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The theoretical development of the microscopic (shell-model) theory of a decay of deformed nuclei is
reviewed, and the detailed formulas applying to even- and odd-mass nuclei are presented. Results are pre-
sented from new calculations on ground-rotational-band u-decay patterns for even-even nuclei from atomic
numbers 90-106.These calculations represent a refinement over previously published work in that particle-
number-conserving variational wave functions were used instead of Bardeen-Cooper-SchrieGer (BCS) wave
functions. The new results for even nuclei are not, however, very different from the earlier BCS results.
The main contribution of this paper is the tabulation of several hundred theoretical 0. amplitudes for odd-
mass nuclei from elements 92—101.The theoretical intensities derived from these tables are compared with
experiment for a representative sampling of n emitters. The main factors governing hindrance for unfavored
transitions are discussed in terms of loss of the pairing correlation enhancement and in terms of the Nilsson
functions of the odd-nucleon wave function.

I. INTRODUCTION

t tHE strong-coupling theory of rotational nucleonic
structure of deformed nuclei of Bohr' appeared in

1952 independently of, but almost simultaneously with,
the high-resolution n spectroscopic study' of '4'Cm,
which revealed a nuclear rotational-band structure.
Since then there has been the challenge to relate the
energies and intensities of the rich actinide 0. spectra
to the theory of deformed nuclei. The classification of
final states of n decay into rotational bands proceeded
rapidly. The qualitative notion of favored a decay (no
change of quantum state of the odd nucleon or nu-
cleons) as being much more rapid than unfavored
(change of state) n decay was soon established' and
served well in the assignment of Nilsson quantum num-
bers to various bands in odd-mass nuclei. In this early
period the problem of penetration of the anisotropic
Coulomb barrier was treated by coupled-channel analy-
sis, and the experimental relative intensities of transi-
tions to rotational-band members in even nuclei were
used to determine the 0. wave function on the nuclear
surface. 4

It was not until 1962, ten years after Bohr's original
paper, that a quantitative microscopic calculation of
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the cr rates appeared (Paper I),' relating rates directly
to nucleonic Nilsson wave functions. Paper I presented
theoretical calculations of the O.-decay intensity pat-
terns to the various rotational states of deformed even-
even nuclei. The basic formulation was that of shell-
model o.-decay-rate theory, in which the n-cluster
probability at the nuclear surface was projected from
the shell-model product wave function of the constitu-
ent nucleons. For the calculations in deformed nuclei
Nilsson wave functions were used and configuration
mixing was brought in through the pairing-force, (Bar-
deen-Cooper-Schrieffer) (BCS) superfluidity formal-
ism. ~ The important quadrupole coupling effects in the
barrier penetrability were approximated by the Froman
matrix method '

Here we shall present the results of refined new cal-
culations for the rotational intensity patterns, as well
as many new properties not calculated before.

First, we have used a larger basis set of Nilsson
orbitals above and below the Fermi surface for the
actinide nuclei. The new set is 25 proton orbitals by
40 neutron orbitals compared with a 10)&10 set in

Paper I. Since the theoretical n-decay rates were found
so sensitive to details of the pairing-force wave func-
tions, we avoided the ordinary BCS wave functions
with their Quctuations in particle number and used
exclusively the improved (FBCS) wave functions

~ H. J. Mang and J. O. Rasmussen, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Skrifter 2, No. 3 (1962) (hereafter referred
to as Paper I).

H. J. Mang, Z. Physik 148, 582 (1957); Phys. Rev. 119,
1069 (1960).

J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).
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TABI'E I. Transformed amplitudes Goo for decay of even-even nuclei to ground.

181

Neutron
No. Th Pu Cm

Goo '
Cf No Kub 106

136

140

146

154

156

160

3.383

3.285

2.893

2.755

3.201

3.113

2.967

2.749

2.623

2.589

2.250

2.841

2.716

2.522

2.417

2.390

2.085

1.764

2.233

2.145

2. 124

1.859

1.576

1.369

1.602

2.038

1.801

1.539

1.338

1.576

1.816

1.714

1.468

1.277

1.509

1.739

1.801

1.703

1.466

1.276

1.520

1.755

1.816

1.804

1.536

1.336

1.590

1.835

1.899

1.886

1.349

1.425

1.648

1.700

1.681

Tabulated values have been multiplied by 100. Kurchatovium, Z =104.

(strictly conserving particle number) developeds and
tested'I' earlier. Furthermore, these FBCS wave func-
tions were calculated using an attractive 8-function
force between like nucleons in Nilsson orbitals, rather
than the usual approximation of a constant G for all
pairing-force matrix elements.

We have published preliminary calculations" of the-
oretical n-decay rates for some odd-mass nuclei, and
the final calculations for "'Am, which led to a new
interpretation of the level structure of 3~Np. How-
ever, we have not previously published any compre-
hensive work on odd-A nuclei, and such work consti-
tutes a main contribution of this paper.

II. FORMULAS FOR n AMPLITUDES

A brief outline of the theory and the steps involved
in the microscopic calculation of the n amplitudes on
the nuclear surface will be presented before the aniso-
tropic barrier-penetration problem is examined.

In our formulation of n decay the n internal wave
function x is expressed as a Gaussian-type function
of the relative coordinates of the protons and neutrons
(see Appendix A for detail). One assumes the time-
independent wave functions O'I,~ for the daughter nu-
cleus referred to a space-fixed coordinate system, and,
correspondingly, Cz,.„.~' for the parent. By postulating
a space-time region with exponential time dependence,

9 K. Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev. 135,
S22 (1964).' H. J., Mang, J. K. Poggenburg, and J. O. Rasmussen, Nucl.
Phys. 04, 353 (1965)."H. J. Msug, Auu. Rev. Nucl. Sci. 14, 1 (1964).

'2 C. M. Lederer, J. K. Poggenburg, F. Asaro, J.O. Rasmussen,
sud I. Perlmsu, Nucl. Phys. 84, 481 (1966).

one factors out the time-independent probability am-
plitude

&& 1'z (fl)+z ' (n)x-(5) 4&ndfl, (&)

where E is the distance between centers of n particle
and daughter nucleus; 0= (e, p) = angular coordinates
of the a particle in a space-fixed c.m. system; $ and ri

are internal coordinates of n particle and daughter,
respectively, including the spin coordinates; I;, I, and
I. are the angular momenta of parent, daughter, and
n particle relative to daughter, respectively; M; and
3f represent the spatial projections of the angular mo-
menta of parent and daughter, respectively, ; and r;
and r represent all other quantum numbers needed to
specify the wave functions completely. Angular mo-
mentum of the system has been conserved by including
the Clebsch-Gordan coef5cient and summing over the
magnetic quantum number M. The binomial coefficient
before the integral arises because the final state (n
particle+daughter) is not explicitly antisymmetrized
for exchange of nucleons between n particle and daugh-
ter. The probability amplitude for the wave function
of the parent to contain an n particle and daughter of
the speci6ed quantum numbers with centers separated
a distance R is designated gzz, z"'(R) .

If the C and 4' wave functions accurately repre-
sented nucleon probabilities and clustering out to sev-
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TABLE II. Reduced relative amplitudes b2, for l =2 a decay of even-even nuclei.

Neutron.
No. PQ

bg

Cf Fm No 106

138

140

142

146

150

152

156

158

160

0.999

0.986

0.981

0.986

0.998

0.983

0.971

0.966

0.971

0.982

0.981

0.934

0.928

0.924

0.929

0.939

0.938

0.891

0.840

0.831

0.895

0.905

0.903

0.856

0.805

0.796

0.731

0.805

0.759

0.708

0.701

0.635

0.635

0.724

0.673

0.665

0.599

0.597

0.620

0.665

0.612

0.605

0.535

0.532

0.554

0.579

0.625

0.618

0.548

0.545

0.568

0.593

0.451

0.444

0.374

0.366

0.385

0.404

eral nuclear radii, one might simply evaluate the n
amplitudes g outside the Coulomb barrier and directly
evaluate the implied outgoing n flux. As a practical
matter, the shell-model determinantal wave functions,
even after improvement by extensive pairing-type con-
figuration mixing, are not expected to reproduce nu-
cleon-nucleon correlations or over-all density for dis-
tances much beyond the half-density radius. This
unreliability is more acute for the three-dimensional
harmonic-oscillator wave functions we use than it would
be for nucleonic wave functions evaluated in a realistic
finite well.

Thus, as in R-matrix theory of nuclear reactions, we
must divide space into two regions by a sphere of
radius Ro somewhere in the region of the nuclear sur-
face. The n amplitudes g(Rs) from Eq. (1) may be
evaluated and used as boundary conditions to normal-
ize the irregular Coulomb functions that continue the
n amplitudes to large distance and relate them to
n-decay intensities. In more sophisticated treatments,
even for spherical nuclei, the amplitudes g may serve
as boundary conditions for coupled-channel numerical
integrations through the barrier. '3 The total decay con-
stant may be expressed in the form

X= (1/5) Q Pz, (s)yz;„zz„', (2)
ILT

where Ez, (s) is the penetrability factor for an zs particle
of energy e and relative angular momentum J. The
7I,.„.»,' is the reduced width of E-matrix theory and
is related to the g as follows:

yz,.„.zz„'= (fi'/2M)Rs
~
gzz„™m(Rs)~', (3)

"E.A. Rauscher, J. O. Rasmussen, and K. Harada, Nucl.
Phys. A94, 33 (1967).

where M is the n reduced mass. It is more convenient
to work with the dimensionless amplitude 6 defined by

G(R) =Rs~s&(R),

and it is in this dimensionless form that we will express
n amplitudes. Hereafter, the penetrability factor PL and
the reduced width y' depend on the choice of Eo, but
their product will not if Eo is chosen in a region in
which the logarithmic derivative of g and of the irregu-
lar external n wave function are the same. This point
is discussed by Mang and Rasmussen' and by Zeh. "
The matching of logarithmic derivatives is a condition
on the applicability of the theory.

Let us now specialize to discuss spheroidal nuclei
with large rotationa, l moments of inertia. The wave
functions of the parent and daughter nuclei will be
taken according to the strong coupling model of Bohr
and Mottelson":

sz &=L(21+1)/16~sJ&s

X I Dzzzz'xzz+ ( —1) —+ Dsz zz x zr}.

The n amplitudes at the "joining surface" are most
conveniently taken as an expansion in surface harmonics
F' , (z0z',zf'), the angles 8' and P' referring to the body-
fixed coordinate system with the nuclear symmetry
axis as the polar axis. The "joining surface, " which
corresponds to the sphere of radius Ro, may be of
arbitrary size or eccentricity in the microscopic n-
particle theory of spherical nuclei; but we may hope
that it will approximately satisfy two conditions: that
some linear combination of shell-model Slater-determi-
nant wave functions be reasonably faithful in the

~4 H. D. Zeh, Z. Physik 175, 490 (1963).
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TABLE III. Reduced relative amplitudes for /= 4 a decay of even-even nuclei.

Neutron
No. Cm

54
Cf No 106

136

140

144

146

148

150

152

156

0.524

0.489

0.454

0.417

0.363

0.466

0.430

0.396

0.359

0.304

0.278

0.312

0.278

0.240

0.185

0.157

0.104

0.066

0.062

0.165

0.109

0.081

0.027

—0.011
—0.016
—0.045

—0.112

—0.166 —0.191 —0.207

—0.211

—0.241

—0.235

—0.265

—0.209 —0.233

—0.188

—0.251

—0.284

—0.253

—0.210

—0.206 —0.230 —0.247 —0.247

—0.252

—0.284

—0.324

—0.327

—0.360

—0.210 —0.298

—0.254 —0.333

160 —0.159 —0.159 —0.254

interior region near the surface, and that outside the
surface the 0. wave function be capable of accurate
integration to inanity by a coupled-channel barrier-
penetrability calculation involving a tractable number
of nuclear excited states as channels.

Since we use Nilsson wave functions for nucleonic
orbitals inside the surface, we choose the joining sur-
face in the tail region of nuclear density and along a
surface on which the Xilsson radial parameter is con-
stant. Such a surface, according to a transformation
in the appendix in Nilsson's original work, would be a
spheroid of about half the eccentricity of the spheroid
on which the nuclear density is at half the central
value. It is more straightforward in the derivations
which follow to consider the Xilsson coordinates as
strictly spherical polar, and we shall return finally to
reconsider the approximation involved.

There are now two parts to the problem. First, from
the linear combination of products of Nilsson functions
of the parent we must project onto the joining sphere
a product of an n wave function and a particular
daughter-state wave function. Second, we must com-

pute a barrier-penetrability matrix that relates the am-

plitudes on the surface to n amplitudes at large distance,
hence to O.-group intensities.

With respect to the erst part of the problem, let us
consider the oversimplified situation of a deformed nu-

cleus consisting of an inert deformed core plus two
protons in Nilsson orbitals Q„ndaQ„(Q here denoting
all quantum numbers E, e„A, 0 needed to label the
orbital completely) and two neutrons in orbitals Q~
and Q~ . The daughter nucleus we take as the deformed
core with no extra nucleons. By approximating the
Nilsson wave functions Pa,. (r, 9', f') as expansions in

three-dimensional isotropic harmonic-oscillator func-

tions, we can perform the transformation from the
twelve spatial coordinates of the four nucleons into
nine relative coordinates and three c.m. coordinates.
The desired n amplitudes Gr, ~(R) are obtained by in-
tegrating, as in Eq. (1), over all coordinates except
the c.m. radial coordinate R. (There is also a sum over
spin coordinates, selecting only singlet couplings of
like nucleons. ) Let us designate this special Gr, ~ ampli-
tude in a notation with superscripts labeling the four
Nilsson orbitals:

a, a„ja~O~~

= R+' g d$ d costj' dP'Q, (fa„*Pa, *)
spin

&&~(4a *la *)x-(4)1'i (0V). (5)
The script 0', implies antisymmetrization of the wave
functions, that is, use of a Slater determinantal wave
function. The general expressions for evaluation of Kq.
(5) in terms of Nilsson coeKcients of the four orbitals
are rather complicated and are given in Appendix A
of this paper.

From the simplified example of two protons and two
neutrons in a potential well we must go on to consider
a more realistic nucleus, and to explicitly consider
many nucleons outside a core. From the expressions
of Eq. (5) or Appendix A for the n amplitude I' associ-
ated with four particular Nilsson orbitals we construct
an o. projection operator 0 I,~ to accomplish the erst
part of our task. The operator is most conveniently
expressed in second-quantized notation, with a~„t as
creation operator for a proton in state Q~ and bg„t that
for a neutron in state 0

1'~~"'"'"'"4(R)aa, 'aa, '&a, '&a, ' (6)
Qy020304
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TABLE IV. Reduced relative amplitudes for l =6 n decay of even-even nuclei.

Neutron
No. Cm

~6
Cf 106

136

138

140

142

144

146

148

150

152

154

156

158

160

—0.038 —0.085
—0.065 —0.111 —0.192
—0.090 —0.135 —0.215
—0.114 —0.159 —0.238 —0.276
—0.137 —0.182 —0.260 —0.297

—0.174 —0.206 —0.259 —0.245 —0.182
—0.159 —0.144 —0.077—0.111

—0.191
—0.086

—0.126 —0.111
—0.087

—0.046 —0.055
—0.032
—0.007

—0.023

0.001

—0.089

0.020

0.049

0.064

0.082

—0.179 —0.256 —0.292 —0.356
—0.154 —0.226 —0.260 —0.316 —0.303 —0.241

—0.180 —0.212 -0.264 —0.250 —0.186 —0.195 —0.092

The sum runs over all Nilsson orbitals, and the quan-
tum number 0, implies all Nilsson quantum numbers
specifying an orbital. The sum is, of course, restricted
so that the four nucleon angular-momentum compo-
nents 0; must sum to M, the projection of 0. angular
momentum along the nuclear symmetry axis.

The desired n amplitude G from Eq. (4) for complex
nuclear wave functions is obtained by sandwiching the
cz operator of Eq. (6) between parent wave function
(on the left) and daughter wave function (on the
right), expressing them in second-quantized form. We
consider several cases.

A. Case I:Favored Decay of Even Nuclei

A particular case of interest is decay to the ground
rotational band of an even nucleus using BCS wave
functions. We write the parent wave function in the
usual notation

4;= g (U,+V „a „ta,~)
Qy

Xg(U..+V..&..'& ..') IO) (~)
Q~

and write similarly for the daughter except with primes
on the U and V parameters. Using the anticommuta-
tion relations of the operators, it is easy to derive the
following:

Gro(favored, even) = (C,
I
0 qadi

I

C f)
Q&—Q&Q~—Q~

Lp

It is interesting to note the form of Eq. (8) in the limit
of very strong pairing correlation, where the gap pa-
rameter 6 is much greater than the average Nilsson
level spacing. In this limit the parent and daughter
wave functions are the same. With this approximation,
Eq. (8) simplifies to

Goo~i'oo' Q Uo, Vo, Q Uo~Vo„,
QN

but these sums for the constant-pairing-force approxi-
mation are simply equal to the gap parameter 6 divided
by the pairing matrix element G.

Thus

G.o=I'o.-(~./G. ) (~~/G ) (&O)

The pairing force is seen to bring out a large enhance-
ment of the 1.=0 favored decay, since the ratios 6/G
range from 4 to 8 and are measures of the effective
number of Xilsson orbitals involved in pairing con-
figuration mixing.

Favored decay of an odd-mass or odd-odd nucleus
will have an expression for Gzo like Eq. (8), except
that the sum will exclude the term for any orbital
occupied by an odd nucleon.

G g Ir 9 0 0 0 V U V U (9)
Q&QN

For L=o it turns out that all I pp coeKcients are posi-
tive, and if we assume them equal to some average
constant value I'pp', we get the interesting approxi-
mate result

VQ UQ VQ~UQ~

( Uii„Uo„'+ Vo„Vo„') (Uo„Uo„'+Vo„Vo„')

X +(U,U „+V .V .) II(U U +V

B. Case II: Unfavored Decay of Odd-Mass Nuclei

'). In unfavored decay, by definition the odd nucleon
occupies a different Nilsson orbital in parent (E) and

(8) daughter (E'). Here the double sum of Eq. (8) be-
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TAaLE V. Reduced relative amplitudes for l =8 a decay of even-even nuclei.

Neutron
No. Pu No 106

136

138

140

142

144

146

148

150

152

154

156

158

160

—0.124 —0.140
—0.131 —0.146 —0.159
—0.136 —0.149 —0.160
—0.139
—O. 135

—0.152
—0.145

-0.160 -0.150
—0.149 —0.136

-0.010

0.004

0.009

0.022

0.077

0.088

0.101

0.156

0.144

—0.127 —0.130 —0.115 -0.045
—0.072 —0.069 —0.052 0.036

O. 098

0.110

0.160

0.147

0.149

0.054

0.113

0.124

0.168

0.152

0.154

0.149

0.117

0.129

0.175

0.159

0.161

0.155

0.168

0.176

0.205

0.183

0.184

0.176

comes a single sum:

G~x-x =Vx Ux II (Uo~UaN+Va~Va»)
QN&XXI

Xll(Uo, Ua„'+V, V „')
Qy

XQ I Va Uo '/(Uo Ua '+Vo Va ') j
)ay

, Q&—Q& K—X~

G =V U' lI (U Uo'+Vs Va')
Qg&KK I

X g (Ua„Uo,'+ Vo„vo„')
Qp

X Q I Vo„Uo,'/(Uo, Uo„'+Va, vo„')7

X ( 1)qy+lp, 0&—ap x x~ (11)

~here (—1)~&= sr is the parity of the daughter nucleus.
This phase factor arises because of the symmetrization
of the wave function in the strong coupling model of
Bohr and Mottelson. These amplitudes for unfavored
decay are generally considerably smaller than the
favored I.=O amplitudes of case I; erst, because the
coherent sum in one kind of nucleon orbital is lost,
and second, because the amplitude FI,~Q—Q~—~' for
unlike orbitals is usually much smaller than I'I,OQ " "'—"'
for time-reversed conjugate orbits.

It should be noted here that the earlier calculations
of Paper I were based on BCS wave functions, but the
calculations of this paper actually use only the re6ned
particle-conserving projected wave functions denoted
FBCS and discussed in Ref. 10. The modified FBCS
formulas for a decay corresponding to Eqs. (g) and
(11) are similar in appearance and are given by Poggen-
burg" in the appendix of his paper.

"J.K. Poggenburg, University of California Radiation Labora-
tory Report Xo. UCRL-16187 (unpublished).

4,F' "'= (1/&)& ( r,) (fP/2MR, ')

X!g&tr, —
~Gl. x, x, .

L

+(-1)' ~x~~i" x'+x-IG x, , I.
= (1/5) &r (&r~) (fP/2MRp ) I G~

I (12)
&n some cases P&(~) may be taken simply as the recipro
cal of the square of the irregular Coulomb function at
the radius Eo,. in the numerical work reported here
P~(e) is evaluated by WEB numerical integration
through the entire barrier de6ned by an optical-model
nuclear potential without channel coupling. The spe-
cihc channel-coupling effects are absorbed into ma-
trices B.

III. ANISOTROPIC BARMER-PENETRATlON
FORMULAS

Having expressions for the 0. amplitudes on the spher-
ical "joining surface" of radius E., we must now con-
sider the second part of the problem: the derivation of
a barrier-transmission matrix that will relate these
amplitudes to outgoing n-wave amplitudes on a sphere
at large distance, hence to 0. intensities. It would be
completely inappropriate to use ordinary irregular Cou-
lomb functions to propagate the amplitudes from nu-
clear surface R to inanity, for the anisotropic barrier
through which the n wave must propagate produces a
strong coupling between channels involving nuclear
rotational states differing in spin by one or two units.

It is convenient to renormalize the barrier-trans-
mission matrix by factoring out penetration factors
Pq(e) calculated as for an undeformed sphere of the
same volume. This done, we have the problem of calcu-
lating matrices BI, '+ ~ in the following equation for
the partial decay constant from nucleus I;E; to a state
IyEy with a orbital angular momentum /:
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"
Pu
-'+ (63 It) ~~+ (633k)
2

theor ————~
239 p

2+ (63I ~) -'- (743 &)

5 E(keV)

CL 333

//

368 4I 5

E (keV)— exp

0 46 I03 I70 248

-—theor-

O

O

Spin

-8
7 9
2 2

I5 7
2 2
Spin

I3
-2

FIG. 1. Comparison of squares of theoretical a amplitudes

I Gyre Is with experimental reduced transition probabilities. The
n groups are from "spu decay to the —',+ (633) band.

FIG. 3. Comparison of squares of theoretical a amplitudes with
experimental reduced transition probabilities in ~39Pu 0. decay
to the —,

' —(743) band.

The coupled radial Schrodinger equations have been
given in greatest generality by Tarnura. '6 Outside the
range of nuclear forces the coupling is predominantly
of electric quadrupole type, involving exchange of two
units of angular momentum between nuclear rotation
and n orbital motion. Numerical integrations of the
coupled equations in spherical polar representation
outside the nuclear force region for ''Cm decay'~
showed the barrier-transmission matrix to be some-
what asymmetric, with appreciable erst off-diagonal
elements. The matrix elements also had small imagi-
nary components, to be associated with Coulomb exci-
tation, an effect of quadrupole coupling outside the
barrier in shifting phases of regular and irregular solu-
tions from the normal Coulomb phases.

Numerical integrations in prolate spheroidal coordi-
nates by Rasmussen and Segall" and by Pennington

239p

2
+ (63l t) ~—+ (622k)

2

Ck

CL

~0
C

e
'a
4I
s»

-5—
E(keV)

I 29 17I 225

—theor

5 7 9

Spin

FIG. 2. Comparison of squares of theoretical 0. amplitudes with
experimental reduced transition probabilities in '"Pu a decay
to the s+ (622) band.

'6 T. Tamura, Rev. Mod. Phys. 3F, 679 (1965).' J. O. Rasmussen and E. R. Hansen, Phys. Rev. 109, 1656
(1958).

J. O. Rasmussen and B.Segall, Phys. Rev. 103, 1298 (1956).

and Preston" implicitly took into account the stronger
coupling setting in at the edge of the attractive nuclear
potential well. Referred to spherical polar basis, this
coupling in the nuclear surface region is of opposite
sense and dominates coupling effects due to the electric
quadrupole moment.

The above-mentioned numerical integration studies
have been used to test the more convenient Froman
matrix approximation, and for the purpose of the ex-
tensive calculations we report here, the Froman matrix
method has been used.

The Froman matrix carries out the following idealized
transformation: Given some arbitrary wave-amplitude
function over a surface, usually taken as spheroidal,
near the nuclear surface, the function is mapped onto
a sphere outside the barrier by multiplying the ampli-
tude at each surface point (0, g) by the one-dimensional
%KB exponential factor along a radial path. The func-
tion on the outer surface is renormalized by dividing
by the %KB exponential factor for an undistorted
sphere enclosing the same volume as the inner surface.
The vector composed of the spherical harmonic expan-
sion coeNcients of the amplitude on the inner surface,
when multiplied from the left by the Froman matrix,
gives the expansion coeKcients on the outer sphere.
This approximation reproduces the most important
effects of the anisotropic barrier, namely that the dis-
tribution on the inner surface will be distorted by an
enhancement in the region of the thinner barrier (polar
regions for a prolate spheroid) in transmission to the
outer sphere. For an undeformed nucleus the Froman
matrix becomes a unit matrix.

The treatment of the three-dimensional barrier prop-
agation by one-dimensional radial path integrals is an
approximation exact in the limit of vanishing nuclear
rotational energy (i.e., infinite moment of inertia) and
vanishing kinetic energy of orbital motion Li.e., van-

' E. M. Pennington and M. A. Preston, Can. J. Phys. 36, 944
(1958).
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TABLE VII. a amplitude

+Parent

Daughter+
-',+ [633]»3U —,

'- [743]»~U

-',+ [631]

-,'+ [e33]

0.225 (—3)
0.276( —3)
0.206(—3)
0.920(—4)
o. 1s7 (—3)
0.334(-4)
O. 332 (—3)

0.207 (—1)
0.134(—1)
0.792 (—2)
0.611(—2)
0.335 (—2)

—0.138(—3)

0.508(—3)
—0.341(—3)

0.431(—3)
-0.886(-5)

0.116(—2)
-0.998(-3)

O. 169(—2)

O. 116(—1)
0.445 (—2)
o.65s(—2)

-0.125 (—3)
—O. 161(—3)
-0.118(—2)

0.103(—2)
-0.149(—2)

0.112(—2)
-0.193(-2)

0.165 (—2)
—0.181(—4)
—0.640(—4)
—0.226(—3)
—O. 66S(—3)

—0.638 (—3)
—O. 347(—3)
—0.123 (—3)
—o.7si( —3)
—0.301(—3)
—O.447 (—3)

—o.s48( —3)
-o.12s(—2)
—0.117(—2)
—O. 792 (-3)
-0.703 (—3)

O. 928(—4)

-0.121(-3)
-0.367 (—3)
—0.648 (—3)
-0.251(—3)

O.486 (—3)
-0.499(-3)

-0.397 (—3)
0.522 (—3)

-0.537 (—3)
0.108(—2)

—,
'-

[743]

g+ [631]

—0.212 (—3)
—0.425 (—3)
-O.312 (—3)
—0.250(—3)
-o.is6( —3)
-0.307 (—3)
—0.328 (—3)
-0.246(—3)
—0.134(—3)
—0.474 (-4)
—O. 476(—3)
—0.179(—3)
-0.549(-3)

-0.282 (—3) —0.401(-4)
—0.132 (—3) 0.156(—3)
—0.231(-3) -0.114(-3)

0.145 (—3) 0.268 (—3)
0.277 (—4) —0.213(—3)'I L—0.336(—3)I ' I—0.632 (-3)

—0.875 (—3) —0.347 (—3)
-0.725 (—3) -0.600(-3)
-0.932 (-3) -0.158(-3)
—0.748 (—3) —0.244 (—3)
-O.434 (—3)

0.203 (—1)
0.126 (—1)
0.636 (—2)
0.439 (—2)
0.208(—2)

0.132 (—1)
0.479(—2)
o.ses( —2)

—o.6o7(—3)
-0.621(-3)

0.245 (—2)
-O. 199(—3)
-0.423 (—3)
—o.s34(—3)
—O.946(—3)

-0.533(-4)
—o.44s( —4)
-o.2os (—3)

-', + [622]

-',
—

[7s2]

—;+ [622]

—,'+ [624]

-0.921(-3)
-0.582 (—3)
—0.773(—3)
—0.437 (-3)
—o.29s(—4)
—0.184(—4)

—0.281(—3)
—O. 27S (—3)
-0.174(—3)
—o.67s( —4)
—0.298(—4)
—O. 121(—4)

0.126(—1)
0.772 (—2)
0.391(—2)
0.117(-2)
o.ss3 (—3)

-0.433(-3)
-0.775 (-3)
—o. 12o(—4)
—0.448 (—4)

o. 102(—2)
o.47s (—3)

V [6
—0.188(—4)
—O.397(—4)
—o.sis( —4)
—0.467 (—4)
-0.413(—4)

0.178(—3)

0.809(—2)
0.127(—2)
o. iso( —2)

-o.179(—2)
—0.183(—2)

O. 303(-4)
-O.373(—4)

0.536(—3)
—O. 191(—3)

0.817(—3}
-0.606(—3)

24] ~~Cm

—0.579(—3)
o.sio( —3)

—o.2eo( —3)
0.334(—3)

-0.104(—2)
O. 834(—3)

O. 649(—3)
-o.ss7 (—3)
—O. 125 (—2)
—0.493 (—3)
—0.874(—3)

—0.840(—3)
0.113(—2)

—0.157(-3)
-0.414(-4)
—0.190(—3)

0.148 (—2)
0.145(-2)
0.915(—3)
0.357 (—3)
o.1o2(—2)
0.410(—3)

0.114(—2)
O. 132 (—2)
0.108(—2)
O. 676(-3)
0.316(—3)
0.976(—4)

o.w3( —3)
O. 173(—3)
0.548(—4)
O. 261(—3)
0.943 (—4)

0.640(—3)
O. 135(—2)
o.17s(—2)
0.159(-2)
0.740(—3)
o.6s3 (—3)

0.225 (—3)
0.520 (-3)
O. 769(—3)
o.843 (—3)
O. 71S(-3)
O. 472 (—3)

0.454 (—3)
o.s63(—3)
0.4ss( —3)

-0.214 (—4)
—O. 165(—4)

-O.120(—3)
o.2s6( —3)
O. 311(—3)
o.7o6(—3)

—0.431 (—3)
—0.141(-3)

—,
'—[734] ~4~Cf

-0.858(—4)
-0.163(-4)
—0.256(—3) 0.252 (-4)
-0.348(—3) -0.216(-3)
-0.538(-3) —0.219(-3)
—0.544 (—3) —0.601(—3)

-O.2O7(-3}
O. 141(-3)

-o.6so( —5)
-0.145 (—4)
—0.207 (—4)
-0.306(—3)
—o.3s3(—3)

-0.191(-4}
—0.777 (—4) 0.335(—3)
—0.184(—3) —0.382 (-3)

0.282 (—3)
—0.299(—3)

f- [743]
0.900 (—2)
0.415 (—2)
o.1S7(—2)
0.216(—3)

0.499 (—2)
-0.310(—3)
—0.314(—3)
-O. 119(—2)

-0.190(-3)
-o.ss6(-3)
—o.99o(—3)

0.554 (—5)

-0.215(—3)
o.1o7(—s)
0.292 (—5)

2+ [613

g+ [620]
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for odd-neutron cases.

—,
'+ [631)»9Pu z+ [622) '~"Cm

—0.174(—2)
0.114(—2)

—0.450( —2)
o.32s(—2)

—0.450(—2)
0.318(—2)

—o. 177(—2)
—0.178 ( —2)
—0.209(—2)
—0.431(—2)
—0.233 (—2)
—0.418(—2)
—0.869(—3)

0.273(—3)
0.226( —2)
0.882 (—3)
0.481(—2)
o.673(—3)

0.145 (—1)
0.791(—2)
0.969(—2)
o.1so(—2)
0.168(—2)

—O. 23O( —2)
—0.248( —2)
—0.116(—2)

O. 184(—3)
-0.612 (—3)

O.643(—3)
—0 ~ 118(—2)

O. 9O8( —3)
—O. 818(—3)

—0.142 (—2)
—0.174(—2)
—0.130(—2)
—o.s81(—3)
—O. 741(—3)
-0.327 (-3)

o.s27 (—3)
—0.688 (—3)
-0.205 (—3)
—0.121(—3)

0.303(-3)
0.166(—3)
o. 165(—4)

0.915(—3)
o.1«(—2)
o. 1o6(—2)
0.129(—3)
0.811(—4)

O. 294 (-3)
o.31s(—3)
0.236 (—3)
0.128(—3)
0.454 (-4)
0.729(—3)

—O. 617(—4)
O. 116(—2)

o. 1s7(—1)
0.108(—1)
O. 636(—2)
0.186(—2)
0.102 (—2)

—O. 236(—2)

-0 ~ 287 (—3)
—0.367 (—3)
-O.945 (—3)
—0.9O9(—3}

o.s3s (—3)
O. 939(—3)
0.718(—3)

-O. 177(-3)
0.221(—3)
0.326(—3)

—0.371(-3)
0.443 (—3)—0.132(-2)
0.954 (-3)
0.682 (—4)
0.120(—3)

—o.76o(—3)
-0.881(—3)

O. 113(—2)
-0.100(—2)

0.176(—2)
-0.514(-3)

0.252 (—2)
—O. 173(—2)

O. 136(—2)

0.931(—2)
0.135(—2)
O. 2OO( —2)

—0.214 (—2)
-O.274( —2)
—0.148(—2)

0.49s(—5)
0.694 (—3)
O. 119(—3)
0.777 (—3)

0.818(—4)
-O.651 (—3)

0.740(—3)
-0.105(—2)

0.128(—2)

0.208 (-4)
—0.251 (—3)
—0.124(-4)
—0.123 (—3)
—0.132 (—3)

0.133(—2)
—0.205 (-2)

o.6s1(—3)
—O. 137(—2)

0.501(—3)
—0.309(-3)
—0.109(-2)
—0.284 (—3)
—0.839(—3)

—,'+ [613)»~Fm ~+ [615]»~Fm

0.124(-1)
o.s36(—2)
0.272 (—2)

—0.171(—2)
—0.809(-3)

o.s62( —2)
—O. 186(—2)
—0.220( —2)
—o.1ss(—2)
-o.1s9(—2)

—0.950(—3) —0.136(—3)
-0.509 (—3) 0.497 (—4)
-0.108(—2) 0.228 (—3)

0.592 (—3)
0, 105(-3)

o.1s8(—3)
0.134(—3)
0.746 (—4)
O.262( —4)

—O.$04 (—4)

—0.245 (—4) —0.633(—5)
—0.414(—4) —0.187(-4)
—0.453(—4) -0.342(—4)
—0.358(—4) -0.449( —4)
-0,448( —4) O. 14S(—3)

0.582 (—3)
—0.457 (—3)

O. 334(-3)
-0, 192 (—3)

-0.604(—3)
—O. 768(—3)
-0.154(-2)
—0.119(—2)
-0.113(-2)
-0.582 (—3)
—O.308(-3)
-0.835 (-4)

—0.386 (—3)
—0.340(—3)
-0.113(—2)
-0.678 (—3)
-O.978 (—3)
-0.416(—3)

0.108(-3)
0.439(—3)
0.437 (-3)
O. 732 (—3)
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FIG. 4. Plot of relative n in-
tensities of '4'Cm as a function
of excitation energy of the Anal
state; the intrinsic bands are
labeled by asymptotic quantum
numbers and the rotational mem-
bers are connected by a line; the
arrows on the experimental plot
(top) indicate the position of the
corresponding theoretical point of
the graph below; the broken lines
give the value of the penetrability
factor for some representative l
waves as a function of the excita-
tion energy. Ordinary parentheses
on points in the lower diagram
indicate predictions for states
not yet observed experimentally.
Points in horizontal parentheses
have been seen in P decay but not
in n decay. The Nilsson state of
the parent may be read near the
letter P designating the favored
band.
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k$z, —— V) *exp BP2 cosH I'1. dQ, (13)

where the argument 8 is the difference of %KB path

ishing of the "centrifugal energy" term (AP/2mrs) l (E+1)
in the coupled radial equations]. Of course, these en-

ergy terms with their substantial effects on barrier
penetrability are not ignored in the over-all expressions
based on the Froman matrix; rather, they are approxi-
mately factored out into the penetration factor P(ei, )
in Eq. (12). As some studies have indicated, this ap-
proximation should be good in general, the exception
being a groups which are weak relative to a group
populating an adjacent rotational-band member.

The Frornan matrix for pure quadrupole shape de-
formation has elements given by

integrals at 8= cos 'Q-'s and 0=0. That is,

+2m8— II l'(», O) —&j'"
g

[V(r, co—s 'Q —',) E)Idr, —

(14)~/I y ~/Iy~lI

with E~ the outer classical turning point where the
integral becomes a complex number. The m=0 matrix
elements of Eq. (13) were tabulated for a range of
arguments by Froman, but we needed the m/0 ma-

trices; for convenience these matrix elements are tabu-
lated in Appendix 8 up to m=9 for a single argument:
8=0.9.

For favored decay of a spin-zero nucleus the 8 ma-
trices of Eq. (12) are equal to the Froman matrix.
That is,
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we+ (6z4 I )

FxG. 5. Plot of relative n intensities
of '"Cf as a function of excitation
energy of the final state; the notation
is similar to that for Fig. 4.
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For nonzero spin of the parent, the 8 matrices are more
complicated, since the Froman k matrix extends the cx

wave function onto a sphere at large distance but in
the body-Axed coordinate system with indices I; and
l and with their respective projections E; and m on the
nuclear symmetry axis. It is necessary, finally, to trans-
form to the representation with definite final-state spin
I~ replacing index m. Bohr, Froman, and Mottelson'
first considered this transformation and the general
intensity relations implied. The transformation coeS.-
cients are Clebsch- Gordan coeKcients, so that we have
the following expression for the 8-matrix elements of
Eq. (12):

I It,"&
—Zyl ZI

= ( —)'+ ' rr&(I; /K; Kr K;
~
Ir Kr)kerr' rr&,—(15a)

4 Xi+Kg
L Ty

= (—) +~&++&(I
g $ K; Kr+K;

~
Ig Kg)p—re'+x&. (15b)

We note again that the barrier-propagation treatment
of Kqs. (12), (13), and (15) is approximate except in
the limits of infinite moment-of-inertia or zero defor-
mation. Numerical integration of coupled-channel equa-
tions provides a better treatment. We have referred
to such work for even nuclei. '7 We do no t know of any
coupled-channel numerical studies testing the Froman
matrix method for nonzero-spin parents.

IV. NUMERICAL CALCULATIONS

The results presented in this paper have extended
the earlier calculations of Paper I to include 25 proton
and 40 neutron orbitals (instead of the earlier 10)&10
set) outside an arbitrary core which does not partici-
pate in the formation. Thus, for even-even calculations,
each G~o involves the sum over a thousand F coeK-
cients. In addition, the results of calculations for a
large number of odd-mass nuclides are presented. An-
other refinement in the procedure is the use of particle-
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number-conserving FBCS occupation probabilities. The
sample odd-mass calculations given in Mang's Table
IIP' included the same orbitals, but the ordinary HCS
calculations were used for the occupation probabilities.

The calculations are performed using the
~

/AQ) rep-
resentation of Nilsson, ""with 0 the total angular-
momentum projection on the nuclear symmetry axis,
and the expansion coefFicients a~g of an orbital of nega-
tive projection taken with the same sign as for posi-
tive Q. The orbital states are labeled with the usual

asymptotic quantum numbers of Nilsson, X, e„A,
and 0, with the projection of the particle spin angular-
rnomentum Z given by X+A= 0. The Fr,sr coefficients
depend upon the choice of size parameters n, P, and

E&, b»t they can be expanded in terms of C, coeffi-

'OS. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 29, No. 16 (1955).

2'B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Skrif ter 1, No. 8 (1959).

cients which depend only on the orbital wave functions.
p is the a-particle size parameter which is fixed at
0.47 fm ' to correspond to the measured rms charge
radius of 1.6 fm for an u particle. The parameter n
expresses the nuclear size and is given by re s/5, for
which Nilsson has given the relation A,or, 413 'I" MeV.
For A = 238 the parameter a has the value 0.1597 fm '.
In the special limit that the oscillator constant n for
the nucleon wave functions is the same as the oscillator
constant P for the internal motion in the n cluster, the
evaluation of amplitudes is especially easy. Early work
of Mang' and some work of Sandulescu" employed this
simplifying approximation. There is a close relation here
to successive transformations by Moshinsky brackets to
relative and c.m. representations. The joining radius
Ro is fixed somewhat arbitrarily at 8.25 frn for these
calculations, so as to be beyond the last radial maxi-

"A. Sandulescu and M. Stihi, Nucl. Phys. 3'7, 344 (1962) .
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mum in the shell-model wave functions. We previously
observed (Paper I)s that the G amplitudes are not
very sensitive to variations of a and Ro which main-
tain nRO' constant. Therefore, instead of decreasing n
and increasing Eo with A, we have kept n and Eo fixed
at these values for all the actinides.

The equations used for calculating I' have been given
before (Paper I), but they are repeated in Appendix A
for convenience. The computer programs are written
mostly in FORTRAN IV for the IBM 7094 with some
machine-language modi6cations. The Clebsch-Gordan
coefficients are computed by a machine-language sub-
routine obtained from Los Alamos Laboratory. The
steps in the calculation of the o.-formation factor are
(a) calculation of the C,~ coefficients, which are stored
on tape, (b) calculation of the FBCS occupation prob-
abilities, which are punched out on cards, and (c) cal-
culation of the probability amplitudes G&~ at the nu-
clear surface using the output from steps (a) and (b).
The GL,~ are punched on cards that are used as input
for the program multiplying by the penetration ma-
trices of Eq. (12). One set of C,~ coefEcients applies
to all even-even transitions and also to all favored
transitions of odd-mass nuclei. The C,~ coefficients for
hindered decays must be calculated uniquely for the
orbitals involved. The L expansion is terminated at
L=8 for even series and at L=9 for odd series. The
same matrix elements are used throughout, for we have
not tried to vary deformation as far as Nilsson coeffi-
cients are concerned. The Nilsson deformation param-
eter of about q=5 would be most appropriate as an
average for actinide nuclei, but the C,~ coeflicients are
calculated with the Nilsson coeKcients from Ref. 21
at deformation parameter q=4, since we wished to
avoid difhculties of interpolation. The Nilsson orbital
energies used are those appropriate to g=5, but the
energies have been somewhat shifted from Nilsson's
values to match better the experimental energies of
the various bands. The FBCS wave functions and
orbital energies were thoroughly discussed in a previ-
ous publication'; one may judge from that paper how
well the experimental odd-even mass differences and
spectra were matched and what defects might reQect
themselves in the n amplitudes calculated here.

We have carried out these calculations for ground
band decay of even-even nuclei from elements 90—106
and from neutron numbers 136—160. We have not
treated decay to "vibrational" or "two-quasiparticle"
bands, but we refer the reader to the work of Sandulescu
et ul."for a microscopic treatment of such decay. We
have carried out our o. theoretical calculations for odd-
mass nuclei from "'Th to "Md; only decay to pure
one-quasiparticle Nilsson bands is considered. Thus,
modifications for Coriolis admixing and three-quasi-
particle ("phonon") components are yet to be made,

2g A. Sandulescu, Nucl. Phys. 48, 345 (1963); Phys. Letters
19, 404 (196S); A. Sandulescu and O. Dumitrescu, ibid. 24B,
212 (1967);Nucl. Phys. A100, 456 (1967).

but the o, amplitudes given in this paper may be a
useful starting point for studies of Coriolis-mixing modi-
fications.

We have not treated any odd-odd nuclei, although
our results may be used for neighboring odd-mass
nuclei as a guide to expected hindrance factors. In
Ref. 15, calculations were carried through and tabu-
lated as theoretical partial-decay-rate constants ac-
cording to Eq. (12). For calculations on undiscovered
nuclei or a groups, it was not practical to calculate a
barrier-penetrability factor P(er,), since this factor is
too sensitive to decay energy for predicted decay ener-
gies to be used. Thus, for these unknown cases, the n
amplitudes )within absolute value signs in Eq. (12)$
and their squares were given without inclusion of the
penetration factor.

For this paper we wish to present just the u ampli-
tudes that depend only on the Nilsson wave functions
and pairing-force strength. The n amplitudes are inde-
pendent of the myriad experimental u-decay energies
of varying uncertainty, of state assignments, of ques-
tions about the proper optical-model potential for bar-
rier calculations, and of questions on correcting for
mismatch of logarithmic derivatives of internal and
external solutions.

One should consult Ref. 15 for a more complete
tabulation of predicted intensities with penetrability
factors taken as the WEB exponential through a barrier
defined by a nuclear potential

V(r) = —V„I1+exp/(r —Es)/a/I ', (16)

with V„=74 MeV, a=0.565 fm, and Es (1.173'~s+——
1.6) fm.

The 0, amplitudes presented here can be squared and
multiplied by the factor of 8 to normalize to the labora-
tory system'4 and by any desired penetrability factors
to give relative decay rates. We found that our abso-
lute theoretical decay rates using the above potential
and Eq. (12) are smaller than experiment by about an
order of magnitude. Thus, in Ref. 15, one arbitrary
normalization factor was applied for the several hun-
dred theoretical rate constants, the factor being deter-
mined to make exact agreement for the ground decay
of "'Pu. It is difficult to say whether this discrepancy
in absolute rate theory is due to the use of harmonic-
oscillator nucleon wave functions, to the neglect of all
nucleon-nucleon correlations except those represented
by pairing within one to two major shells, or to the use
of an incorrect potential for the barrier. Whatever the
cause of the absolute rate discrepancy, the correction
is sufficiently uniform that the relative rates are in
remarkably good agreement with experiment in most
cases. Recent work" suggests, however, that the o.-

24 J. Eichler and H. J. Mang, Z. Physik 183, 321 (1965)."L.McFadden and G. R. Satchler, Nucl. Phys. 84, 177 (1966);
W. J. Thompson, G. E. Crawford, and R. H. Davies, ibid. A98,
228 (1967); Gy. Bencze and A. Sandulescu, Phys. Letters 22,
473 (1966); Gy. Bencze, r'Nd 23, 713 (196.6); L. Scherk and
E. W. Vogt, Can. J.Phys. 46, 1119 (1968).
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nucleus potential LEq. (16)j and the WEB approxi-
mation we used are subject to corrections that could
account for the entire discrepancy.

To a slight extent the numerical u amplitudes tabu-
lated here are dependent on the barrier-penetrability
assumptions. The argument 8 for the Froman ma-
trices was determined empirically to give the best
over-all relative intensity patterns for the rotational
bands of the even-even nuclei. Though B is expected
to vary with changing deformation, we chose the one
fixed value 8=0.9 for all nuclei in order to reduce the
number of arbitrary parameters. This value is rather
close to that given by the following formula of Paper I,
based on more fundamental considerations:

8=6.1|t'—0.045Qp,

where 6 is Nilsson's surface deformation parameter, and

Qp is the intrinsic quadrupole moment in barns. The rea-

soning used to derive the above formula considered the
GL, vectors as specifying the o. wave function on the sphe-
roidal Nilsson-coordinate surface of about half the
eccentricity of the isopotential surface. Nilsson s intro-
duction of this special deformed coordinate system was
to compensate for his explicit exclusion of %=&2
admixtures in the wave functions. Earlier in this paper
we indicated that the n amplitude formulas here are
strictly applicable only to the highly symmetrical
spherical-polar coordinate system. Our use of a value
of 8 smaller than that of Froman's formula is due to
the need to compensate for neglected /= ~2 compo-
nents in the Nilsson wave functions, and also due to
the fact that our t" vector specifies a distribution on a
spherical surface whereas Froman's initial distribution
is on the spheroidal surface of the inner wall of the
barrier.

%e explored calculations on even-even n decay with



a-DECAY RATES FOR ACTINI D E RE GION 1713

a more general Froman matrix, including effects of
P4(cos8) distortions of the nuclear surface. We con-
cluded that our theory was not sufficiently accurate to
derive such P4 distortions from experimental even-even
intensities. Once there are better independent deter-
minations of P4 distortions of actinides, similar to the
a scattering experiments of Hendrie et al.26 in the rare
earths, these effects can easily be included in the
Froman matrix, by making the exponent in Eq. (13)
BP2+DP4, where D is the coeflicient analogous to B.

V. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENT

First we consider the results of the new calculations
for the even-even nuclei. Table I lists the amplitudes
Gpo for ground decay. The symbol Gpp represents the
amplitude after multiplication by the Froman matrix,
as defined in Eq. (12):

glo Q ~lI.GLO (18)
L

A gradual decrease is observed in the n amplitudes in

going from lightest to heaviest nuclei, with a minimum
for E= 152. This variation reflects mainly the decrease
in pairing correlation due to increasing Nilsson orbital
spacing.

Tables II—V give amplitude ratios of Gl.o for I.=2,
4, 6, and 8, respectively, relative to the Gpp values of
Table I.

Table II shows that decay to the first excited 2+
state should gradually become more hindered for the
heaviest element (106) by over a factor of 6 compared
with that for thorium.

Table III shows decay to the 4+ state nearly vanish-
ing for the heavy Cm isotopes, then increasing for the
heavier elements. The fact that the high /=4 hindrance
region coincides with experiment is largely due to our
Axing the argument (B=0.9) of all Froman matrices
so as to reproduce the region at which maximum /=4
hindrance occurs.

The l=6 a decay is predicted (Table IV) not to
show the striking variation of the 3=4 over the region
of known nuclei. A very high 1=6 hindrance is pre-
dicted in the lightest and in the heaviest nuclei calcu-
lated.

It is not clear whether the present theory, without
6$=~2 mixing in Nilsson functions, can be reliable
for /= 8. The results of Table V are thus to be regarded
with skepticism.

The major contribution of this paper is contained in
Tables VI and VII, tabulations for odd-mass nuclei
of the theoretical 0, amplitudes 6&. Many rotational
states of many combinations of Nilsson bands are in-
cluded. To obtain theoretical decay constants, one need

26D. L. Hendrie, N. K. Glendenning, B. G. Harvey, O. N.
Jarvis, H. H. Duhm, J. Saudinos, and J. Mahoney, Phys. Letters
26B, 127 (1968).

only square the amplitudes, multiply by penetration
factors appropriate to that l value, and sum the con-
tribution from various / values to a given final state.
To obtain absolute rate constants of practical value,
one must determine a normalizing factor, perhaps de-
manding rate agreement for a particular nucleus using
a barrier penetrability based on some nuclear poten-
tial. If one uses the Woods-Saxon potential of Eq. (16)
and normalizes to the ground-state decay of "Pu, as
Poggenburg" has done, then the normalizing factor is
6.0&10" sec '. For n angular-correlation predictions
one need only correct the 6'~ values to a given anal
state by appropriate centrifugal barrier-penetrability
corrections; one then has the desired amplitude ratios
in the standard phase convention.

From Tables I, VI, and VII we can also extract
ratios comparable to the often-used "hindrance factor. "
For example, for the l=0 favored decay of '"Pu we
read from Table VII the amplitude 0.014; from Table I
the amplitudes for neighboring "8pu (2.417&&10 ) and
'40pu (2.390X10 ') give the average 0.024) . Thus the
hindrance factor is (0.024/0. 014)'. For other a groups
consisting of a single l value (lAO), the theoretical
reduced hindrance factor above is to be multiplied by
the appropriate barrier factor. ' For groups with mixed
l values the connection to the conventional hindrance
factor will require l sums over amplitudes squared times
centrifugal factors.

We shall make only a brief comparison with experi-
ment here. For a comparison of experiment and theory
one should consult Figs. 4 and 5 of Ref. 11. The main
difference between the values listed in Tables II—V and
those listed in Ref. 11 is the method of calculation. In
the earlier work" ordinary BCS wave functions were
used, whereas here the particle-number-conserving
FBCS wave functions are used. Also, we use 8=0.9
LEq. (13)g for all nuclei, whereas in the earlier work
the value of 8 was calculated for each nucleus indi-
vidually from the formula B=6.18—0.04SQO given
in Paper I. Despite these differences there is not much
difference between our new results for even nuclei and
those plotted in Ref. 11. The over-all agreement is
quite good. The 1=2 group relative to 1=0 is under-
estimated for the lightest nuclei; perhaps the up-sloping
Nilsson orbitals from the major shell below contribute
too strongly to lower the l=2 amplitudes. We have
used somewhat too large deformation, and the up-
sloping orbitals may be too high in Nilsson s calcu-
lation.

In a few favored decay cases the mixture of / values
and relative phases has been directly tested by angular-
correlation experiments. In most cases the decay group
tested is the AI=O favored group. "All the experiments

~' J. O. Rasmussen, Phys. Rev. 113, 1593 (1959).
28 V. E. Krohn, T. B. Novey, and S. Raboy, Phys. Rev. 105,

234 (1951); K. Siegbahn and F. Asaro, Phys. Letters 2, 323
(1962).
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on the AI=O transitions confirm the theoretical pre-
diction that l=0 and l=2 amplitudes have the same
sign. The limited experimental information bearing on
the L=4 groups indicates" that the phase of l=2 and
/=4 is the same in "'U and opposite in '"Es, in agree-
ment with the theory as given in Tables VII and VI,
respectively. No angular-distribution experiments have
yet tested /-mixture predictions for hindered decay;
inspection of Tables VI and VII shows that consider-
able admixture usually occurs and that / values other
than the minimum may dominate. There have been
indirect analyses" of / mixtures through analyses of
intensity patterns, and these analyses generally agree
with our theoretical predictions.

For cx emission to or from spin- —,'states, only a single
I. value is permitted, and comparisons of our theoret-
ical values with experimental intensities are especially
simple. For example, for the spin-~ isotope "'Pu we
show in Figs. 1—3 the theoretical results for three final
bands as the squares of o. amplitudes GL,', denoted
"reduced transition probability. " The experimental
values are the partial decay constants Xrr (in sec ')
divided by the WEB penetrability factor for that l
value and divided by the factor 6.02)& 10"that normal-
izes the theory to the "'Pu rate. Figures 1 and 2 give
the decay patterns to the two s+ Nilsson bands ex-
pected (they are ground bands in "'U and '4'Cm,
respectively) . Theoretically and experimentally, the
decay patterns are very different. The decay to the
s+ (633) band is less hindered, and the intensity to
the band head is only slightly weaker than those to
higher states. The decay to the s+ (622) band, on
the other hand, is more retarded by an order of magni-
tude, and the decay to the band head is especially
suppressed, relative to decay to the higher states. Even
though the theory considerably overestimates the re-
tardation of decay to the ss+ (622) band, the qualita-
tive differences are such that the state assignments
could be clearly made from O.-decay behavior. " This
assignment of states was later confirmed" by the "sig-
natures" from (d, p) and (d, t) reaction studies lead-
ing to "'U.

The decay to the ground band (Fig. 3) agrees in
over-all hindrance, but shows serious disagreement in
the signature. Perhaps Coriolis mixing, probably large
in the s7 —(743) state, is responsible for the disagree-
ment.

Another instance in which the theoretical results of
this paper proved of great value in assigning states to
a decay scheme is the o; decay of '4'Am. The arguments

"See discussion in J.O. Rasmussen, in A/pha, Bete and Gamma
Spectroscopy, edited by Kai Siegbahn (North-Holland Publishing
Co., Amsterdam, 1965), Vol. I, p. 742."F.A.Asaro, S.G.Thompson, F.S.Stephens, and I.Perlman, in
Proceedings of the Internotionot Conference on Euclectr Structure,
Eingston, Canada, 1960, edited by D. A. Bromley and E. %.
Vogt (The University of Toronto Press, Toronto, Canada, 1960),
p. 581."J.R. Erskine and R. R. Chasman (private communication).

leading to the assignment of the rs— (530) band in
"Np have been given by Lederer et ajt."

When a mixture of / values occurs in each n group,
it is not so easy to compare theory and experiment as
in Figs. 1—3. Therefore in our remaining sample com-
parisons the fraction of e decay to a group is plotted
versus the excitation energy of the Anal state." The
open symbols in Fig. 4 give experimental intensities in
'"Cm decay, and the arrowheads mark the correspond-
ing theoretical values. The odd-even staggering pattern,
a striking feature of decay to the ground band, is
reproduced semiquantitatively. The theory adequately
gives the relative intensity signature to the s —(743)
band, but the theoretical prediction is too low overalI
by a factor of about 3. Penetrability factors for /=2
and 4 are plotted on the right-hand scale to facilitate
estimates of hindrance factors.

Figure 5 gives the comparison for '4'Cf. Signatures
are correctly matched, but the theory overestimates the
ground band by factors of 2 to 9 and underestimates
the middle band by slightly lower factors.

Figure 6 gives the comparison for '"Es decay. A
serious underestimate of the theory is seen for the
s+ (642) band, but this error is clearly a consequence
of the strong Coriolis mixing between this band and
the favored ground band. These orbitals, being mainly
of the high j-value i&@2 character, have especially large
Coriolis matrix elements. Figure 7 is a similar plot
for "5Fm.

One can judge from the foregoing figures the sort
of uncertainties to be expected in comparing experi-
ment and theory. For practical purposes of estimating
hindrance factors, the details of which penetrability
formulas to use are unimportant. The older vertical
potential barrier expressions or graphical plots may be
used instead of our numerical integration values, which
are based on diffuse optical potentials.

VI. SELECTION RULES AND ANALOGIES TO
ELECTROMAGNETIC TRANSITION

An old analysis of n hindrance factors by Prior"
showed the highest hindrances to be associated with

~

bZ
~

=1 transitions, that is, transitions in which there
is a change in relative orientation (parallel or anti-
parallel) of intrinsic spin and total particle angular
momentum on the nuclear Z axis. A study of Table VI
sheds light on this matter. For hZ=0 the minimum
allowed 1.values (near

~

E;—Ef
~ ) have not too small

amplitudes G. For
~

hZ
~

=1 the minimum l. values
may have quite small amplitudes, with only those I.
values exceeding E~+J y becoming large To the e. x-
tent that Z is a good quantum number, one or the
other of the two terms in Eq. (12) dominates, since

"In Figs. 4—6, for comparison, the normalization of theory to
2"Pu is replaced by a normalization to the total n-decay rate
of the isotope in question, but the difference in normalization is
not large.

"Q, Prior, Arkiv Fysik 16, 15 (1959).
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TABLE VIII. a and "electric multipole" amplitude comparison.

Orbitals
Gz)

M LEq. (19)g "'Cm
Gr. w (o, theory) '

~4'Pu '"Pu 233U

-', + (622)
and

k+ (631)

-', + (622)
alld
(743)

7 6

0.0108

0.0304

0.0346

0.0124

0.159

0.188

0.0498

0.016

0.226

0.Oii

0.124

0.010

0.081

0.029

0.049

0.055

0.011

0.023

0.172

0.281

0.125

0.055

0.146

o.oo6

0.114

0.030

0.032

0.007

0.053

0.058

O. 014

0.023

0.0183

0.302

0.145

0.018

0.020

0.005

0.008

0.061

0.101

0.048

-', + (631)
and

g+ (633)

6 3

8 3

0.291

0.308

0.192

0.0050

0.0073

0.0130

0.0182

O. 132

0.302

0.271

0.045

0.013

O. 026

0.015

0.040

0.089

0.085

0.021

0.004

0.008

0.005

~ Tabulated values have been multiplied by 100.

the like nucleons in the n particle are in a singlet spin
state.

We can see the operation of the Z selection rule
more directly by examining the n amplitudes Gi.~ in
the body-6xed system, before multiplication by the
Froman matrices. The rightmost columns of Table VIII
list the magnitudes

~
Gr,~

~
for a few odd-neutron cases.

Note for the first combination of states, where
~

AZ
~

= 1,
that the M= 2 amplitudes are all small relative to the
3f=3 amplitudes. For the second and third combina-
tion of states, the Z selection rule should favor the
lower of the two M values, and this is indeed the case.

We note that the relative amplitudes do not change
much for diferent nuclei for a given combination of
initial and 6nal states. That is, the two Nilsson func-
tions of the odd nucleon may dominate the calculation.

It would be desirable to Gnd an approximate method
for calculating these amplitudes and to 6nd out which
aspects are predominant in determining the amplitudes.
The "electric transition rule" has been discussed in
an earlier review article, and it may be stated as
follows: Determine which electric transition multi-

polarities would be strong or weak between the single-
particle states of the odd nucleon in parent and daugh-
ter; the strong and weak I. values for n decay will
generally correspond to the strong and weak electric
2~-pole transitions.

In order to adapt this rule quantitatively for de-
formed nuclei, we have taken Nilsson's equation t'(35b)
in Ref. 21j for a 2"-pole transition, replacing radial
matrix elements by unity. The angular integrals are
similar for electric and n amplitudes, but the n ampli-
tudes depend only on the surface value of the wave
function. This procedure gives the following very sim-
ple expression:

2/ 1
G = g~, ( (i) oo)vo)

pr (2l +1j
X g &z z~p~'~r~(&) &K' I:

~
P &'), (19)—

where the a~~ are normalized Nilsson coefficients.
The column headed

~
G@q

~
(electric) in Table UIII

gives the result of calculations with Eq. (19) and the
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Tzaz.z IX. Frornan matrices.

&m=0, even L

1.0906 0.4814 0.0847 0.0097 0.0008

0.4814 1.4707 0.4700 0.0778 0.0087

0.0847 0.4/00 1.4168 0.4546 0.0755

0.0097 0.0778 0.4546 1.4069 0.4509

0.0008 0.0087 0.0755 0.4509 1.4035

~))=0, odd L

1.5211 0.4967 0.0821 0.0091 0.0008

0.4967 1.4319 0.4591 0.0762 0.0085

0.0821 0.4591 1.4103 0.4523 0.0751

0.0091 0.0762 0.4523 1.4049 0.4501

0.0008 0.0085 0.0751 0.4501 1.4026

m=1, even L

sf=3) even L

0.9488

0.2417

0.0358

m=3, odd L
3

0.7545

0.1611

0.0233

0.0024

m =4, even L

0.7302

0.1295

0.0170

m=4, odd L

L
6

0.2417

1.1597

0.3299

8

0.0358

0.3299

1.2543

5

0.1611

1.0764

0.2944

0.0445

7

0.0233

0.2944

1.2155

0.3546

6 8

0.1295 0.0170

1.0076 0.2529

0.2529 1.1525

9
0.0024

0.0445

0.3546

1.2821

T. 1960 0.3841 0.0637 0.0071

0.3841 1.3480 0.4256 0.0700

0.0637 0.4256 1.3760 0.4361

0.0071 0.0700 0.4361 1.3858

ws =1, odd L

9

m=5, even L
6

0.8506

0.1714

8

0.1714

1.0374

5 7 9
0.8908 0.2011 0.0278

0.2011 1.0915 0.2909

0.0278 0.2909 1.1977

0.8753 0.2999 0.0517 0.0059 0.0005

0.2999 1.3074 0.4132 0.0680 0.0075

0.0517 0.4132 1.3662 0.4322 0.0711

0.0059 0.0680 0.4322 1.3819 0.4386

0.0005 0.0075 0.0711 0.4386 1.3885

se=5) odd L
5 7 9

0.7141 0.1079 0.0129

0.1079 0.9564 0.2205

0.0129 0.2205 1.0996

m=2, even L

0.7951 0.2113 0.0336 0.0037

0.2113 1.1722 0.3477 0.0552

0.0336 0.3477 1.2887 0.3937

0.0037 0.0552 0.3937 1.3344

m=2, odd L

m=6, even L

6 8

0.7028 0.0923

0.0923 0.9172

m=7, even L

kgb' ——0.7988

m=6, oddL

7

7 0.8212

9 0.1490

m=j, odd L
7

0.6943

0.0805

9
0.1490

0.9940

9
0.0805

0.8862

1.0391 0.2995 0.0474 0.0051

0.2995 1.2455 0.3759 0.060T

0.0474 0.3759 1.3161 0.4056

0.0051 0.0601 0.4056 1.34/3

vs=8, even L
k.P =0.6878

m=8, odd L
kgg'= 0.7812

m=9, odd L
kgg' =0.6826
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same Nilsson coeflicients (q=4) as were used in the
sophisticated e amplitude calculations. We note a strong
qualitative correlation between results of the two cal-
culations. To obtain the approximate formula LEq.
(19)$ from the n amplitude expression (5), one must
first assume a point o. particle and then assume a wave
function of the even nucleon which is constant in angle.
The first assumption systematically overemphasizes
high L values, but the second may tend to suppress
high L values. Thus the simple approximate formula
may owe its relative success to a compensation of
errors. At any rate, there seems to be a semiquantita-
tive validity to the analogy between the electric transi-
tion and hindered n decay. Hence one might also seek
evidence for the operation of selection rules in the
other asymptotic quantum numbers. In analogy with
electric multipole transitions, we might suppose that
L= 1 amplitudes will never be large between low-lying
states, since these transitions always violate selection
rules in either the spherical or the large deformation
limits. Indeed, in none of the cases that we have calcu-
lated is there a large L= 1 amplitude.

VIL CONCLUSION

We have now extensively tested on deformed nuclei
the microscopic theory of u decay, in which the 0.
amplitudes at the nuclear surface are projected from
the nucleon wave functions in the Nilsson model with
pairing-force configuration mixing. The results have
given a deeper understanding of rotational-band popu-
lation signatures and of the widely varying hindrance
factors for unfavored decay, in which the Nilsson state
of an odd nucleon changes between parent and daugh-
ter. We understand that the smooth trends of absolute
reduced rates and of rotational-band signatures for
favored decay are a consequence of pairing-force
mixing, which, in a completely coherent manner, en-
hances the L=O group by 3 orders of magnitude
L~(6„2/G„')(6„'/G„')j and which produces a signa-
ture by averaging over the nearest Nilsson orbitals
(6/G 5—7) about the Fermi energy.

The hindrance of unfavored decay is understood to
arise from two principal factors. First, the coherent
sum of amplitudes over several Nilsson orbitals is lost
for the type of nucleon undergoing a change of state,
and this loss is rejected in a lowered rate factor of
about (6/G)'. Second, additional hindrance may arise
from mismatching of the initial- and final-state Nilsson
orbitals, of which the 5 selection rule discussed in
Sec. VI is a clear example. The rotational-band signa-
ture for hindered decay is largely determined by just
the two Nilsson orbitals of the odd nucleon, and the
associated n amplitudes bear close analogy to the elec-
tric transition matrix elements between the two odd
states.

Three questions remain for brief consideration here:
What further work in 0. theory and experiment is

needed' What simplifications of these complicated cal-
culations are justified What may be the consequences
in areas of physics outside of n decays

First, there is need for a systematic comparison of
experimental a-decay signatures and angular rnomen-
tum mixtures with the predictions of Table VI. In
some cases it will clearly be important to include
Coriolis mixing between bands. It may be valuable
to treat the barrier-penetration problem by full coupled-
channel numerical integration rather than by the
Froman matrix approximation. It is worthwhile to
investigate effects of higher-order (P4) deformation
in the nuclear surface, both through effects on the
Nilsson functions and on the barrier-penetration ma-
trix. The effects of three-quasiparticle components (or
phonon admixtures) added to one-quasiparticle com-
ponents may be important, particularly for states at
excitations comparable to the gap energy 2A. Further
attention to the fundamentals of the theory is desir-
able with regard to the arbitrary choice of the nuclear
radius, the problem of harmonic-oscillator wave func-
tions, and a better treatment of the one-body aspects
of the problem.

Second, there are two limits that result in simplified
theoretical expressions: the point-n limit (8-function
limit) and the limit of n size equal to the nuclear size.
The former approximation is probably the more realis-
tic one, though it is known to systematically over-
estimate amplitudes of higher L values. There is no
promising way to avoid the use of numerical coefficients
of the Nilsson wave-function type, for there are no
obvious representations (cylindrical coordinates, square
wells) that are appreciably more diagonal for realistic
deformed nuclei. It may be useful to compute tables
of Legendre expansion coeKcients (separately for neu-
tron and proton) for pair-averaged wave functions on
the nuclear surface, for these coeKcients would vary
smoothly with nucleon number. These tables could be
used in conjunction with Froman matrices to calculate
favored decay and in conjunction with the electric-
transition equation (19) to calculate hindered-decay
properties.

Finally, we expect that the results of this paper have
important implications for multinucleon transfer reac-
tions of deformed nuclei, particularly when at least
one particle is so strongly absorbed that the reaction
is a surface reaction. In the simplest case of nucleon
pair transfer, such as (t, p), (p, t), ('He, e), (e, 'He),
("C, "C), etc. , we expect the pairing enhancement for
favored transitions, in which there is no change of
state of unpaired nucleons. We expect the rotational-
band signatures for favored transitions to reRect the
angular zones of the Nilsson wave functions near the
Fermi energy. Unfavored transitions with nucleon-state
changes will be weaker by hindrance factors comparable
to those in cx decay, and the rotational-band signatures
will be, as in a decay, dominated by initial and final
surface wave functions of the odd nucleon. The nu-
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clear reaction field should provide great opportunities ing form so that the coefFicients A~g are in Nilsson s
for further extension of the sensitive probing of nucleon- convention and may be taken directly from his tables
nucleon correlations provided by the n-decay process. with normalization:
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APPENDIX A: DETAILED FORMULAS FOR
O,-DECAY MATRIX ELEMENTS

The equations used for the calculation of the F co-
eflicients have been given before as Eqs. (II.8)—(II.11)
in Paper I. They are repeated here without derivation
for convenience, with the shorthand notation for angu-
lar momentum [L]=(2L+1)"'. The labels 1 and 2

refer to protons, and 3 and 4 to neutrons.
We assume the internal wave function of the 0. par-

ticle to be

X =X9'(12)Io'(34) (2P"'/9 ~49r) "'
X"p[—;P(pi'+b'+6')7,

with X99 the singlet spin functions and p; relative co-
ordinates:

I
i3//A(z)n)= p R~i(r) AiQ i/9

0—1/2&le

X I'3" "'(/l 4) I+~iogi/9I'3Q+'"(& y) I

where the I'~ functions are the usual spherical har-
monics, and the spin vectors

refer to spin projection in the positive or negative di-
rection, respectively, along the nuclear symmetry axis.
The radial functions [Eq. (A1)7 are best expressed
in terms of associated Laguerre functions, although
Nilsson's phase convention that the radial functions
are positive in the limit of large radius introduces a
phase factor in the Laguerre functions:

2~ ]~8/2 1/2

g~$(r) = (—)" (nr9) &/9

(I+l+ ,')!-
XL '+"'(nr') exp( —-,'nr') (A1)

where 93 is the number of radial nodes [n= —',(X—l)],
and where the Laguerre function is

r3 l -'& r9 x
L'+'( ")= Z ( —)x

I (A2)p(~(„e—E j Et

The I' coefficient is then

Q4Q3Q3Q4(n P g)
) 9/2 ) pmax+I /2

=(—1)'
I (nP)"

n+Pi n+Pi

Xv2(93!) i/9(ng3) 3/4 exp( —2ng9) [2(n+P) g3]1/9

6=-',~2
I

ri —r9 I, (9=-',v2
I
r3-r4 I, x Q I I c,~L,~+'/'(2(nyP) &9), (A3)

& 2o. )
b= —

I
ri+r9 r3

The size parameter P=0.47 F ' gives an rms charge
radius for the o. in agreement with electron scattering
data and our calculations.

We assume the Nilsson wave functions of the follow-

where p = i9(Xi+X9+N3+X4 L) and f is t—he sum

P;( I
0;

I

——', ) carried over orbitals for which D; is
negative. I,, +'/' is the associated Laguerre polynomial.
(Note that for P=n the sum over p reduces to a single
term p= p .) The C, coefficients are given by

P!(9!)' [li7[l9][l3][l4]Bp (93,l;)
[L]2&'&+~& 3,/, 33/4 [r3,!N9!933!r34!(ri~+l,+—', )!(N9+l9+—',)!( 933+i +3-',)!(934+l4+-', )!]'/9

X Q (—)' " z3+"'+"'+"3+"4~z,-z,~z, ,-zJ33,3.,Q3,~,433,3,43~,~,D(l,A;L), (A4)
ZI Z2Z3 Z4

where the a/, . 3„. are the normalized Nilsson wave-function coe%cients in Nilsson s original (1955) representation
[1VlA(Z) 0]; subscripts X and Z have been suppressed for compactness. The function D is given by

D(l;it;L) = Q (lil9Ai/4
I
l~h, +A,) (l,l,oo

I l„o) (l3l4ii3A4
I
l3//4+A4) (l3l400

I
l+0)

x (l„l~A,+i,lt3+A, I Lm) (l„i~00
I
Lo) (A5)
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and

( 1)vx+ea+e3+e4 ( 1+/1+ 2 !( 2+/2+ 2) f n3+4+ 2) (n4+/4+ 2)
B, (n~/, ) = (—1)&ng!n2!n, !n4! Q ~ ~~ I I ~, (A6)

~ 2"3 4 Sy —'Vy S2—'V2 S3—83 S4—54

where the summation is restricted by

2p+ L= 2 (e~+v2+ v3+ v4) +/~+/2+/3+/4.
The D(/, A;L) is just the integral

(A7)

~1+~2+~3+~4+I +1/ ~2+' h3+ A4dQl] l2 l3 l4

APPENDIX B: FROMAN MATRICES

The elements of the Froman matrices were calcu-
lated from Kq. (12) with the parameter B=0.9 as
explained earlier. Numerical integration was performed
on an IBM 7094 computer using Gaussian quadrature
with 100 equal intervals in 0, taking two points in
each interval. The values for the spherical harmonics
were calculated using an adaptation of the IBM sHARE

routine JP ASLF which calculates the associated
Iegendre polynomials from recursion relations. All
matrices in Table IX require a total of about a min-
ute to calculate.

The accuracy of the program was checked in two
ways. First, the parameter 8 was set to zero and,
when rounded to 6ve decimal places, the calculations
gave the unit matrix as required by the orthonormality
property of the spherical harmonics. Secondly, the
calculations were repeated with 8=0.9, but with 200
intervals instead of 100. The differences in the matrix
elements were never larger than two units in the sixth
decimal place. We may thus state that accumulated
roundoff errors will not affect the four decimal places
given in Table IX.


