Nuclear Spin and Hyperfine Structure of 121 Sn and 113 Sn⁺

MICHAEL H. PRIOR,* ANTONI DYMANUS,* HOWARD A. SHUGART, AND PAUL A. VANDEN BOUT! Latorence Radiation Laboratory and Department of Physics, University of California, Berkeley, California 947ZO (Received 13 December 1968)

We have used the atomic-beam magnetic-resonance technique to measure the nuclear spin I and hyperfine structure interaction constants a and b of 27-h ¹²¹Sn and 118-day ¹¹³Sn in the ³P₁ electronic state. From the measured interaction constants we deduce values for the nuclear magnetic-dipole and electric quadrupole moments μ_I and Q. Our results are, for ¹²¹Sn: $I=\frac{3}{2}$, $a=\pm 128.726(8)$ MHz, $b=\pm 32.374(12)$ MHz, $\bar{b}/a > 0$, from which we deduce $\mu_I(\text{uncorr}) = \pm 0.695(7) \mu_N$ and $Q = \pm 0.08(4)$ b; and for ¹¹³Sn: $I = \frac{1}{2}$, $a = \pm 485.911(25)$ MHz, from which we deduce $\mu_I(\text{uncorr}) = \pm 0.875(9)\mu_N$.

I. INTRODUCTION

THIS effort is a part of the continuing program of **1** the Berkeley Atomic Beam Group in the measurement of spins and multipole moments of radioactive nuclei using the atomic-beam magnetic-resonance technique. Such measurements have served well in the past as bench marks and constraints on various theories of nuclear structure. To the extent that current nuclear theories are imperfect, it is hoped that further measurements may shed light on how they may be improved. In the past we have made some effort to extend spin and moment measurements to isotopes lying on both sides of the region of stability for a particular element. The measurements described here were carried out in this spirit. We have measured the nuclear spins and moments and the hyperfine-structure separations of 118-day ¹¹³Sn and 27-h ¹²¹Sn in the $(5p^2)^3P_1$ electronic state. These results extend from three to five the number of odd-mass tin isotopes whose spins and moments have been measured.

II. ISOTOPES AND THEIR PRODUCTION

121Sn and 113Sn are both radioactive with respective half-lives of about 27 h and 118 days. 121 Sn decays by low-energy β emission directly to the ground state of stable ^{121}Sb . ^{113}Sn decays primarily (98.2%) by electron capture to the 0.393-MeV isomeric level of ¹¹³In, which subsequently decays with 100-min half-life to the stable ¹¹³In ground state. Both isotopes were produced by irradiation of stable Sn metal in a nuclear reactor by the ${}^{A}Sn(n, \gamma) {}^{A+1}Sn$ process. For experiments on ${}^{121}Sn$, 1-g samples were irradiated for three day periods in the General Electric reactor at Vallecitos, California. Consideration of cross sections and relative abundances show that for such an irradiation, during the first week after removal from the core, the predominant activity present in the sample is due to ^{121}Sn . This was confirmed by observation of the decay of the sample. For experiments on ¹¹³Sn, much longer irradiations were used. Two samples were made. The first consisted of 4 g of

stable Sn irradiated for about 30 days in the AEC reactor at Savannah River, Georgia. The second contained 2 g and was placed in the core of the MTR reactor of the Idaho Nuclear Corporation, also for 30 days. After receiving these samples, we allowed a few weeks for decay of ¹²¹Sn before beginning the experiments on ^{113}Sn . At that time none of the other Sn activities produced were significant compared with that of $^{113}Sn.$

III. PRODUCTION AND DETECTION OF THE ATOMIC BEAM

The electronic configuration of the ground state of Sn is $5s^25p^2$. This configuration yields the five electronic states listed in Table I. Also included are the energies

TABLE I. Sn electronic states.

State	Energy $\rm (cm^{-1})$	Beam atoms in state $\%$	$g_J^{\rm a}$
$^{3}P_{0}$	0.0	52.7	0
$^{3}P_{1}$	1691.8	34.8	$-1.50110(7)$
$^{3}P_{2}$	3427.7	12.4	$-1.44878(9)$
D_2	8613.0	0.1	$-1.05230(8)$
1S_0	17162.6	≈ 0	0

a Reference 8.

of the states above the ground ${}^{3}P_{0}$ state, the percentage of the atomic-beam atoms present in each state, and the electronic g factors. It is impossible to deflect significantly the ${}^{3}P_{0}$ atoms in our beam apparatus; all work reported here was carried out in the metastable ${}^{3}P_{1}$ state.

The atomic beam was produced by electron bombardment of a tantalum oven containing a carbon crucible and lid. The Sn was placed inside the crucible and the oven was heated to about 1400'C. Sn atoms left the oven through a carbon slit 0.004 in. wide.

Beams of both isotopes were detected by collecting them on clean sulfur surfaces exposed for 5-min periods at the detector position of the apparatus. Radioactive counting of the activity on the sulfur surfaces served to measure the beam intensities. In the experiments on

f Research supported by the U.S. Atomic Energy Commission. Present address: Faculteit der Wiskunde en Natuurweten-

shappen, Katholieke Universiteit, Nijmegen, Netherlands. f Present address: Columbia Radiation Laboratory, Columbia University, New York, N.Y.

Isotope	Electronic State	Spin	g_J	hfs a (MHz)	μ_I (uncorr) (μ_N)	
119Sn	${}^{3}P_1$	$\frac{1}{2}$	$-1.50110(7)^{a}$	578.296b	$-1.0409c,d$	
${}^{85}Rb$	${}^{2}S_{1/2}$	$\frac{5}{2}$	$-2.002332(2)$ ^e	$1011.910813(2)$ ^f	1.3479s,h	
${}^{87}Rb$	${}^{2}S_{1/2}$	$\frac{3}{2}$	$-2.002332(2)$ ^e	3417.341307(2)f	2.7408h	
$133C_S$	${}^{2}S_{1/2}$	$\frac{7}{2}$	$-2.002542(2)$ ^e	2298.1579425i	2.5641 ^d	
			$\mu_0/h = 1.399613 \text{ MHz/G}$	$M_p/M_e = 1836.12$		

TABLE II. Constants used in computations.

[~] Reference 8.

Reference 6.

Reference 7.

d I. Lindgren, Arkiv Fysik 29, 553 (1965).

 e P. A. Vanden Bout et al., Phys. Rev. 165, 88 (1968).

S. Penselin, T. Moran, and V. W. Cohen, Phys. Rev. 127, 524 (1962).

¹²¹Sn the β activity was counted in a low-background anticoincidence-guarded Geiger-counter system. Typical background rates were ¹—² counts per minute, whereas resonance signals ranged from 20—80 counts per minute. The ¹¹³Sn activity was measured by counting the 25-keV $K \times \text{ray emitted in the electron-capture}$ the 25-keV K x ray emitted in the electron-capture
decay to ^{113m}In . This was done with a conventional NaI scintillator and photomultiplier system. Background and signal rates were similar to those in the ¹²¹Sn experiments.

In order to cancel out fluctuations in the atomic-beam intensity, two sulfur surfaces were exposed simultaneously during each collecting period. One surface was placed on the beam center line, where signals would appear as an increase in activity collected. The second, a normalization surface, was placed to one side of the center line and received a constant fraction of the beam intensity. The signal was then taken as the ratio of the activities collected on the two surfaces. It is this ratio which is plotted, versus radio frequency, to yield a resonance curve.

IV. APPARATUS

The beam apparatus used in these experiments is of the conventional "flop-in" design described in detail elsewhere.¹ On its way to the beam detector, an atom passes successively through three magnetic fields denoted A , C , and B oriented transverse to the beam direction. In order for an atom to reach the flop-in detector, it must undergo equal and opposite deflections as it passes through the inhomogeneous A and B fields. This will occur only if the atom is made to make a transition in the homogeneous C field between hyperfine-Zeeman sublevels such that its magnetic moment in B is opposite to that in A . Because the A and B fields are large enough to overcome the coupling of the nuclear angular momentum I to the electronic angular momentum J, this requirement leads to a machine

~' V. J. Ehlers, T. R. Fowler, and H. A. Shugart, Phys. Rev. 167, ¹⁰⁶² (1968).

h C. W. White, W. M. Hughes, G. S. Hayne, and H. G. Robinson, Phys. Rev. 174, 23 (1968).

ⁱ This value defines the atomic time scale.

selection rule $m_J(A) = -m_J(B)$ with $m_J \neq 0$, where $m_J = \langle J_z \rangle$. Transitions are induced in the C field by introducing small radio-frequency fields oriented either parallel or perpendicular to the static field. The C-field intensity may be varied to study the field dependence of the energy levels participating in the Aop-in resonance signals.

V. GENERAL PRINCIPLES

The Hamiltonian, relevant to these experiments, for an atom with hyperfine structure (hfs) in an external magnetic field H is given by

$$
3C = 3C_{\text{hfs}} + 3C_Z, \tag{1}
$$

$$
\mathcal{K}_Z = -g_J \mu_0 \mathbf{J} \cdot \mathbf{H} - g_I \mu_0 \mathbf{I} \cdot \mathbf{H},\tag{2}
$$

and, in general,²

with

$$
\mathcal{K}_{\text{hfs}} = \sum_{k} T^{k}(n) \cdot T^{k}(e). \tag{3}
$$

FIG. 1. Results of ¹²¹Sn spin search; the small signal at $I=\frac{5}{2}$ is Thus of $\frac{124}{50}$ spin search; the small signalized actually the wing of the $I=\frac{3}{2}$ resonance

² C. Schwartz, Phys. Rev. 97, 380 (1955).

¹ N. F. Ramsey, *Molecular Beams* (Oxford University Press, London, 1956).

In the above, J and I are the vector electronic and nuclear angular momentum operators, and $g_J = \mu_J/J$ and $g_I = \mu_I/I$ are the electronic and nuclear g factors expressed in Bohr magnetons. The quantity $T^k(n) \cdot T^k(e)$ is the scalar product of the kth rank hfs tensor operators. $T^k(n)$ operates on the nuclear coordinates and $T^k(e)$ on the electronic coordinates.

Since $\langle T^k(n) \cdot T^k(e) \rangle = 0$ for $k > 2 \lfloor \min(I, J) \rfloor$, we need only $k=1$ and $k=2$ terms for ¹²¹Sn that has $I=\frac{3}{2}$, $J=1$; and only the $k=1$ term for ¹¹³Sn with $I=\frac{1}{2}$, $J=1$. Furthermore, when the separation of adjacent J states in the atoms is large compared with the hfs, one can write the $k=1$ (magnetic dipole) and $k=2$ (electric quadrupole) terms of Eq. (3) as effective operators of order k in the operators $\mathbf{I} \cdot \mathbf{J}$, $\mathbf{I} \cdot \mathbf{I}$, and $\mathbf{J} \cdot \mathbf{J}$. Thus Eq. (3) becomes

$$
3C_{\text{hfs}} = ha\mathbf{I} \cdot \mathbf{J}
$$

+
$$
hb \frac{[3(\mathbf{I} \cdot \mathbf{J})^2 + \frac{3}{2}(\mathbf{I} \cdot \mathbf{J}) - I(I+1)J(J+1)]}{2I(2I-1)J(2J-1)}.
$$
 (4)

This formula may be taken as correct for these experiments, considering the precision achieved and the fact that the ratio of the hfs to the separation of adjacent J levels is about 10^{-5} in the Sn isotopes. The hfs constants a and ^b are related to the nuclear magnetic-dipole moment μ_I and nuclear electric quadrupole moment Q by the relations

$$
ha = -\mu_I H_e / IJ, \qquad (5)
$$

$$
hb = eq_J Q, \tag{6}
$$

where H_e is the atomic magnetic field and q_J is the atomic electric field gradient at the nucleus.

At zero magnetic field an atomic level with quantum number J is split by \mathcal{R}_{hfs} into a number of levels specified by the different values of total angular momenta $\mathbf{F}=\mathbf{I}+\mathbf{J}$ allowed by vector addition rules. In

FIG. 2. Results of ^{113}Sn spin search.

Fio. 3. Schematic three-level diagram of energy versus magnetic Fig. 3. Schematic three-level diagram of energy versus magnetic
field. In the A and B magnetic fields, where $\langle \Re z \rangle \gg \langle \Re c_{\text{hfs}} \rangle$, the
levels are characterized by the $m_J = \langle J_z \rangle$ quantum numbers listed on the right.

an external field, \mathcal{R}_z splits each F level into $(2F+1)$ sublevels specified by values of $\langle F_z \rangle = M$; states of the same M but differing in F by ± 1 are mixed by \mathcal{R}_z so that, to a greater extent as H is increased, F becomes less a "good" quantum number to describe a state. However, since most atomic-beam magnetic-resonance work begins at near-zero C-magnet field, it is customary, when describing radio-frequency transitions, to label a state by its zero-field F and M quantum numbers. In the high fields of the A and B magnets, $\langle \mathcal{R}_Z \rangle \gg hfs$ and the atomic states are near eigenstates of \mathcal{R}_z , best described by their quantum numbers $m_J = \langle J_z \rangle$ and $m_I = \langle I_z \rangle$. Thus, when describing beam trajectories, these quantum numbers are most commonly used.

In these experiments it was desired to measure the quantities I, \bar{a} , and \bar{b} (¹²¹Sn only) for the two isotopes studied, from which values of their nuclear moments could be determined. This was done by observation of radio-frequency transitions between various hyperfine-Zeeman sublevels at varying magnetic fields. The transitions observed were magnetic dipole and hence obeyed the selection rules $\Delta M=0, \pm 1$ in addition to the machine rule $m_J(A) = -m_J(B)$. The magnitude of the C-magnet field was determined from the observed frequency of the flop-in transition between F , M levels $I+\frac{1}{2}$, $-I+\frac{1}{2}$ and $I+\frac{1}{2}$, $-I-\frac{1}{2}$ and the known constants of one of the alkali metals ^{133}Cs , ^{85}Rb , or ^{87}Rb . The particular alkali used varied from one experimental run to another. The quantities I , g_J , μ_I , and α for these calibration isotopes are listed in Table II.

VI. SPIN MEASUREMENTS

The nuclear spins of ¹²¹Sn and ¹¹³Sn were measured by observation of rf transitions between low-field Zeeman levels in the hfs states with $F = I + J$. The frequency of this transition is given approximately by

$$
\nu = -g_J[J/(I+J)](\mu_0/h)H. \tag{7}
$$

Because $J=1$, a single transition changing M by ± 1 in the C field does not satisfy the machine selection rule $m_J(A) = -m_J(B)$. However, because at low field the Zeeman levels are equally spaced by $h\nu$, it is possible

Type	Level 1	Quantum numbers Level 2	Level 3	rf required
1	F, M		$F, M\pm 2$	one at $\nu = (E_1 - E_3)/2h$
2	F, M	$F, M \pm 1$	$F, M\pm 2$	two at $\nu_{12} = (E_1 - E_2)/h$ and $\nu_{23} = (E_2 - E_3)/h$
3	F, M	$F\pm 1, M\pm 1$		one at $\nu = (E_1 - E_2)/h$
$\overline{\mathbf{4}}$	F, M	$F\pm 1, M\pm 1$	$F\pm 2, M$	
5	F, M	$F \pm 1, M$	$F\pm 1, M\pm 1$	same as type 2

TABLE III. Types of transitions observed.

(by application of enough rf power) to induce doublequantum transitions yielding $\Delta M = \pm 2$. One of these transitions corresponds, at the high field of the A and B magnets, to the transition $m_I = \pm 1 \rightarrow m_I = \mp 1$, thus satisfying the machine selection rule for observation of a flop-in signal. Such double-quantum transitions may be observed with decreasing intensity as H is increased, until the low-6eld approximation of equal level spacing is violated by many resonance linewidths.

Figures 1 and 2 show the results of spin searches for ¹²¹Sn and ¹¹³Sn at magnetic fields of a few gauss. Clear increases in signal above background are indicate increases in signal above background are indicated
at frequencies corresponding to $I=\frac{3}{2}$ and $\frac{1}{2}$, respec tively. Conclusive assignment of the observed $I=\frac{3}{2}$ to 121 Sn was made on the basis of the characteristic 27-h β -emission decay on the resonance buttons. The long half-life of ^{113}Sn (118 days) precluded a similar decay study extending over several half-lives; however, the decay of resonance buttons extending over many weeks showed no significant departure from a decay with 118-day half-life. Because 113Sn decays to $113m\text{In}$, which in turn decays with a half-life of 1.7 h to the stable ground state ¹¹³In, there always existed in the atomic beam a small equilibrium amount of $113mIn$. Furthermore, at low field the $F=I+J$, $\Delta M=1$ flop-in Furthermore, at low field the $r = 1 + J$, $\Delta M = 1$ hop-in
transition frequency for $113m \text{In}$ $(I=\frac{1}{2}, 2P_{3/2}$ electronic state) is exactly equal to that for 13 Sn with $I=\frac{1}{2}$ in the ${}^{3}P_{1}$ state. Because of this coincidence, all resonance buttons in ¹¹³Sn runs were counted twice, with several

1.7-h half-lives in between, to insure that any signal seen was not due to $113m$ In. In none of the runs was there any clear evidence of interference due to presence of $113m$ In in the beam. It is presumed that the failure to observe 113m In resonances was due to the poor flop-in efficiency of In $(g_J = -\frac{4}{3})$ compared with Sn. Since the Sn Bop-in signals corresponded to transitions with $\Delta M_J = \pm 2$, the Sn atoms were more strongly deflected by the A and B fields because of the larger change in their atomic magnetic moment. In addition, the K x-ray counting system, used to detect ¹¹³Sn, was relatively insensitive to the 0.393-MeV γ ray emitted in the decay of $113m$ In.

VII. HYPERFINE-STRUCTURE MEASUREMENTS

A. Experimental Procedure

Several diferent types of rf transitions were observed in ¹²¹Sn and ¹¹³Sn at various magnetic fields in order to obtain values for the hfs-interaction constants. These types are summarized in Table III.

As with all similar atomic-beam experiments, the procedure used was to proceed by extrapolation from regions of transition frequency and magnetic field, where flop-in signals had been observed, to new values of frequency and field, where they had not. Observations

FIG. 5. Type-2 two-frequency resonances observed in 121 Sn at $H = 24.3$ G. The resonance labels b and c are those of Table IV, FIG. 4. Schematic diagram of rf circuit used in two-frequency runs. where the quantum numbers associated with each are listed.

FIG. 6. ¹²¹Sn type-4 $\Delta F = 1$ hyperfine transition resonance e at $H = 2.5$ G. The quantum numbers assigned to this resonance are listed in Table IV.

of new signals then allowed further extrapolation to higher field or to another type of transition based on updated values of the interaction constants.

In accordance with the above procedure, the type-1 transition, which had been used to measure the spins, was followed up in field to about 35 G for each of the isotopes; at this field the signal-to-background ratio had dropped considerably (from 3.5 to 0.5 for ^{121}Sn) because of the breakdown of the low-field approximation of equal Zeeman level spacing that allows observation of this transition. In order to proceed to higher values of magnetic field, a two-frequency technique, involving superposition of two rf fields in the transition region, was employed. As used in the type-2 observations, the method requires rf fields at frequencies matching the two energy intervals that make up the type-1 doublequantum interval. Thus one frequency corresponds to the interval $(F, M) \leftrightarrow (F, M+1)$ and the other to the interval $(F, M+1) \leftrightarrow (F, M+2)$. One then has, in effect, atoms making the type-1 double-quantum transition $(F, M) \leftrightarrow (F, M+2)$. The two-frequency approach, however, avoids the problems of producing, identifying, and interpreting multiple quantum transitions and retains the advantage of the low background of our flop-in apparatus. Although single-quantumcomponent resonances of type-2 and type-4 transitions can be observed directly with a flop-out apparatus, the large background of this arrangement is undesirable for detecting small changes in radioactive counting rate.

The operation of the two-frequency technique can be understood qualitatively by considering a simplified three-level system as shown in Fig. 3 and the following simple argument. We wish to cause an atom in state 1 to make a transition to state 3 by superimposing two rf fields at frequencies ν_{12} and ν_{23} . The two fields are introduced into the transition region by forming their Fourier sum and applying this sum to the conductor

FIG. 7. ¹²¹Sn type-4 $\Delta F = 1$ hyperfine-transition resonance f at $H = 2.5$ G. The quantum numbers assigned to this resonance are listed in Table IV.

leading to a shorted rf loop in the C magnet of the beam apparatus. Thus as an atom travels the length of the transition region it "sees" both fields simultaneously. It is possible to visualize an ideal situation with all beam atoms moving with the same velocity and the two rf field intensities so adjusted that in passing through the first half of the transition region an atom starting in state 1 has unit probability of making the transition $1\rightarrow 2$ and in passing through the remaining half has unit probability of making the transition $2\rightarrow 3$. Of course, since the 6elds are superimposed, it is equally probable that in the second half of the transition region an atom would make the reverse transition $2\rightarrow 1$; one expects half of the atoms to do this and the net result is a probability of 0.5 for the over-all process $1\rightarrow 2\rightarrow 3$.

FIG. 8. ¹¹³Sn type-5 $\Delta F = 1$ resonance *n* at $H = 115.7$ G. The quantum numbers assigned to this resonance are listed in Table IV. At this field the derivative of the frequency of this transition with respect to the magnetic field is zero.

		Transition	Resonance	Quantum numbers ^a						
	Isotope	type	label	F_{1}	M_1	F_2	M_{2}	F_3	M_{3}	
	$^{121}\mathrm{Sn}$	$\mathbf 1$	\boldsymbol{a}	2.5	$2.5\,$			2.5	0.5	
			(b	2.5	2.5	2.5	1.5			
\sim	\mathcal{L}^{max} and	$\sqrt{2}$	lc			2.5	$1.5\,$	2.5	0.5	
		3	\boldsymbol{d}	1.5	1.5	2.5	0.5			
		$\bf{4}$	(e	0.5	-0.5	1.5	0.5			
			(f)			1.5	0.5	2.5	-0.5	
		$\sim 10^{-11}$ \sim $\overline{4}$	\int	0.5	-0.5	1.5	-1.5			
			$\lfloor h \rfloor$			1.5	-1.5	2.5	-0.5	
	113Sn	$\mathbf{1}$	\boldsymbol{i}	1.5	0.5			1.5	-1.5	
	\sim	$\boldsymbol{2}$	$\int j$	1.5	0.5	1.5	-0.5			
	\sim		(k			1.5	-0.5	1.5	-1.5	
		$\mathbf{3}$	\boldsymbol{m}	1.5	0.5	0.5	-0.5			
		5	(n	1.5	0.5	$0.5\,$	0.5			
			\mathfrak{p}			$0.5\,$	0.5	0.5	-0.5	

 a Assumes a, $b < 0$ for $121Sn$; $a > 0$ for $113Sn$.

A similar argument vields the same result for the absorption process $3\rightarrow 2\rightarrow 1$. Thus, to the extent that such $\frac{1}{2}$, $\frac{1}{2}$, quency flop-in signals to be as large as the low-field type-1 signal, since not depend on the two frequencies being unequal. In both cases one would expect, at most, one-half of the atoms in states 1 and 3 to contribute to the flop-in e-2 and type-4 signals were of about th signal. This was borne out by the experimental observasame strength as the low-field type-1 double-quantum signals.

FIG. 9. Energy-level diagram for the 3P_1 hfs levels of $^{121}{\rm Sn}.$ The am is drawn for hfs constants $a, b < 0$. The value of the inside both each level is indicated along the inside bo vertical lines and heavy dots indicate the transitions observed; solid lines are single-frequency transitions, dashed lines are twofrequency transitions.

The implementation of the two-frequency technique required two rf generators, rf power amplifiers, a means of measuring the two frequencies, and a device for forming the Fourier sum before transmission into the transition region. Figure 4 shows a schematic diagram of the rf circuit required.

The method used, in a typical run, to locate the two peak frequencies, ν_{12} and ν_{23} , was as follows: One rf generator was set to the predicted frequency for one of the resonance peaks, say ν_{12} , and the other generator's frequency was varied until a signal corresponding to the $2 \rightarrow 3$ transition was detected. This resonance line shap was then traced out so that its peak could be located to

FIG. 10. Energy-level diagram for the 3P_1 hfs levels of ¹¹³Sn. The diagram is drawn with $a > 0$. The vertical lines and heavy dots indicate the transitions observed; solid lines are single-frequency transitions, dashed lines are two-frequency transitions.

Run No.	Isotope ^a	Calibration data Frequency (error) (MHz)	Resonanceb label	Sn isotope data Frequency (error) (MHz)	$\nu_{\text{obs}}-\nu_{\text{calc}}$ (MHz) $(g_I$ assumed positive)	
868A	\boldsymbol{A}	0.438(25)	\boldsymbol{a}	1.030(25)	-0.025	
871A	\boldsymbol{A}	0.989(20)	\boldsymbol{a}	2.352(25)	-0.039	
871B	\boldsymbol{A}	2.013(18)	\boldsymbol{a}	4.880(25)	-0.020	
871C	\boldsymbol{A}	3.923(15)	$\it a$	9.618(50)	-0.050	
871D	\boldsymbol{A}	6.073(18)	\boldsymbol{a}	15.155(15)	-0.022	
872A	\boldsymbol{A}	6.975(18)	\boldsymbol{a}	17.515(30)	-0.017	
876A	\boldsymbol{A}	8.856(18)	\boldsymbol{a}	22.525(30)	-0.005	
891C	B	2.373(30)	\boldsymbol{a}	4.350(75)	0.039	
891D	\boldsymbol{B}	14.289(40)	\boldsymbol{a}	27.250(100)	0.127	
892A	\boldsymbol{B}	16.730(30)	\boldsymbol{a}	32.025(67)	-0.002	
892D	\boldsymbol{B}	11.560(50)	$\boldsymbol{\mathcal{C}}$	21.350(100)	0.078	
892D	\boldsymbol{B}	11.560(50)	b	22.200(75)	0.010	
894A	\boldsymbol{B}	15.546(20)	\pmb{c}	28.825(80)	0.014	
894A	\boldsymbol{B}	15.546(20)	b	30.450(50)	-0.015	
894B	\boldsymbol{B}	21.747(30)	\pmb{c}	40.750(50)	-0.006	
894B	\boldsymbol{B}	21.747(30)	b	43.975(75)	0.039	
894C	B	31.907(40)	\pmb{c}	60.975(50)	-0.021	
894C	B	31.907(40)	\boldsymbol{b}	67.500(50)	.0.047	
894D	B	45.097(25)	\pmb{c}	88.800(200)	0.102	
894D	B	45.097(25)	\boldsymbol{b}	100.200(100)	-0.038	
897A	\boldsymbol{B}	0.431(30)	\boldsymbol{d}	362.675(30)	0.000	
897B	\boldsymbol{B}	0.628(30)	d	362.850(40)	-0.009	
900A	\boldsymbol{B}	70.128(30)	\pmb{c}	148.540(75)	-0.012	
$900\mbox{\AA}$	B	70.128(30)	b	167.155(50)	0.001	
900B	\boldsymbol{B}	98.893(30)	\pmb{c}	227.075(75)	$\boldsymbol{0.024}$	
900B	В	98.893(30)	ь	247.365(60)	0.028	
901A	\boldsymbol{B}	0.919(30)	\pmb{e}	121.225(40)	0.010	
901A	В	0.919(30)	f	363.620(30)	0.009	
901B	\boldsymbol{B}	1.172(20)	\pmb{e}	121.515(40)	-0.015	
901B	\boldsymbol{B}	1.172(20)	f	363.955(30)	-0.005	
901C	B	0.904(25)	g	123.325(60)	0.035	
901C	\boldsymbol{B}	0.904(25)	\boldsymbol{h}	361.500(15)	0.003	

TABLE V. Experimental data ¹²¹Sn.

 $A = 133Cs, B = 85Rb.$

Resonance labels are as in Table IV.

give a first measurement of ν_{23} . Once this was done the second generator was held to this peak frequency while the first was varied to improve the location of ν_{12} . This process could then be repeated until the location of the two peak frequencies no longer changed and the measurement of v_{12} and v_{23} at that particular magnetic field was completed. In practice, it was found that one could locate v_{12} and v_{23} uniquely with only one or two sweeps of each resonance.

Figure 5 shows the type-2 two-frequency resonances b and c from Run 892 in the experiments on ^{121}Sn . The levels involved in these resonances are $(F_1 = \frac{5}{2}, M_1 = \frac{5}{2}),$ $(F_2 = \frac{5}{2}, M_2 = \frac{3}{2})$, and $(F_3 = \frac{5}{2}, M_3 = \frac{1}{2})$. The peak on the right corresponds to the $1\rightarrow 2$ transition and that on the left to the $2\rightarrow 3$. These observations were made at a magnetic field of 24.3 G. This is low enough to observe a type-1 signal with a single frequency midway between the two resonance peaks; however, as the plot shows,

					$\nu_{\text{obs}} - \nu_{\text{calc}}$	
Run No.	Isotope ^a	Calibration data Frequency (error) (MHz)	Resonanceb label	Sn isotope data Frequency (error) (MHz)	(MHz) $(gI$ assumed negative)	
931	\boldsymbol{B}	1.016(90)	\boldsymbol{i}	3.100(150)	0.052	
950	\boldsymbol{B}	2.190(70)	\boldsymbol{i}	6.800(100)	0.235	
952	\boldsymbol{B}	3.556(140)	\dot{i}	10.600(300)	-0.051	
953	\boldsymbol{B}	2.841(75)	\dot{i}	8.600(250)	0.087	
954	\boldsymbol{B}	6.367(100)	\dot{i}	19.000(200)	-0.039	
955	\boldsymbol{B}	9.463(70)	\boldsymbol{i}	28.000(200)	-0.244	
957	\boldsymbol{B}	9.382(125)	\boldsymbol{i}	28.100(200)	0.097	
957A	\boldsymbol{B}	9.382(125)	\boldsymbol{j}	27.900(200)	0.145	
957B	\boldsymbol{B}	9.382(125)	\boldsymbol{k}	28.500(200)	0.248	
960	\boldsymbol{B}	11.847(50)	$\dot{\imath}$	35.350(150)	0.040	
961	\boldsymbol{B}	14.425(70)	\dot{i}	42.900(150)	-0.030	
962	\boldsymbol{B}	16.783(60)	\dot{i}	49.900(150)	0.021	
962A	\boldsymbol{B}	16.783(60)	\boldsymbol{j}	49.075(75)	-0.033	
962B	\boldsymbol{B}	16.783(60)	\boldsymbol{k}	50.525(75)	-0.094	
964A	\boldsymbol{B}	31.884(50)	\boldsymbol{j}	91.700(75)	0.031	
964B	\boldsymbol{B}	31.884(50)	\boldsymbol{k}	96.275(75)	0.002	
965A	\boldsymbol{B}	61.654(50)	\dot{j}	172.600(75)	0.109	
965B	\boldsymbol{B}	61.654(50)	k	185.475(100)	0.145	
966A	\boldsymbol{B}	109.667(65)	j	297.580(75)	-0.076	
966B	\boldsymbol{B}	109.667(65)	\boldsymbol{k}	323.150(75)	-0.107	
967	\boldsymbol{B}	0.466(66)	\boldsymbol{m}	731.000(150)	0.035	
983	\boldsymbol{A}	0.515(37)	$\it m$	731.975(150)	0.014	
984	\boldsymbol{A}	0.595(34)	\boldsymbol{m}	732.425(100)	-0.018	
1003B	$\cal C$	83.835(85)	\boldsymbol{n}	687.188(50)	0.006	
1004	\mathcal{C}	83.921(85)	$\it n$	687.175(50)	-0.007	

TABLE VI. Experimental data ¹¹³Sn.

 $A = 138Cs$, $B = 85Rb$, $C = 87Rb$.

there is a signihcant difference between the peak frequencies ν_{12} and ν_{23} (about 1 MHz). This difference is a direct measurement of the effects of the hyperfine structure on the Zeeman levels.

At moderate magnetic fields, where ν_{12} and ν_{23} do not differ by more than a few linewidths, it is possible for the presence of the rf field at frequency ν_{23} to shift the position of the resonance at ν_{12} from its unperturbed location by an amount $\delta\nu_{12}$ given roughly by³

$$
\delta\nu_{12} = (\Gamma_{23})^2/8(\nu_{12}-\nu_{23}), \qquad (8)
$$

where Γ_{23} is the linewidth of the 2 \rightarrow 3 resonance (full width at half-maximum). An analogous expression holds for $\delta\nu_{23}$. The result is that the apparent separation of the $1\rightarrow 2$ and $2\rightarrow 3$ peaks is larger than in the un-

perturbed case. Calculation of the size of this effect in these measurements shows that it was small and entirely negligible, amounting to a maximum shift of 0.020 MHz for the lowest-field type-2 observations on 121 Sn. This is well within the assigned error in the peak locations (0.100 and 0.075 MHz). The size of the shift for all other observations on the two isotopes was much smaller due to the increased size of $(\nu_{12} - \nu_{23})$.

For both of the isotopes studied, the type-2 resonances were observed at various values of the C field, extending up to about 200 G. These observations produced values for the various hfs intervals which were sufficiently precise to allow searching at near-zero magnetic field for type-3 or type-4 resonance signals that connect hfs levels differing in F by one. Observations of such resonances serve as direct measurements of the hfs interval except for. a correction for the de-

³ N. F. Ramsey, Phys. Rev. 100, 1191 (1955).

Isotope	Nuclear spin	hfs constants ^a (MHz)	Nuclear moments ^b (uncorr)	χ^2	Number of observations	
121 Sn	$\frac{3}{2}$	$a = \pm 128.726(8)$	$\mu_I = \mp 0.695(7) \mu_N$	$(-a)$ 5.21)	$\mathcal{A}^{\mathcal{A}}$. In ,	
		$b = \pm 32.374(12)$	$Q = \pm 0.08(4)$ b	$(-a)4.48$	32	Dec 10
113Sn	ş	b/a>0 $a = \pm 485.911(25)$	$\mu_I = \mp 0.875(9) \mu_N$	$(-a)4.51$ $(-a)$ 6.32	25	

TABLE VII. Results.

^a Errors represent one standard deviation. **p** μ_I errors are 1% to allow for hfs anomaly. Error in 0 is 50% to include inaccuracies in calculation of $\langle 1/r^3 \rangle$ and effects of Sternheimer shielding.

parture from zero field. Figures 6 and 7 show such resonances obtained for the two hfs intervals of ^{121}Sn . Figure 8 shows the $\Delta F = 1$ type-5 resonance observed in 113Sn . The measurement was made at a value of the magnetic field $(H = 115.6 \text{ G})$ at which the derivative of the transition frequency with respect to magnetic field is zero. Operation at such a point minimizes C-magnet inhomogeneity as a source of line broadening.

B. Summary of Observations and Results

Figures 9 and 10 are energy-level diagrams for the ${}^{3}P_{1}$ hfs levels of ${}^{121}Sn$ and ${}^{113}Sn$ in an external magnetic field. Indicated by the vertical lines and heavy dots are the transitions observed and the states involved. The solid lines indicate single-frequency type-1 and type-3 transitions; the dashed lines indicate the two-frequency types-2, -4, and -5 transitions.

Table IV lists the quantum numbers of the observed transitions and Tables V and VI contain the experimental data. Table VII presents the final values for the hfs constants as determined by a least-squares computer fit to the data.⁴ Also included are the measured nuclear spins, the nuclear magnetic-dipole and electric quadrupole moments deduced from the measured hfs constants, and the x^2 of the computer fits for the two possible signs of the interaction constants. Preliminary values of these results were reported earlier.⁵

From Childs and Goodman's measurement⁶ of a positive sign for a in the ${}^{3}P_1$ state of the stable isotopes $115,117,119$ Sn and the known⁷ negative sign of μ_I for these isotopes, it is known that a and μ_I should have opposite signs. The difference in the χ^2 values of the computer fits for the two possible sign combinations is not significant enough to establish the sign of μ_I for ^{121}Sn and ¹¹³Sn from the data obtained in these experiments. However, nuclear theory strongly supports the sign choice $\mu_I(^{121}\text{Sn}) > 0$ and $\mu_I(^{113}\text{Sn}) < 0$, and, accordingly Figs. 9 and 10 are drawn for negative and positive hfs constants, respectively. The sign of b relative to a for ¹²¹Sn was determined by these experiments to be positive.

The values for the magnetic moments were obtained from the measured spins and α constants by using the known^{6,7} values for I, μ_I , and a of ¹¹⁹Sn and the usual Fermi-Segre comparison relation

$$
\mu_I = (I/I') (a/a') \mu_I'. \tag{9}
$$

The nuclear quadrupole moment O of ^{121}Sn was determined from the measured value of b and Eq. (6). For q_J the relation

$$
q_J = 0.219 \langle r^{-3} \rangle \tag{10}
$$

was used with $\langle r^{-3} \rangle$ given by

$$
\langle r^{-3} \rangle = \xi / (2\mu_0^2 Z_{\rm eff} H), \qquad (11)
$$

where $\xi = 2171.5$ cm⁻¹ is the fine-structure splitting constant determined by Childs and Goodman, $Z_{eff}=46$, and the relativistic factor $H=1.02$.⁹ The factor 0.219 in the relation for q_J comes from a calculation of the effects of Casimir-type relativistic corrections using the effective-operator technique of Sandars and Beck¹⁰; the nonrelativistic factor is $\frac{1}{5}$.

The quantities in parentheses in Table VII represent the errors in the last figures quoted. For the interaction constants $(a \text{ and } b)$, this error represents one standard deviation. The errors quoted for the magnetic moments are taken as 1% to allow for a possible hfs anomaly [departure from Eq. (9)], even though such anomalies among the stable tin isotopes $115.117,119\$ Sn are known to be very small⁶ ($\leq 0.04\%$). The large error (50%) quoted for Q represents the uncertainty in the calculation of $\langle r^{-3} \rangle$ and the possibility of large configuration inter action and Sternheimer shielding effects, which have not been determined.

VIII. DISCUSSION OF SPINS AND MOMENTS

With $Z = 50$ the Sn isotopes have a closed-shell proton core and, to a large extent, the static nuclear properties should be attributable to the neutron states. ¹¹³Sn and

 $4 \text{ V. J. Ehlers } et \text{ } al., \text{ Phys. Rev. } 176, 25 \ (1968).$

⁵ M. H. Prior, H. A. Shugart, and P. A. Vanden Bout, Bull. Am.
Phys. Soc. 12, 904 (1967); A. Dymanus, M. H. Prior, and H. A. Shugart, *ibid.* 12, 1046 (1967).
Shugart, *ibid.* 12, 1046 (1967).
⁶ W. J. Childs and L. S.

^s W.J. Childs and L. S. Goodman, Phys. Rev. 134, A66 (1964). ⁹ H. Kopferman, *Nuclear Moments* (Academic Press Inc., New York, 1958).
New York, 1958).
¹⁰ P. G. H. Sandars and J. Beck, Proc. Roy. Soc. (London)

A289, 97 (1965).

¹²¹Sn have 13 and 21 neutrons beyond the $N=50$ closed shell, respectively, and these are distributed among the single-particle subshells $2d_{5/2}$, $1g_{7/2}$, $3s_{1/2}$, $2d_{3/2}$, and $1h_{11/2}$. The single-particle shell model then attribute $1h_{11/2}$. The single-particle shell model then attributes the spins $I=\frac{1}{2}$ for ¹²¹Sn to the odd neutron of the isotopes occupying the $3s_{1/2}$ and $2d_{3/2}$ subshells, respectively.

These assignments yield Schmidt moments $\mu_I(s_{1/2}) =$ -1.913 μ_N and $\mu_I(d_{3/2}) = 1.148\mu_N$, which are too large by factors of 2.2 and 1.6 compared with the measured values of

and

$$
\mu_I \text{(corr)} \, (^{118}\text{Sn}) = \pm 0.879(9) \mu_N
$$
\n
$$
\mu_I \text{(corr)} \, (^{121}\text{Sn}) = \pm 0.699(7) \mu_N.
$$

Despite the large disparity in magnitude between the Schmidt values and the observed moments, it is improbable that the signs of the magnetic moments are other than those of the Schmidt values.

Using a δ -function perturbation on shell-model-pluspairing-force wave functions, Freed and Kisslinger¹¹ have obtained remarkable agreement between calculated and observed magnetic moments of odd-neutron nuclei in the mass region $A = 105$ to $A = 149$. In particular, they obtain agreement to within 10% over the chain of isotopes $\frac{111,113}{10}$ (d, $\frac{115,117,119}{5}$ m, all with $I=\frac{1}{2}$ and magnetic moments of about $-1.00 \mu_N$. Because of the smooth variation of the μ_I 's with mass over this range of $I=\frac{1}{2}$ nuclei, it is expected that their treatment would have similar success with ¹¹³Sn. Freed and Kisslinger did not calculate μ_I 's for $I=\frac{3}{2}$ nuclei near $A = 121$; they did, however, obtain agreement to within 10% for ^{131}Xe $(I=\frac{3}{2}, Z=54, N=77, \mu_I=0.691\mu_N)$.

Our measured value of the quadrupole moment of ¹²¹Sn, $Q = \pm 0.08(4) \times 10^{-24}$ cm², is in fair agreement with the results of a calculation carried out by using an expression derived by Kisslinger and Sorensen, '

$$
Q = (2I-1)/2(I+1)\langle I | r^2 | I \rangle_{\text{eff}}
$$

$$
\times (U_I^2 - V_I^2)[1 + (\chi/C)], \quad (12)
$$

where e_{eff} is the effective charge assigned to the odd neutrons because of their polarization of the proton core, and V_I^2 and U_I^2 give the probabilities of occupancy and nonoccupancy of the shell-model state with $j=I$ ($2d_{3/2}$ for ^{121}Sn). The quantity χ is the strength of the long-range quadrupole force between nucleons, and C is a parameter giving the strength of the coupling of the single particle to the collective motion of the odd nucleons. Schneid, Prakash, and Cohen¹³ have carried out (d, p) and (d, t) reaction studies on the even Sn isotopes, and their measurements yield $U_{3/2}^2 = V_{3/2}^2 = 0.5$ for 120 Sn indicating simply two neutrons in the $2d_{3/2}$ subshell. Adding one neutron to obtain ¹²¹Sn then yields subsident. Adding one neutron to obtain $-$ sh then yields the result $(U_{3/2} - V_{3/2}) = -0.5$. For the other quantities in Eq. (12), the values¹² used were $\langle I | r^2 | I \rangle = 4.0 \times 10^{-26}$ cm², $e_{\text{eff}} = 1$, and $\chi/C = 1.5$. The calculated result 10^{-26} cm², $e_{eff} = 1$, and $\chi/C = 1.5$. The calculated result 10^{-26} cm², $e_{\text{eff}} = 1$, and $\chi/C =$
is then $Q = -0.02 \times 10^{-24}$ cm³

ACKNOWLEDGMENTS

We acknowledge gratefully the assistance of Dana Vance and Patrick Yarnold for their help in these experiments, particularly for their patient and competent counting of the radioactive buttons. We thank also Mrs. Julia Taylor and Miss Nadine Kamada for their excellent typing of the manuscript.

[»] N. Freed and L. S. Kisslinger, Nucl. Phys. 2S, 611 (1961).

¹² L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.

Selskab, Mat.-Fys. Medd. 32, 9 (1960). "E. E.J. Schneid, A. Prakash, and B. Cohen, Phys. Rev. 156, 1316 (1967).