vXE+i4 'vX(vXB)

B. Constant Linear Acceleration

The constitutive relations, calculated by means of
the transformation equations (53) for all three cases of
constant linear acceleration, are given in Table I. For
comparison purposes Table II gives the equivalent ex-

TABLE II. Constitutive relations for all three cases of corIstgrlt
i&sear acceleration calculated according to PYT.

V. SPECIAL CASES OF NONDISPERSIVE MEDIA

A. Procedure

In this section we shall apply the formalism developed
in the preceding sections to various special cases of
homogeneous, isotropic, and nondispersive media. %e
require the medium to be at rest in either an inertial
frame or one of the accelerated frames discussed in the
last section. Either observer can conduct experiments
with the medium which may or may not be at rest in
his frame of reference. Of the four possible experiments
there are the three previously mentioned cases which we
shall consider. Since the specification of the case number
(I, II, or III) serves to specify both the motion of the
observer and the motion of the medium, it is superQuous
to further distinguish coordinate systems by primes or
other labels on tensor components. Accordingly, we
shall dispense with such labels and treat all three cases
together with a unified notation.

The procedure to be followed is identical in all cases.
The erst step is the explicit evaluation of the consitutive
relations which proceed from the de6nition of Il„„.One
then calculates Ill"" and F&"N„using the metric tensor
and medium four-velocity appropriate to the particular
case. The results of this calculation are substituted in
the constitutive relation given by Kq. (28b), which
yields the desired relations between the ordinary fields

E, 8, D, and H. The expressions for D and H are next
substituted into the field equations (2) which must then
be solved, along with Eq. (1), for the quantities E and

pressions calculated according to the PYT prescription.
The various quantities appearing in Table I and Table
II are listed here:

v(t) = (v(t), 0,0),
v(t) =dx/dt =at(1+a'P) 't', —

v= L1—v2(&)j-'".

(56)

(57)

(58)

BB =0, BB =0,
B,B,=O, B,E =0,

&&B„=B.E., B&(nE.+}8„)= 8.(PB„—)E,),

(59a)

(59b)

(59c)

B,B,= B,E„, B,(nE—„—)~B,)= —8,(PB,+)E„). (59d)

The quantities n, P, and X are defined in Table III for
each of the three cases. Notice that we have introduced
the index of refraction

n= (ep)'~'

and tha«, p, and & are functions of the time through the
velocity.

It is evident from (59a) and (59b) that E, and B, are
constants and consequently may be taken equal to zero.
Furthermore, there is only a difference in the relative
sign of the field components between (59c) and (59d).
Thus we concentrate on a set of equations of the form

The quantity v(t) is the velocity of any point of the
accelerated reference frame as measured by the inertial
observer. The velocity of any point of the inertial refer-
ence frame as measured by the accelerated observer is
given by —v(t').

The significant differences between Table I and Table
II are as follows:

(1)»«ors of p appear only in Table I.
(2) The term v&& (v&& E) appears only in Table I.
(3) The quantity p, appears only in Table II.

Even though the first two of these differences involve
terms only of second order in v(t), we shall see that these
terms are most important in establishing the connection
between the results of the present formalism and those
for inertial media and inertial observers.

Ke shall look. for solutions of the Geld equations that
correspond to plane waves traveling in the x direction.
This means the fields depend only upon x and t. Kith
this condition in mind, we substitute the contents of
Table I into the field equations (2) which, along with
equations (1), become

Case I

Case II

Case III

D=eE+ie —po ')vXB
H=g '8+(e—po ')LvXE+vX(vXB) j
9=~R—~vXB
H=p '8 —~vXE+cvX(vXB)
0=em —y0 IVXB
H=p 8—po ~vXE+po vX(vXB)

8iB+ 8 E= 0,
~ ( E »)+~.(PB+)E) =0, —

(60a)

(60b)

where n, p, and X are functions of t but not of ~.
To obtain a solution to (60), we first differentiate

(60b) with respect to x and replace cl,E by —p,B, jn
accordance with (60a). The resulting equation for
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B(x,t) is

where
8,(rr8,B)+2)8,8,B+)8,B P8,—'B=0,

X= 8,)=dX/dt.

Let us look for a solution of (61) of the form

B(~,t) =B(t)e'&*.

(61)

(62)

(63)

TABLE III. Definition of the coe%cients a, P, ) which appear in
Eq. (59) for all three cases of constant linear acceleration.

Case I I+(I n—~)gasps I s (I —a—s)gasps (I—I s)psv

Case II e ~—e'

Case III I+ (I I—') p'p' e '(I —p') —n 'v

The equation for B(t) is then

8,(nB,B)+ik(XB+2XB,B)+O'PB= 0.

The substitution

(64)

B(t) =e *«o

8(h') yk) (h')
y(t) = dh'

(65)

(66)

in8 8'—+k'/—n' = 0

It is clear that one solution of (69) is certainly

8= +k/n,

i=0.

(69)

(70a)

(70b)

The simple solution for 8(t) provides us with an exact
solution of the Beld equations

B(x t) =e'"l-s«&l

X(t')&1/n
y(t) = dk'

p a(t')

(71a)

(71b)

transforms (64) an equation for 8(t),

—in8 —8'+k'(nP+X') = 0. (67)

Using the explicit forms given in Table III, we find that

rrp+X'= 1/n'= const (68)

for all three cases. The equation for 8 is then

The emergence of the velocity addition law is com-
pelling evidence that the formalism is correct. This re-
sult is quite sensitive to the precise form of the constitu-
tive relations and any change in the quantities rr, P, or X

would alter the result appreciably. In particular the
PYT prescription will not yield the velocity addition
law but something quite different, even in the limit of
constant e.

We should point out that the wave velocity for Case
III (medium and observer coaccelerated) which one
expects to be just &1/n is quite different, due to our
choice of coordinates. The expression for u(t) represents
the velocity calculated from coordinate distance and
time, not physical distance and time. In fact u(t) for
Case III may be derived from the expression for u(t) for
Case I by means of the coordinate transformation equa-
tions (53).This is further evidence of the consistency of
the formalism.

The expression for B(x,t) as given by (71a) does not
have a time dependence of the form e '"', which means
we cannot regard the solution as the result of driving
the medium with a constant frequency generator. Let
us require that the observer drive the medium at the
point x=0 with a generator having an output signal of
the form e '"' between the times —T and +T.Then, to
find the response of the medium we look-for a super-
position of solutions of the form (71a) which matches
the generator signal at @=0. Thus, we seek an A(k)
such that the expression

The velocity of the wave is given by

u(t) =dip/dt= dy/dt, —

u(t) = I) (t)an-')/n(t).

B(x,t) = dk A (k)e'st*—&&'&&

(72a)

(72b) will, at x= 0, reduce to the prescribed result

Substitution of the expressions for n and X from Table
III into Eq. (72b) gives the velocity of the wave for all

three cases.

(Case I) u(t) = Lv(t)+n ']/L1+n 'v(t)), (73a)

(Case II) u(t)= —v(t)&n ' (73b)

(Case III) u(t) = &n 'L1—v'(t))/[1+n 'v(h)). (73c)

Ke recognize the result for Case I as the relativistic ve-

locity addition law which is known to hold when n is
independent of t. In fact, Case I is nothing but the Fizeau
experiment with the addition of an accelerated dielec-
tric.

B(0,t) = 8(T+ t) 8(T—t)e '"' (75)

where 8(t) is the unit step function.
Now if y(t) is a monotonically varying function, we

may solve for t by inverting the function y(t):

h= I'(y). (76)

Then y may be taken as an independent variable and
the Fourier inversion theorem may be used to obtain an
expression for A(k):

A(k) = —8IX+I'(y))8L~ I'(y))e*'"~"""" (77)—
2Ã
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TABLE IV. Constitutive relations for all three cases of
N22iform rotat2o22 calculated according to Eq. (28b).

ui» '(t)=n[1+n '2)(t)]y'=n(1+a't')+at(1+a't')'"
=n+ at+ na't'+ 'a' t-' aa—'t'+ . (84)

Case I

Case II

Case III

D=res E+r(e—ii ')v2LvXB —r'vX(vXE) j
H=(res) '-B+r(e —p

—')v2LvXE+vX(vXB)g
D=r~S E—r~v&&8

H=(res) 'B re—vXE+rovX(vXB)
D=res E—ry ivXB —r2(e —y i)v2vX(vXE)
H=(res) 'B—r)i 'vXE+r)i 'vX(vXB)

The final result of putting (84) into (81) is

&(y (t) x)—= —nx[1—-', ax+-,' (1+2n') (ax) '+
+t[1 ax+—,'(1+-2n') (ax)'+ ]

—nx(at)'[1 ——,'ax+ ]+ (85)

When (77) is substituted into (74) and the order of in-
tegration interchanged, the following result is readily
obtained:

F(y(t) x)=—+T

are the coordinates of the edges of wave packet and
satisfy

dx/dt =dy/dt =u(t) = P (t)+ n']/n(t) . (79)

Thus, the wave packet B(x,t) does not spread in time
but moves with a time-dependent speed given by (79)
or equivalently (72b). Inside the region of nonvanishing
B(x,t) we have the simple expression

B(x t) = e
—i»(o(&)—*) (8o)

We see from (80) that the phase velocity of the wave is
also given by (79). Let us expand I'(y(t) —x) about the
point x=0. In doing so, we use the fact that F(y(t)) —= t

and d/dy= (1/u)d/dt We obtain.

S
Y(y(t) x) = t +,'x' — ——+-——

Q S 4 Q
(81)

For sufficiently small values of x, we have approximately
from (80) and (81)

B(x t) ei[k(t)x—cai] (82)

which is a plane wave with a time-varying wave vector

k(t) = io/u(t) . (83)

We can find a better approximation than (82) with
a little more effort. We use the explicit form of v(t) in
the expression for u(t)=u(2)(t)) and then expand as
a power series in t; substitute the series into the expan-
sion for F(y(t) —k) and collect the successive powers of t.

For Case III (medium and observer coaccelerated)
Eq. (76) holds and we have, from (57), (58), and (73c),

B(x,t) = t][T—I'(y(t) —x)]e
X[T+lr(y(t) —x)]e '"r "'" * (78)

The rather complex appearing expression for B(x,t)
is actually quite simple to interpret. First we see that
B(x,t) vanishes for values of x and t such that F(y(t) —x)'
is outside the range —T to +T. The values of x and
t for which we have

The ratio of the term quadratic in t to the term linear in
t is of the order n(ax)(at), which can be chosen to be
small. In this case we may rewrite (80) in the form

where

B(x t) —e i [k (z) x—ru (z) i]

k(x) =n(o[1——',ax+-,'(1+2n') (ax)'],

~(x) =~[1—ax+-', (1y2n') (ax)2].

(86)

(87a,)

(87b)

Equation (87b) gives the frequency shift of the wave as
a function of x correct to second order in ax. Observe
that the first-order correction is just the usual gravita-
tional frequency shift effect and is independent of the
properties of the medium. Only the second-order correc-
tion term includes specific effects due to the dielectric
properties of the medium.

The order of magnitude of the second-order frequency
correction may be obtained by choosing representative
values for a and x:

a=g=10 m/sec'=10 "/m)
x=10 m,

a~=10 "
We see that the gravitational first-order effect is barely
at the limits of present-day measuring techniques so
that the second-order dielectric contribution is quite
undetectable.

C. Uniform Rotation

v= (O,Q, O),

(1 r2Q2) —1/2

S=diag(1, r—', 1) .

(88)

(89)

(90)

In this case we are looking for azimuthal waves and

so we seek solutions of the form f(r)e'("' "'). When the
contents of Table IV are introduced into the Geld equa-
tions (1) and (2) we obtain the following set of equations

Just as for the cases of constant linear acceleration,
we calculate the explicit form of the constitutive rela-
tions for uniform rotation. The result of the calculation
is presented in Table IV. Table V presents the same in-

formation calculated according to the PYT prescrip-
tion. We note the same kind of differences between
Tables IV and V as between Tables I and II.

The quantities appearing in Tables IV and V are
listed here.
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for azimuthal waves:

0= 8,B„+.i»Bg,

0= ZMBr+ZKEp )

0= zcoBO—8pEz )

0= uaB—,+ i)„Eg s»E—„
0= it„(nrE„+KB,)+i»r 'Eg,

0= iop(nr—E„+)B,) i»(Pr—'B, )E„)—,
0= i(u(r '—Eg)+r)„(Pr 'B, )E„),—

(91a)

(91b)

(91c)

(91d)

(91e)

(91f)

(91g)

[n 'r)rrit„+ (co'nr —-2)»po —Pr t»s) 7E,= 0. -
(92)

From the second set of equations we eliminate E„and
Eg and are left with an equation for 8,:
[n 'r)„rr)„+(po nr 2X~pg P—r '»s)7—

XPB,/(») —~rn)7=0. (93)

We see that the two modes of oscillation are governed by
the same differential equation.

If we neglect all terms of second order and higher in
the quantity rQ then the equation for A, reduces to a
Bessel equation. We could attempt a perturbative solu-
tion using the appropriate Bessel functions as a basis
for an expansion. Instead, we shall employ the geometri-
cal optical approximation so that we can compare our
results to those of PYT.

The geometrical optical approximation consists of
considering an idealized beam traveling the path r=ro
and of supposing the r dependence of the fields to vanish.
Given these conditions the differential equations (92)
and (93) immediately yield the result

n(&orp/») s—2X(corp/») —p= 0. (94)

0= —ipo(nrE, —XB„)—r)„(rn-'Bg)

+i»(Pr 'B„+hE,) . (91h)

The quantities n, P, and X are identical to the quantities
in Table III, provided we replace e by rQ.

Observe that these equations may be divided into two
sets of four equations each. Equations (91a)—(91c) and
(91h) form one set determining the quantities E„B„
and Bg,. Eqs. (91d)—(91g) form the other set, determin-
ing the quantities E„, Eg, and 8,. From the 6rst set of
equations we eliminate B„and Bg and are left with an
equation for E,:

TABLE V. Constitutive relations for all three cases of
Nrgiforrrt rotation calculated according to PYT.

Case I

Case II

Case III

9=res E+r(e —
tpp ')vXB

H=(rtps) & B+r(e—pp ')(vXE+vX(vXB)7
D=res E—rev&B
H=(rtps) 'B—revXE+revX(vXB)
D=res E—F0 'vXB
H= (rtes) 'B rtep—'vXE+rtep 'vX(vXB)

given explicitly by the following formulas:

(Case I) perp/»= (rpQ&n ')/(1+n 'rpQ), (96a)

(Case II) perp/»= —rpQ+n ', (96b)

ut ——(n '+) )—/n,

us= (n-' —X)/ .n

The difference in speeds is then given by

Au= 2X/ .n

(97a)

(97b)

(98)

Table VI gives the explicit form of (98) (in units of
2rpQ) for the three cases before and after terms of the
order of (rpQ)' are neglected.

In order to compare the contents of Table VI with
the PYT results we must convert velocity difference
into frequency difference. This is accomplished by the
relation

d,po/eo=nhu (99)

Table VII provides an opportunity for comparing the
present results (AR) with the PYT results. Two sets of
expressions are given for the ratio heo/po (in units of

2rpQ) in the limit that (rpQ)' may be neglected. A brief
study of Table VII will reveal that the present method
predicts that the frequency difference between clockwise
and counterclockwise waves depends only upon the
index of refraction. The PYT method, on the other
hand, predicts an additional dependence of the fre-

quency difference upon the relative permeability
tt, = tt/ttp. If there exist dielectrics with suKciently large

(Case III) perp/»=An '(1—rpsQ')/(1&n 'rpQ). (96c)

Again we see that Case I expresses the relativistic veloc-
ity addition law.

The speeds of two azimuthal waves traveling in oppo-
site directions may be obtained directly from (95b):

The solution of the quadratic equation (94) is

eor p/»= p.&(X'+np) 't'7/n
or

(95a)

TABLE UI. Velocity difference (4u) between clockwise and
counterclockwise beams in units of 2rpQ before and after (rpn)p
is neglected for all three cases.

&orp/» = P an —')/n (95b)

Here (68) has been used to obtain (95b). We recognize
the equivalence between this result and Eq. (72b). The
ratio corp/» is just the azimuthal velocity of the wave.
For each of these three cases the azimuthal velocity is

frpnf &&

(rpQ) p((f

Case I
e' —1

pep —(rpn)'

1—e 9

Case II Case III

f —(rpQ)'

gpp —(rpQ)'

e'



J. L. ANDERSON AN D J. W. R YON 181

TAnLr. VlI. Relative frequency difference (hcv/cu} between clock-
wise and counterclockwise beams in units of 2rt}Q, calculated ac-
cording to AR and PYT in the limit (r00)' may be neglected.

Case I Case II Case III

I—e i
n —p,,n ' n '

p,n '

p, „ then it would be possible to determine which, if
either, of the two methods is correct. Unfortunately, all
the work in the past has been done with substances for
which p, =1.

VI. DISCUSSION

The object of this paper is the development of a con-
sistent and generally applicable method of treating
electromagnetic radiation in noninertial systems. We
have shown how to write a generally covariant set of
field equations and constitutive relations which are
valid in all reference frames connected by holonomic
coordinate transformations. The explicit form of the
constitutive relations is a result of one assumption: The
relations between E„, X)&, S&, and H„are linear. This
assumption is absolutely minimal and implies no special
properties to be possessed by the medium.

The PYT procedure, on the other hand, involves an
explicit assumption about the dynamics of an acceler-
ated medium. This assumption requires the medium
portion of the constitutive tensor to have very special
properties: the Cartesian components of X( )&"& in the
co-moving frame are to be independent of the motion of
the medium. Literally, this means that the state of
motion of the medium has no physical consequences for
electromagnetic radiation. The PYT assumption re-
quires the dynamical equivalence of all reference frames
in so far as they are used to describe electromagnetic
radiation in a medium.

The medium portion of the constitutive tensor is ob-
tained from a suitable averaging process which lumps
the dynamical properties of the molecules constituting
the medium into a simple addition to the free-space
constitutive tensor X(0)&"& . Since the dynamical proper-
ties of the molecules are not invariant under all coordi-
nate transformations, it would obviously require a very
special kind of interaction to produce a medium for
which its average dynamical properties were indepen-
dent of its motion. For this reason it is necessary to.con-
sider the PYT procedure to be ad hoc. The procedure is
also noncovariant because it requires X(0)&"& and I( )

&"&

to be defined and measured in different reference frames
in general. This poses the additional physical problem
of measuring X~ ~&"& apart from X(0)&"& .

The consistency of the present formulation is implicit
in two facts: First, for a medium stationary in an in-
ertial frame the equations reduce to the familiar
Maxwell-Minkowski form, which is a necessary con-
dition. Second, for a moving medium viewed from an

inertial frame we obtain the relativistic velocity addi-
tion law which is also a necessary condition. The PYT
procedure fails to satisfy the second condition and must
therefore be judged inconsistent. Of course, it must be
emphasized that consistency is not synonomous with
correctness. It is possible that not enough account has
been taken of nonlinear effects or of dependence upon
velocity gradients. Only observation can decide these
issues.

The solution of the field equations for a plane wave
in a dielectric undergoing constant linear acceleration
yields two results. First is the gravitational frequency-
shift effect, which is independent of the specific dielec-
tric properties of the medium as expected. Second is the
dielectric frequency-shift effect, which is of second order
and effectively undetectable. The emergence of the
gravitational frequency-shift effect is further evidence
of the over-all consistency and correctness of the present
method. The second-order dielectric effect does not
present any problems in principle but may require an
enormous amount of practical ingenuity to detect and
measure.

The solution of the field equations for azimuthal
waves in a uniformly rotating dielectric provides an
opportunity for a comparison between the present for-
rnalism and the PYT procedure. We saw that frequency
diff erences between clockwise and counterclockwise
waves depend only upon the index of refraction if the
present method is correct but upon both the index of
refraction and the relative permeability if the PYT is
correct. It should be possible to test the predictions of
both methods by using dielectrics of suKciently large

permeability.

APPENDIX

The parallel transport of the vector along a path labeled

by the parameter v- is then expressed by the following
equations:

(A2)

P 0

dh~
V"(r)

8T
(A3)

The combination of Eqs. (A1)—(A3) yields

P 0

U" (r) . (A4)

The proof that TI""'(r,r', g) affects the parallel trans-
port of a vector is straightforward. Let the vector Uj'(r)
be defined in an inertial frame so that its image in a non-
inertial frame is given by

(A1)
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Since v'&(r) is arbitrary, Eq. (A4) is equivalent to the Substitute Eq. (AS) into Eq. (AS) and use Eq. (A7) to
relation find the result:

dA', (r)

dr

p, dS'
A'„(r)

po
(AS) d Vs'(r)

which gives the parallel-transported components of
A~'„(r).

The transport tensor may be written in the form

T"„.(r,r', ()=A",(r, ()A ~. (r', g) . (A&)

p ds

p'o. ' dr
V"( ). (A9)

p, ds
A p'), (r)A"„.(r') V"'(r')

po dr

Then by differentiation along the path, we obtain

d V"(r) dA",(r) '"(') "'( ') (AS)

We shall assume that the components of V"(r) parallel
transported from 7' to r are given by

V"'(r) = Tl"„.(r, r') V"'(r') =A"', (r)A'„(r') V"'(r') . (A7)

V~(r) = Vs(r') . (A7')

Thus V"'(r) as defined by Eq. (A7) satisfies the equation
of parallel transport. We must conclude that the trans-
port tensor provides us with the parallel-transported
components of any vector if we have the components at
some point on the path. This result is obvious if we look
at Eq. (A7) in the inertial frame
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Experimental Test of the Pion-Nucleon Forward Dispersion
Relations at High Energies*
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The small-angle differential scattering cross sections of protons for pions have been measured to high
precision at the Brookhaven AGS. The range of incident momenta was 8—20 GeV/c for s.+, and 8—26 GeV/c

- for 7I- . The real part of the pion-nucleon forward scattering amplitude was determined by observing its
interference with the known Coulomb amplitude. Combining these results with precision measurements
of pion-proton total cross sections over this energy range provided a critical test of the predictions of the
forward dispersion relations. The results demonstrate the validity of the dispersion relations up to at least
20 GeV/c laboratory momentum. The predictions of charge independence are also verified by comparing
these experimental measurements with forward charge-exchange scattering cross sections. Furthermore,
if microscopic causality is violated, this occurs at "distances" less than 10 "cm.

I. INTRODUCTION

HE purpose of this experiment was to test the
pion-nucleon forward dispersion relations at high

energy by measuring the real part of the pion-nucleon
forward scattering amplitude. The real part was mea-
sured by observing the Coulomb-nuclear interference
in pion-nucleon differential elastic scattering in the
angular range 0—22 mrad at incident laboratory mo-
menta from 8—26 GeV/c for s. -p and 8—20 GeV/c for
s.+-p. These energies are sufliciently high that the dis-
persion-relation predictions are very insensitive to
uncertainties in the low-energy parameters and the

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

f Present address: University of Minnesota, Minneapolis, Minn.
f. Present address: Texas Christian University, Fort Worth,

Tex.

range of energies is large enough that we can perform
su6icient subtractions to remove the dependence on
the asymptotic behavior of the total cross sections. As
a separate part of the experiment, we measured total
cross sections in this energy region with an absolute
precision of 0.3%%uo.

I This enabled us to evaluate the
dispersion-relation integrals more precisely and also
improved the determination of the real part of the
scattering amplitude.

An earlier incomplete investigation' had established
that there were sizable real parts of the pion-nucleon
forward scattering amplitude at high energy. However,

' K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love, S.
Ozaki, E. D. Platner, C. A. Quarles, and E. H. Willen, Phys. Rev.
Letters 19, 330 (1967).

2K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 862 (1965).


