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We derive "classical" equations for the relative motion of two atoms as their insides make
a given quantum transition. The classical changes in relative energy and angular momentum
associated with this description just balance the corresponding quantum changes in internal
energy and angular momentum for the transition involved. The work is based on a general-
ization of Hamilton's princip1e, suggested in a natural way by Feynman's formulation of
quantum mechanics; the semiclassical scattering theory which emerges is, in essence, a
justification and extension of the impact-parameter method. Applications to low-energy
atomic collisions are discussed briefly.

I. INTRODUCTION

In the preceding paper, ' referred to below as
I, the standard semiclassical theory of scattering
by a potential was derived in a rather novel way,
from a stationary phase approximation to Feyn-
man's representation of the quantum-mechanical
propagator for the problem. One thinks of gen-

eralizations. For instance, consider an elec-
tronically adiabatic collision between two mole-
cules, resulting in rotational-vibrational excita-
tion or chemical rearrangement. One could de-
scribe the collision by combining the semiclassi-
cal propagator for all the nuclei in their Born-
Oppenheimer potential with semiclassical wave
functions for the rotational-vibrational states of
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the molecules before and after collision. For-
mally, this would be a, straightforward extension
of the work of I.

A fundamentally different problem obtains if
one is interested in electronically diabatic pro-
cesses, since it is in general not a good idea to
consider electrons as classical particles. The
problem is then one of describing semiclassically
the relative motion of the colliding atoms or
molecules while their insides undergo a quantum
transition. That is, one has to find an appropri-
ate way to mix quantum and classical mechanics.
This is the problem we discuss here. We speak
of atomic collisions, but the extension to elec-
tronically diabatic collisions of molecules is
straightforward, if complicated.

In Sec. II we derive a path-integral representa-
tion of the reduced propagator for motion of the
colliding atoms while their insides make a speci-
fied quantum transition. Section III discusses the
semiclassical approximation to this propagator,
obtained by a stationary phase evaluation of the
path integral. In Sec. IV we discuss properties
of the "classical" paths about which one expands,
and in particular show that this mixture of classi-
cal and quantum mechanics is consistent in the
sense that energy and angular momentum are con-
served. An expression for the semiclassical

scattering amplitude is derived in Sec. V.
In Sec. VI we consider briefly a few applications

of the formalism. At high energies one is gener-
ally content to use the impact-parameter method,
in which the atomic nuclei are imagined to move
past each other on straight lines with constant
velocity. This treatment neglects the reaction of
the quantum transition involved back on the rela-
tive motion of the atoms; the theory of this paper,
which is specifically concerned with that reaction,
may be regarded as a low-energy extension of the
impact-parameter method. We indicate the vari-
ous types of "classical" atomic motion which one
would expect in a low-energy collision in which
only two molecular electronic states participate.

A number of papers on semiclassical theories
of inelastic scattering have appeared recently,
among which we mention the work of Cross' on
generalizing the Schiff approximation, the studies
of the eikonal approximation by Wilets and

Wallace' and Chen and Watson, 4 and a paper by
Bates and Holt' on a WKB-type formalism. Our
ideas, however, are closest to those of F. T.
Smith and his co-workers at Stanford, ' and in
fact in their studies of the scattering of noble-
gas ions by noble-gas atoms they have anticipated
several of the results of Sec. VI. '

II. THE REDUCED PROPAGATOR

We consider the collision of two atoms in their center-of-mass frame. Let r be the relative position
vector of their individual centers of mass, and let x be the totality of internal coordinates (including
spin). We split the Hamiltonian into kinetic energy of relative motion and everything else,

H =P'/2tz+ Iz(r, x) =H, + h, — (2.l)
and assume that h depends only on r, not on the conjugate momentum p.

Suppose we are interested in a collision which takes the atoms from internal state n to internal state P,
assumed to be eigenstates of the internal Hamiltonian

(2.2)

To describe the collision it is not necessary to know the full propagator

we need only the "reduced" propagator

K (r "t"Ir't')= f fdx"dx'y*(x")K(r "x"t"Ir'x't')p (x')

(2.3)

(2.4)
We will make a semiclassical approximation to Kpo by analogy with the work of I, so the first problem is
to derive a path-integral representation of Kpo.

Notice that

(»„p —zH(t —t )/h»,
) f fd» d» (»„pI —zH /iz»

)1 n —1 n —1
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and that for small &,

—iHe/h(r. I e jr.

I rg —rg

)= (r. I e I r. )e
—iH0e/h, —ih(rj, x)e/I

g —1

= (p/2mih&} exp[i&(r. —r. ) /2he j e j'2 —ih(F , x)e. /h
2 —1 (2.S)

The appropriate representation of Kpn is therefore (see I)

~II II
K (r "t"Ir't')= f dr expliS [r

]/RENT

[r ],
r 't'

(2.7)

where

—ih „e/8 -ih „e/h -ih, e/h
T [r ]= lim (Ple " e t e e t +e ~n), h =h(r, x)

pn t
(2.S)

is the amplitude for the transition n- p as the atoms pass each other on the path rt, and

t II
S [r]=f dt ,'tir'— (2.9)

(2.10)

is the action functional for relative motion.
Calculating Tpn is the standard quantum-mechanical problem of the response of a bound system to a

time-dependent force —in this case, the force between the passing atoms; we assume it can be solved,
in whatever approximation seems reasonable, and concentrate on evaluating the path integral (2.7). For
future use, we introduce two solutions ntt~, ptt~~ of Schrodinger's equation

(its- h )(.-. .)=0
t t

with boundary conditions ntIt &= n, pt ~~tll = p. Then

Tp [r ]=(P, nt„t,)=(Ptt„, ntt, ),

independent of t.

(2.11)

IH. SEMICLASSICAL APPROXIMATION

The transition amplitude Tpn is a complex functional of rt. We base the semiclassical approximation
to the reduced propagator Kpn on the assumption that the magnitude of Tpn varies much more slowly
with path than does its phase. It is natural, then, to consider a stationary phase approximation to Eq.
(2.7): We expand the phase to second order about "classical" paths rt where

5(S [r j+ h Im lnT [r ] ) = 0. (3.1)

t I I
Since' 6T [r ]=—(i/h) J dt(P „,Oh n, ),

tI

the "classical" equation of motion reads

(3.2}

that is, rt is a Newtonian path in the time-dependent potential

V(r, t) = He[(p „,h(r, x)n, )/(p „,n, )j. (3.4)

Note that since this potential in fact depends on the path rt which we are trying to calculate, Eq. (3.3)
is much less useful than Newton's equation in classical mechanics and in general must be solved itera-
tively. That is, one guesses a path, calculates nttI, Ptt«along it, solves (3.3) to find a new path, and
continues until the process converges or one runs out of patience. Note also that the variational principle
(3.1) is not of Lagrangian form, which leads to a certain amount of unpleasantness (see Sec. IV).

The properties of the paths defined by Eqs. (3.1) or (3.3) will be considered in more detail in the follow-
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ing section; we want to dispense first with the formal problem of defining the semiclassical approxima-
tion to Eq. (2.V). The calculation follows closely that of I; again for notational simplicity we drop the bar
which distinguishes "classical" paths.

Consider the second-order variation in the phase of Tp~,
t II

6'(@lmlnr [r ])= —6f dtRe[(P t„,6&(fatti)/(Pttii&fatti}]t

(~tt"' '"t tt' t

'" &( ~tt"' "t tt')'(Ptt"' "t
= —Re I dt —Re dt

tl (Ptt Ill ttl) J tl tt"' tt'

(s.5)
Ptt'" "t tt' ( Ptt"' tt''(~tt"' tt' &

But to the extent that the phase of Tpe, varies much more rapidly with path than does its magnitude, we
must have

tt" t'tt"' tt" "t tt"

dt Q s 8' 6x.6x. .8'V(r, t)
Bx..~x. z

~P~ Z

The normalizing path integral is then

where Pt, Xt are real numbers, and Eq. (3.5) reduces to

tt"' t tt' 1
P~ ~t, (e „,~,)tt'"

(s.6)

(s.v)

tll ~'V
dfexp I dt

2
—2+ 8 8 n n.

Spg g'

'+
't 't 't (s.8)

of the same form as that evaluated in I. We find that the semiclassical approximation to the reduced
propagator is

E (r"t"Ir't')=Q[p'/(2vih. }'I r „/ r, l]'+expfiS [r ]/h 2nvi)—& [r —], (s.9)

the sum taken over all "classical" paths from (r 't ') to (r "t"),
I &rt «/&rt I

I the Jacobian of final position
with respect to initial velocity in the potential V(r, t), and n equal to the number of zero characteristic
values of I &rt/&rtl I in the interval t'& t & t". Again to the same approximation as Eq. (3.6), I &rt&~/Srtll
in the potential V(r, t) is equal to I art «/Srt~l for paths calculated according to the variational principle
(s.l}.

The semiclassical approximation to the scattering amplitude implied by Eq. (3.9) will be derived below.
Here we remark that this approximation will automatically satisfy the principle of detailed balancing,
which states in essence that for a real Hamiltonian 0, one can interchange initial and final positions in
the propagator

Z(r "x"t"Ir'x't'')=A (r'x't "Ir "x"t'')

Equation (3.10) is equivalent to

K (r "t"Ir't')=E (r't"Ir "t')
~gpg

(3.10)

(s.11)

(3.12)

where o'*, p* are the complex conjugates of the states & and p. That the semicla(sical approximation to
Zpu satisfies Eq. (3.11}follows immediately from the relations

,p,[, „.,], [,]= [,.„
which in turn are obvious from Eqs. (2.8) and (2.9).

IV. CHARACTERISTICS OF THE
"CLASSICAL" PATHS

Given initial and final conditions (&r 't'),
(Pr "t"), Eq. (3.1}defines a set of "classical"

paths for the atoms. In this section we investi-
gate to what extent these paths furnish a sensible
description of the collision.

First, consider the change with time of the



PHILIP I ECHUKAS

d (pFt' (Ptt„, h o',))
(4.1a)

tt"' ' t tt'
~pF XF+He

(

'"
) )

-p,
tt"' tt'

(4.1b)

where Jint is the operator for internal angular
momentum,

classical relative energy and angular momentum.
From Eq. (3.3) we can derive the conservation
laws

cess which should be described correctly by any
semiclassical theory is the asymptotic free-par-
ticle behavior of the collision partners: Before
and after collision we should find that the atoms
move with constant velocity, along the free-par-
ticle continuation of their paths through the re-
gion of interaction. That is, if rt is the "classi-
cal" path from (r 't ') to (F"t"), where r ' and F"
are outside the region of interaction, and if
r '(t', r")t", we should find that the "classical"
path from (r' —rtI(t'-7''), r') to (F"+Ft»(T"
—t"),r") is

r "+r „(t—t"), t" &t &r";t'

J. = J —J = J+iAr x&
int rel r

t'(t (t"; (4.7)

(8 tz )-=s h(F, x)= s Iz' r .tt t t' (4.3)

Similarly, since k commutes with the total ang-
ular momentum operator J, we have

[Z. , tz]=[tz, J ]=iIIFxs Iz,int' ' rel r (4 4)

and Eqs. (4.2) and (3.3) then imply Eq. (4.1b).
The interpretation of these conservation laws

is quite simple. Suppose the endpoints (r't'),
(r "t")are outside the region of interaction, so
that ht'= ht ~= Izpi(x). Then Eq. (4.1a) becomes

~ 2 ~ 2
1 1zpr i+& =zpr +ep,'a (4.6)

that is, the change in classical relative energy
along the path rt just balances the change in
quantum internal energy in the transition at which
we are looking. Similarly, if & and P are both
eigenstates of, say, the s component of internal
angular momentum, then

(pF, xr, ) + J = (pFt „xr „}+J . (4.6)

There is, then, a certain consistency in this
formal mixing of classical and quantum mechanics:
The classical description of relative motion cor-
rectly reflects the quantum change in internal
state.

Another important aspect of the collision pro-

To prove Eqs. (4.1) we notice that (ptt ",o'tt~) is
independent of t and that

d
dt tt"' t tt'

[o, , I,]
a '~~')" ~~t

(4.2)

where Ot is any operator. Equation (4.1a) then
follows from Eq. (3.3), since

r '- r,(t'- t), ~I (t (tl

p p m &x 2m M z
H= +2 — + + y(~)x (4 9)

with V(r) = V, —g &y &q g,
—0 otherwise (4.1P}

Suppose we are interested in a transition from the

Assume that this is so. Then since h(Ft, x) = tzp(x)
for t (t'or t &t", we find that

, =exp[-ie (t'- T')/@]o.
t7 Qt tt' '

(4.S)
P „=exp[- i & (t "- r ")/h' ]P

and the path (4.7) does in fact satisfy the equation
of motion (3.3).

We have finally to consider the difficulties which
arise because the variational principle (3.1) is
non-Lagrangian. One has as a consequence no
guarantee that a particle which starts with defi-
nite position and momentum will end up some-
where definite: There may be points r,", r,"such
that the initial velocities of the respective "classi-
cal" paths from (r 't ') to (F,"t") and (r,"t")are
identical. This is perhaps to be expected: The
transition o.'- p and the attendant transfer of en-
ergy and angular momentum can take. place,
roughly speaking, anytime during the collision (for
a practical example see Sec. VI). In ordinary
potential scattering the impact parameter may be
a many-valued function of scattering angle; in
this theory there is the additional complication
that the scattering angle may be a many-valued
function of impact parameter.

It is interesting to consider an example for
which this pathological behavior of the formalism
can be exactly and explicitly exhibited. Consider
a particle interacting in one dimension with an
oscillator fixed at the origin, through a term
linear in the oscillator coordinate,



181 SE MICLASSICAI SCATTE RING THEORY. II

—3'm v '=E- —3'k(u- (2V3/tt(a)sin3((oa/v ),r 2

(4.11)
&m v =E- 5.1

y 3
2m V =E,r 1

nth to n+ 1st vibrational state of the oscillator.
The transition amplitude Tn+1 „[rt]can be cal-
culated exactly for any xt. ' The details are not
fascinating, and we give only the results. Since
V(r) is constant in each of the regions r& —a, —a
& x &+ a, and x &+ a, a "classical" path from x'
& —a to x"&+a is characterized by three veloc-
ities, vy v2 v, . If E is the initial relative en-
ergy, we find that

that is,

and

(r, k)= lim Jdr'K (r0lr't')
t'-- ~

tk ~ r ' —iz(ka)t'/axe e
(5.3c)

(rx; k) = lim Jdr 'dx 'E(rxO I r 'x 't ')
00I

if r' (,)
—izga)t'/5

(5 3b)

(2 V'/t3 (u) sin3((ua/v3) (4.12)

is just half the energy transferred to a classical
oscillator, initially at rest, by a particle passing
through with velocity v, ." Make of it what you
will.

For small U (weak interactions), Eq. (4.11) says
that the particle loses half a quantum of energy to
the oscillator as it enters the region of interaction
and the other half as it leaves. This is a sensible
result. However, as V increases at fixed E
other solutions appear, and for strong enough
interaction one finds an infinity of "classical"
paths (v„v„v,) through the potential!

In the equation for v„ the velocity of the par-
ticle as it passes through the region of interac-
tion, &5& is half the energy transferred to the
quantum-mechanical oscillator during the colli-
sion. It is a curious fact that

The limit (5.3c) is equivalent to

ik ' r ' —iz(ko')t'/kxe e (S.4a)

where I r ' —tfkt '/p, I
= O(1); (5.4b)

r =r,
0

lim r, = Rk/p, ,
I I

00

the proof is exactly as in I.
From Eq. (5.4b) and the results of Sec. Ill it is

clear that the semiclassical approximation to
+pe(r'k) will be a sum of contributions from the

various "classical" orbits which pass through r
and have velocity hk/p, in the distant past. The
contribution from one of these tra, jectories, say,
r~ with

V. THE SEMICLASSICAL SCATTFRING
AMPLITUDE

i,et 4'+a(rx;k) be the scattering wave function
for collision of two atoms in internal state &

with relative momentum hk. The part of ++~

which describes scattering into internal state P
is evidently

is

lt'I'
iim I . — 7' [r ]

t --~ l~r /srI pn t
0 t' rt&

xexp iJ'" p dr/ft J,drP'/2-p ——,'nvir,

(r, k)= J'dxy (x)@+(rx;k) (s.l) iz(ke)t '
+g r (s.s)

with asymptotic form as x-~,
~ I

q' (r, f)=-e' ''5 +f (r, k)e' '/r, (5.2)

if r
)

-iz(fa)tlk.
(S.3a)

which defines the corresponding scattering ampli-
tude fpa. Here k' is the magnitude of the final-
state wave vector k'=k'r, determined by conser-
vation of energy, E(ka)= E(k'P) where E(ka)
= tt 3k3/2 p. + e a and so on

The scattering wave function @+of is that state of
the system which in the infinite past was the free
state

where p is the classical relative momentum pr~
and all integrals are taken along rg. The calcu-
lation of the asymptotic form of (5.5) for large r
goes through essentially as in I. %e find that

/ It !3 )1/3
lim (t'-- ~

~
I ar /&r, l0 t' rtij

=r-'[(k/k')a (r, k)]'13, a r--, (5.5)

where op~(rk) is, the classical differential cross
section for scattering into direction x calculated
from the paths defined in Sec. III and the factor
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dr dr/dt
dz dz/dt

(5.7)

The contribution of the trajectory r& to the scat-
tering amplitude is then

(~, k) = [(A, /u')o (~, k)j'~'

k/k' appears because (see I and the conservation
theorem of Sec. IV)

That the limits in Eq. (5.9) exist is a consequence
of the energy conservation relation found in Sec.
IV.

The total amplitude for scattering in direction
r and into state P is the sum of (5.8}over all
"classical" paths with the proper initial and final
velocities. The quantum- mechanical differential
cross section for scattering into (r, P) is given
byll

(~, k) i e~(zq (~, a)}, (5.8)

where I Zpo(&, k) I is the magnitude of the tran-
sition amplitude along the "classical" path lead-
ing into ~ in the infinite future and having velocity
kk/p, in the infinite past, and the phase gPn is

(u'/u) if (~, k) t'; (5.10)

(5.11)

if there is only one "classical" path which con-
tributes this becomes simply

r'-k(- )

,'n~&+ y —(~,k},

(5.8)

dt(p, r '/2h)+ Im in& [r ].

(x, k = lim
Z(k~)(t"- t')

-+~

The interpretation is transparent: The cross
section for scattering in a given direction and
with a given quantum transition is simply the
classical cross section for scattering of the atoms
in that direction times the probability for the
quantum transition. If more than one path con-
tributes to scattering in a given direction one has
of course the possibility of interference in the
inelastic differential cross section; if these paths
are close together in function space, in the sense
discussed in I, then one will see rainbow and/or
glory effects in the inelastic scattering. The
semiclassical theory of these effects can be
worked out completely by analogy to that of I.

VI. EXAMj r.Zs

Equations (5.8)-(5. 11) complete the formal development of the theory One ha. s two problems: that of
calculating the transition amplitudes T~, and that of finding the "classical" paths which determine the
angular dependence of scattering. The first problem is central to the usual impact-parameter calcula-
tions, in which the atoms are imagined to pass each other along free-particle trajectories, and it is al-
ready hard enough. The additional complication of considering the reaction of the quantum transition back
on the relative motion of the atoms should be contemplated only in cases where the effect is likely to be
large; that is, in low-energy atomic collisions (relative energies & 100 eV). In this section we discuss
the nature of the "classical" paths for such low-energy collisions in the case when only two "molecular"
electronic states participate.

First, a digression. We have based our formalism on Eq. (2. 1), the decomposition of the center-of-
mass Hamiltonian into relative energy of the centers of mass of the separated atoms and internal energy.
We have, therefore, a semiclassical description of the motion of the centers of mass of the atoms as they collide.
This is satisfactory from a formal point of view, but in practice it is a little silly: We are really inter-
ested in a semiclassical description of the motion of the individual atomic nuclei. If the theory can be re-
formulated to give such a description, then it can be applied not only to pure excitation processes but also
to electron exchange and transfer problems. The reformulation is not difficult, but one pays a price: The
definition of initial and final internal states n and P becomes more complicated.

To see how it goes, let r be the vector between the two nuclei, .xi the position vector of the ith electron
with respect to the center of mass of the two nuclei, and p and p the corresponding conjugate momenta.
Then the electrostatic Hamiltonian, in the center of mass frame, can be written
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where p. is the reduced mass of the two nuclei and

P,.
' (Zp,. )' Z 8

a(r, x)=Z '
+

' -Z
2m 2(tPll + ttL2) )X.—pr/~l l

z

g g Z Z 8

)x.~pr/m [ r
Z

(6.2)

where m is the electron mass, (m,Z, ) and (m,Z, ) are the mass and charge of the two nuclei.
Now suppose we are interested in the collision of two atoms with relative momentum hk and with N„N,

electrons, respectively, in internal state

{{)(X,&) = Pl (lX.i&.j)P2(jX.2&.j), (6.2)

where Rfi, for instance, is the position vector with respect to nucleus l of the ith electron around it. Then
if R is the vector between the centers of mass of the two atoms, the appropriate incoming state is

= 8[e i{)(X,o)]

(()r/)r(e))r r .- m - m -
)sl y +Num il m, +N, m j2

x e ({x. —)rr/m, ej)(r ({x. r)rr/m, e.j)I2' j (6.4)

where 8is the electron antisymmetrizer and p;n=[(ml+Nlm)-'+(m2+N2m)-'] ' is the reduced mass of
the separated atoms. Similarly, if we are interested in the cross section for formation of atoms with
relative momentum Sk' and with N,', N,

' electrons, respectively, in internal state

(6. 6)q'(X,'o') = g'((X.', (z.'j) q '({X.', o.'j)

and if R' is the vector between the centers of mass of the two atoms, the appropriate outgoing state is
~kI ~ I

= 8[e g'(X', o')]

f(p./pout)r' r
m+N'm i1 nz +N'm j2

x (r'({x. —)rr/m, e.j)rp'({x. r )rr/m, ej)
I2' j (6.6)

From Eqs. (6. l), (6.4), and (6. 6) it is clear that the semiclassical formalism will go through as we have
presented it provided we define the initial and final internal states as

0. = 8 exp ik ~ x. — x.
+ pe l SZ2 + 2PE

))= e Iexe ()r'', Zx. —,Px e'e'I
m, +N,'m i1 m, +N2m j2 J

That is, we define "classical" paths for the atomic nuclei by the variational principle

t II ~

5( f, dt ~)j,r&'+h ImlnT [r ])=0 (6. 6)

using now the reduced mass y, of the nuclei and states n and P which depend on the initial and final rela-
tive momenta.

Notice that n and P in this formalism are no longer precise eigenstates of the internal Hamiltonian

lim h(r, x),
P~ 00

even for k = 0; this is the price one pays for fixing attention on the nuclei of the atoms instead of on their
centers of mass. However, one usually drops the second term of (6.2), getting the Born-Oppenheimer
electronic Hamiltonian, and to the same accuracy replaces the atomic states p„y, ', p„y,' by their
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infinitely-heavy-nucleus approximation. The internal states n and P are then eigenstates of

lim h(r, x)

provided one can ignore the phase factors dependent on k and k'. For high-energy electron transfer
collisions this is not possible, "but at relative energies below 100 eV it is fine since the wavelength
associated with electron momentum (m/m, )kk is much longer than an atomic radius.

Suppose now that n, Pr are the normalized eigenstates of h(r, x),

h(r, x)n-(x) = e (r)n-(x), h(r, x)P-(x) = e (r)P-(x)r n r ' ' r r (6. 9)

which go to the states n, p as r- ~. In considering a transition from n to p at low energy, one has to
distinguish two possibilities, that the potential energy curves en and ep come close together at some r,
or that they do not. If they do not, we anticipate that the collision will be nearly adiabatic; that is, that
the states nttl, ptt ii will be approximately

ntt i = exp[- (i/) f I dr & (r )] n +small correction,
Q T, lt

pttI =exp[- (i/tt) ftil d& & (r )]p- +small correction.
T rt

(6. 10)

Vfe imagine then that the effective potential in which the nuclei find themselves moving while the electrons
make the transition from state n to p will be some mixture of the en and ep curves, looking like en be-
fore collision and like ep after collision. This is in fact what comens out of the formalism; substituting
Eq. (6. 10) in Eq. (3.4) we find that to first order the effective potential is

V(r, t)=c (t)e (r)+c (t)e (r), (6. 1la)

c (t)=Re{exp[-(i/h') f, d7'e (r )](ptt„,n- )/(ptt„, ntt,g.
c (t)=Re{exp[-(i/h) f„d7 ~ (r )](p-, ntt, )/(ptt„, ntt, )]

rt ' tt'

and, to first order,

c (t)+c (t)=1

(6. 11b)

by Eq. (6. 10). Furthermore, it is easy to see that

c (t) —— =1, c (t) =0; c (t) =0, c (t) =1
t-t' t-t' t-t" t-t"

so the mathematical picture corresponds to our physical idea about what is going on.
In practice it is still necessary to determine the mixing coefficients cn, cp by the iterative procedure of

guessing a path, calculating c,cp along it by, say, first-order perturbation theory, solving the equations
of motion to find a new path, and so on.

Now consider a pseudocrossing, e (r0):—ep(r0) for some r„and a path rt which cuts the pseudocross-
ing at times I;, and t„xg =rg =r0. %e no longer have a nearly adiabatic situation: There is appreciable

1 2
possibility of a change from electronic state nr to pr as the internuclear separation passes through r, . We
assume with Landau and Zener" that a change in electronic state is possible over such a small region
around r, that its amplitude depends only on the internuclear. position and velocity r, r at the pseudocross-
ing. Let tnn, tpp, tpn, and tnp be the four possible transition amplitudes at a pseudocrossing. " Then
the total transit on amplitude Tp [rt] is approximately

pitT [r ]=t (r, r )t (r, r ) exp[- (i/k)f dv e (r ) —(i/h)f, 'dv'e (r )]

g.tt
+t (r, r )t (r, r ) exp[- (i/h) f dr e (r ) —(i/h) f ,' d7 e (r )]. . (6. 14)

2 2 nn I I 2 Q
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That is, Tpn is a sum of two terms, reflecting the possibility that the electronic state changes at either
the first or second crossing through ~0. Since the two amplitudes describe distinct physical situations,
we make a semiclassical approximation to each term of K separately, and neglect the phases of the
amplitudes t since the transitions they describe occur essentially instantaneously. Then from Eqs. (6. 14)
and (3.1) it is clear that for given impact parameter b and relative energy E the nuclei move either in
potential en(r) up to the first crossing through r, and then in potential ep(r), or in potential en(r) up to the
second crossing and then in potential ep(r). Let 8»(b, E) be the deflection angles for the two possibilities
and en(r) = en(r) —en(~), ep(r) = ep(r) —en(~). We have

0 0

&p(r) bo l —o
—2b f 'der '(1—

min, p
e '(r)

8 (b, E) =(...) —2b J ' drr ' 1—
2 'dmin (y E

(6. 15)

The semiclassical scattering amplitude is

f (r, k) =I+I (k/k') b/(sin8d8 /db)I ' e ' ' It (2)t (1) I

+Z I(k/k')b/(sin8d8 /db)I e ' ' It (2)t (1)I, (6. 16)

the sum being over all impact parameters which lead to scattering in the direction v. In the differential
cross section there is now the possibility of interference between two paths with different impact parame-
ters and different effective potential.

The total cross section for scattering into state P is

o(P, E) =/dr(k'/k)If (r, k)I'

b
27r f obdb[I t (2) IoI t (1)Io+ It (2) IoI t (1) I2]

o pp po. pn nn (6. 1V)

if the interference pattern in the differential cross section is "dense" enough to be averaged over. Here
b, is the impact parameter for which the distance of closest approach in the potential en(r) is equal to the
pseudocrossing distance x0. Now consider the part of the semiclassical cross section for elastic scatter-
ing contributed by impact parameters less than b„ to the same approximation this is

o(n E)-2' J o bdb[ It (2)I It o(1)Io+ It (2)I It (1)I ]
b

0 np pn QQ QQ

Sum the two; one gets

(6. 18)

o(n, E)+o(p, E)=»t, 'bdb-[l«»I'It (»I'+ It (»I'It (»I']+[It

(6.19)

where each transition element is evaluated along the "classical" trajectory with impact parameter b which
passes through the sequence of potentials indicated by its subscripts. Now since the classical path for the
sequence (n -P- n) is identical with the path for (n -P - P) up to the second crossing, and since the transi-
tion amplitude depends only on internuclear position and velocity at the crossing, we have in the two-state
approximation

It (2) I'I t (1)I'+ It (2) I'It (1)I'= It (1)I',

It (2) I'l t (1)I'+ It (2) I'I t (1)I'= It (1)I'
QQ QQ pn nn nn

Similarly, the classical path (n -P) is identical to that for (n - n) up to the first crossing, so

(6.20)
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jt (1)j'+ j t (1)j'=1
pn nn

and cr(o. , E) + (x(P, E) = vb, '.
(6.21)

(6. 22)

In other words, to this approximation we have a kind of "conservation of total cross section" in a system
with both elastic and inelastic processes. "

Notice that in this two-state theory one has a formula analogous to (6. 16) for the concurrent elastic
scattering amplitude

1 1

f (x, k) =Q jb/(sin8de /db) j' e ' ' jt (2)t (1) j+Q j 5/(sin8de /db) j
' e ' ' jt (2)t (1)j,

(6.23)

where 6, is the deflection function in a potential equal to e '(r) for r &r, and ep(r) for r &r„while 8, is
the deflection function in the potential e~(r) for all r On.e then expects curve-crossing oscillations in
the differential cross section for elastic scattering, even at energies below the threshold for inelastic
processes. "

We have finally to discuss the case of symmetric electron transfer. Let gz, uz be the electronic eigen-
states which are respectively even and odd in the spatial coordinates of the transferred electron. Then
the initial state n, representing an electron around one of the nuclei, is, say,

i 1
(a) o. = lim (g-+u-), while (b) P = lim (g- —u-) .r r r r (6. 24)

If the g and u potential curves are well separated for finite x, the individual electronic states will change
adiabatically with time, so that

II II
o, „,=2 '~'(exp[-(i/8) 1, d7 e (v )]g- +2 'I'exp[-(i/b) f, d7 e (r )]u-

g 7" rtII 't"
t" t II

and 7 [r ]=—,'lexp[-(i/5) f, dte (r )] —exp[-(i/h) f,

dt's

(x)]),

t II t II
T [r ] =-,'(exp[- (z/8) f,

dt's

(r )]+exp[- (i/b) f, dt e (r )]) .

(6. 25)

(6.26)

The situation is formally the same as with curve crossing. One has two distinct sets of classical paths
for the nuclei, which according to Eqs. (6. 26) and (3.1) are classical paths in the potentials eg(r) = eg(&)
—eg(~) and e'(y) = eu(x) —eu(~). The amplitudes for scattering with and without electron transfer are

b E b Ef (x, k) = —,'Z jb/(sin8)d8 /dbj e g ' ——,'g jb/(sin8)de /dbj ' e (6. 27a)
p~ ) 2

Q

1 1

f (r", k) = —,'g jb/(sin8)de /dbj
' e "g ' + —,'Zjb/(sin8)de /dbj' e ""

O'A
(6. 27b)

where the sum is over all impact parameters leading to scattering in the direction x in either of the two
potentials. Equations (6. 27) have in fact been used very successfully by F. T. Smith and his colleagues
to interpret scattering data on low-energy electron transfer. "
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With reference to a previous paper by Fronsdal, the expression for Compton scattering on
the fundamental state of the hydrogen atom is derived, taking into account the effect of the
proton motion. An example of its extension to an inelastic case is shown. The result is dis-
cussed in connection with some problems of interpretation of the formalism of the infinite-
component wave functions.

1. INTRODUCTION

The formalism of the infinite-component wave
functions has often been proposed and used in
recent years to describe systems having internal
degrees of freedom. '~2 One of the problems
arising in this formulation is to show as clearly
as possible the connection between the new mathe-
matical techniques and the older ones. The sys-
tem most commonly studied in this connection is
the hydrogen atom, since there the older formula-
tion is completely clear and the newer formulation
can be built up explicitly. In particular, Fronsdal
recently used this formalism to calculate the scat-
tering of photons by bound electrons without using
the dipole approximation, but still keeping the
proton mass infinite. Here we wish to go a step
further and study the effect of the finite mass of

the proton, which allows recoil effects and inter-
action of the proton with real photons. The main
reason for including these effects is not that the
finite-mass effect is important experimentally,
but to study, in a concrete example, how one can
describe, in the frame of the infinite-component
formalism, the interaction of a composite system
in which both the components interact. In partic-
ular, we shall see that the requirement of locality
for the interaction Lagrangian is no longer valid
and that some weaker condition should be substi-
tuted. The paper is, in a broad sense, a continu-
ation of Ref. 3, although its particular purpose
led us to choose a different starting point, i.e. ,
we use the classical Schrodinger formulation and
introduce the infinite-component functions after
the problem has been completely formulated.


