181 LEVEL ORDER IN
Our underlying assumption has been that configuration
mixing would improve the spacing, but not change the
order of levels. This has now been conclusively proved
by Wathne and Engeland in the Mg case.® They
found that by gradually expanding the basis, the same
order (the wrong one) consistently appears in the 2#Mg
low levels, while the spacing is almost doubled. (The
calculation was made with a Gaussian Rosenfeld
potential.) As for the effective interaction, the main
unorthodox feature in our assumption is the dropping of
both the spin and the isotopic spin exchange. This

0 K. Wathne and T. Engeland, Nucl. Phys. A94, 129 (1967).
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assumption is however not so unrealistic as it may
seem, since it is based on recent theoretical results of
Parikh and Bhatt.® Their analysis of the effective
residual interaction of Kuo and Brown!! showed that
the latter’s matrix elements have in fact a Majorana
exchange character. Finally the strength of the effective
interaction has been derived from the excitation energy
of the first excited ¥Ne state because detailed calcula-
tions show!?:3 that this value is hardly affected by con-
figuration mixing.

1T, T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).

12 C. Abulaffio, Nucl. Phys. 81, 71 (1966).
18 J. Flores and R. Perez, Phys. Letters 26B, 55 (1967).
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The total energies of finite nuclei are expressed as a functional E[pp, pa] of the local proton and
neutron densities p, and p,. The binding energies and densities of any nucleus are found by minimizing
E[pp, pn] with respect to pp and p, separately. The potential-energy functional is initially derived from
a nuclear matter calculation but later adjusted to reproduce experimental binding energies. Results for
light nuclei have already been reported, and here the calculation is extended to medium and heavy nuclei.
Binding energies and mean radii are well reproduced but surface thicknesses are too large and rms radii

too small.

I. INTRODUCTION

HE idea of deriving bulk properties of nuclei by
means of statistical methods goes back to the earlier
days of nuclear physics. The main task consists of
reproducing the binding energies, the sizes, and the
shapes of nuclei without appealing to a microscopic
description. Remarkable results have already been
recorded within the framework of the Thomas-Fermi
approximation using simple nuclear forces. Improve-
ments in our understanding of the nucleon-nucleon
interactions, as well as in the description of many-
fermion systems, allow us to accomplish the program
with greater accuracy and more confidence in the
theoretical background. The Thomas-Fermi theory,
for instance, has been recently reviewed in detail by
Bethe,! assuming realistic nuclear forces with a re-
pulsive core, which ensured its validity in the nuclear
case.
* Research supported by the U.S. Atomic Energy Commission
under Contract No. AT (11-1)-GEN-10, P.A. 11.
T Present address: Institut de Physique Nucléaire, Division
il?e Physique Théorique, laboratoire associé au CNRS, 91-Orsay,
rlaan'eA‘ Bethe, Phys. Rev. 167, 879 (1968), in which references
to earlier works can be found as well as in Ref. 5; see also Pro-
ceedings of the International Conference on Nuclear Physics,

Gatl7i)ngsburg, Tenn., 1966 (Academic Press Inc., New York,
1967).

The presence of a shell structure may well require
the use of Hartree-Fock-like theories rather than
statistical approaches. This is obviously the case for
observables strongly depending on single-particle
states. As an example, the shell-model potential
experienced by a particle inside the nucleus is hardly
given by a statistical expression. Nevertheless, solving
Hartree-Fock-type equations results in a tedious
computation, especially if use is made of a realistic
two-body force, for which the Brueckner-Goldstone
formalism has to be introduced. Thus, it remains
worthwhile to derive general properties by means of
more practical methods.

Another reason for dealing with statistical theories
has been pointed out by Myers and Swiatecki.? It is
essential to separate liquid-drop and shell effects in
the semiempirical mass formula, in order to extrapolate
the mass formula and to investigate heavy and super-
heavy nuclei. Higher-order corrections to the usual
Bethe-Weizsiicker expression, arising from the surface
symmetry energy, curvature effects, or exchange
Coulomb energy, are difficult to extract from the actual

2W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966) ;
see also W. D. Myers and W. J. Swiatecki, Arkiv Fysik 36, 343
(1967) ; W. D. Myers, University of California Radiation Labora-
tory Report No. UCRL-17725, 1967 (unpublished).



1544

data. A statistical treatment is helpful in establishing
these corrections.

In the present work we apply the energy-density
formalism to finite nuclei. The basic idea is to express
the total energy of the many-nucleon system as a
functional E[p(r)] of the local density p(7)

Elp(r) 1= (¢, 1Y) (1)

by means of an extended Thomas-Fermi model. Then
the variational method for finding the ground state of
the system reduces to a minimization with respect to
o(r) .2 The functional of the potential energy is derived
from a nuclear matter calculation with variable neutron
excess carried out by Brueckner ef al.* Effects of the
finite range of the nuclear forces are included through
a density gradient correction which takes care of the
density variation at the nuclear surface. Its numerical
coefficient is kept as a phenomenological parameter to
be adjusted to the experimental data.

In a previous paper® (hereafter referred to as I)
we have reported results concerning a first attempt in
which proton and neutron densities have been as-
sumed proportional. The calculations were therefore
limited to light nuclei, essentially to nuclei with zero
neutron excess. Our purpose is to investigate the effects
of relaxing the proportionality between the two
fermion densities, and to extend the calculations to
medium and heavy nuclei. As we shall see in Sec. III,
the differences between proton and neutron distribu-
tions do not significantly affect the binding energies or
the rms of the mass radius. In Sec. III all constants
other than % are the same as in I, allowing a connection
to be made with the results in that paper.

Section IV is devoted to a study of nuclei using the
differential-equation approach. In this section we also
allow an adjustment of the saturation curves in order
to obtain better binding energies. Conclusions are
given in Sec. V.

II. MODEL

A detailed derivation of our energy functional has
already been given in I, so that we will merely review
the most important arguments and discuss a few points.
The total energy is expressed by

E[p]= | 8[o(r)1(dr)?, (2)
with
E[p1=2(#%/2M) (37)%2 3L (1 —a) ¥+ (1+4-a) ¥ ]p"F3
+oV (p, &) +3epppc—0.7386¢%p,*2

+#/8M)n(Ve)* (3)

3 P, Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
L. J. Sham and W. Kohn, ¢bd. 145, 561 (1966).

4K. A. Brueckner, S. A. Coon, and J. Dabrowski, Phys. Rev.
168, 1184 (1968).

5 K. A. Brueckner, J. R. Buchler, S. Jorna, and R. J. Lombard,
Phys. Rev. 171, 1188 (1968).
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and

P (7') =Pp (1’) +pu (7) .

The densities are subject to the conditions

Jostn@i=2,  [m() @ry=n.

The neutron excess is defined by

a(r) =Lon(r) —pp(r) J/Lon(r) +pp(r) ] (4)

and reduces to (N—Z)/ A4 if p, and p, are proportional.

The first term in (3) represents the kinetic energy
and is simply taken from the Thomas-Fermi theory.
According to Bethe,! this is a good approximation as
long as p(r) 20.17p, po being the normal density of
nuclear matter. The so-called Weizsiicker correction,
which is of the form £(Vp)?/p, is supposed to improve
the Thomas-Fermi expression in accounting for the
kinetic surface energy. The value of the parameter &
has been derived by various authors in the case of an
infinite fermion system weakly perturbed by a density-
coupled interaction and found to be § (see the Ap-
pendix of I). The same value comes out in the case
of the semi-infinite medium perturbed by a ripple
potential.® However, it has been shown by Swiatecki’
that in the semi-infinite case, for any reasonable
potential, the kinetic energy at the surface is over-
estimated by the Thomas-Fermi approximation. This
result has been confirmed recently by Moszkowski.8
It means that the quantity ¢ cannot be taken as a
constant at the surface and should even change sign.
The failure of the Weizsicker approximation at the
nuclear surface may be attributed to the fact that,
in contrast to an infinite system, the nucleons are
in bound states so that the kinetic energy of each of
them becomes negative at large distances. For this
reason we have omitted the Weizsiicker correction in
this work.

A more sophisticated way to introduce surface
corrections to the Thomas-Fermi theory has been
suggested by Nagvi.® In his approach the starting point
consists of the Hartree-Fock equations, and the surface
corrections turn out to be sensitively dependent on
the shape of the density distribution. This possible
improvement, however, has not been considered in
the present work.

The second term in (3) represents the potential
energy

V (p,e) =b1(14-0:102) p4-b2(1-+a902) p*3+ b3 (14-aza?) p°3.
(5)

6L. Wilets and S. A. Moszkowski (private communication
from S. A. Moszkowski) ; see also, D. S. Koltan and L. Wilets,
Phys. Rev. 129, 880 (1963).

7W. J. Swiatecki, Proc. Phys. Soc. (London) 644, 226 (1951).

8S. A. Moszkowski, Bull. Am. Phys. Soc. 13, 628 (1968) ; and
(private communication).

9 M. A. Nagvi, Nucl. Phys. 10, 256 (1959).
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The coefficients b; and a; were initially derived
from the nuclear matter calculation with variable
neutron excess by Brueckner et al.* The precision of
the fit to the saturation curves is better than 19,
for small a. These coefficients were later adjusted to
give better nuclear binding energies for all 4 and Z
with a constant n. A discussion of this is given in Sec.
IV.

The direct and exchange Coulomb energy are given
by the third and the fourth term of (3), respectively.
The Coulomb potential is defined as

_ po(7")
o=e [r—r'|

(ar')?. (6)

The inhomogeneity correction, taking care of the
decrease of the density at the nuclear surface, is
expressed by the last term of (3). As shown in I, its
analytical form can be derived from the gradient
expansion of the potential energy, the long-range part
of the two-body interaction only being considered.
The coefficient 5 is taken in our work as a phenom-
enological parameter. It is, in principle, related to
the long-range part of the potential and Bethe! gives
a prescription for evaluating it. He suggests considering
the 1Sy part of the potential only and subtracting the
OPEP contribution. This is not a general procedure
and cannot be followed in the case of the Gammel-Thaler
potential. However, in choosing a simple static force re-
producing approximately our saturation curve for zero
neutron excess, we get a value of » which is in rough
agreement with the one we are using.

Another difficulty in the evaluation of 5 arises from
the self-consistency requirement between the G matrix
and the single-particle potential of the intermediate
states. This has been noticed by various authors!
in Hartree-Fock calculations. In the present case, as
advocated by Bethe,! the extension of the local density
approximation should lead to a simple renormalization
of 5. This seems consistent with the fact that in the
energy-density formalism the inner part of the nucleus
is more or less considered as a piece of nuclear matter,
so that the correction should primarily affect the
surface. Nevertheless, it is a size effect influencing
the whole nucleus and the method of taking this into
account is not very clear at present.

Among different possibilities it may seem attractive
to choose 5 such as to fit the surface energy term of the
semiempirical mass formula. This is easily done in
the one-dimensional nucleus neglecting the Coulomb
energy. However, the coefficient of the 4% term is
determined from the actual nuclei in which the curva-
ture effects are not negligible, and higher-order effects
like the surface symmetry energy may well bring
additional uncertainties. Therefore fitting n to give
the binding energy of a nucleus seems a better choice.

10 See S. Kohler, Phys. Rev. 137, B1145 (1965) ; D. S. Koltan,
2bid. 137, B487 (1965) ; C. W. Wong, Nucl. Phys. 91, 399 (1967).
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Higher-order terms in the gradient expansion,
above all the (Ap)? terms, are neglected. A calculation
of this term showed it to be about 19, of the total
binding energy, thus of the order of the accuracy of
the method.

III. ANALYTIC DENSITY DISTRIBUTIONS

The ground-state density distributions are calculated
either by solving the Lagrange-type coupled differential
equations associated with (2) or by a variational
method in which use is made of appropriate trial
functions for p,(7) and p, (7). The differential equations
require a four-parameter search [or three if p,(7)
and p,(r) are assumed proportional]. However, for
heavy nuclei the solutions tend to be mathematically
unstable and the variational method provides a
convenient tool in seeking approximate solutions.
The two minimization processes yield results in very
close agreement.

For light nuclei, the best trial function was found
to be a so-called modified Gaussian with a cubic
polynomial. This form remains the best for medium
and heavy nuclei, but the results are slightly improved
by replacing the cubic term by a fourth-order one.
The analytical expression is then

pap(7) =po(1+pr*+1r) {1+ exp[ (»— R /0 1}, (7)

po being determined by the condition on the number
of protons and neutrons, respectively, There are two
sets of four parameters (R, b, p, and £) to be varied.
Investigations of eight-dimensional surfaces are gen-
erally very much involved. The weakness of the proton-
neutron coupling simplifies the calculation, however,
since it is possible to proceed by iteration, varying
one set of parameters at each step. The convergence
is quick enough so that the final result is reached
after a small number of iterations. Within each itera-
tion, one parameter is varied while the three others
are kept fixed until the required precision is obtained
for all four parameters. As initial values one may
choose the parameters obtained for proportional
densities. Note that the parameter # is negative. There-
fore the densities are set equal to zero once they become
negative.

As far as the analytical form of our trial functions
is concerned, it is interesting to note that a so-called
three-parameter Fermi distribution is not sufficiently
general. A fourth-order term is necessary to bring
the binding energy into agreement with experiment
or to approach the solution of the differential equations
with a sufficient accuracy. However, even with a
fourth term the Fermi distribution seems to have a
too large surface thickness and is asymmetric with
respect to the point where the density reaches half
of its central value. This result was also apparent in
the differential-equation solution and has been found
by Bethe.! It is probably a property of the Thomas-
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Tasre I. Characteristic results of the variational method for separate proton and neutron densities using the theoretical saturation
curves of Ref. 4, =8, except in the case of Pb?® (b), for which n=7. Units are MeV and F. Experimental values are taken from Refs.

12-14. BE denotes total binding energy.

Present work Experimental
—BE ¥p ¥p, 0.5 lp ¥n tn —BE ¥p p, 0.5 ip
Cat 339 3.12 3.64 2.42 3.07 2.71 342 3.50 3.58 2.65
Ca® 412 3.20 3.80 2.38 3.30 2.95 416  3.49 3.74 2.30
Snié 961 4.28 5.27 222 4.34  2.65 989  4.50-4.55 5.27-5.28 2.37-2.4
Phu8
(a) 1543 5.18 6.54 2.04 5.29 2.55
1636 5.39-5.55 6.48-6.7 2.0-2.35
(b) 1582 5.18 6.61 1.95 5.30 2.35

Fermi approximation, since calculations with simple
potentials yield a more symmetric surface.!! Electron
scattering data are also fitted best by symmetric
surfaces. These anomalies are in both the proton
and neutron densities and cannot be overcome by
choosing a different analytical form for each of them.

Another convenient function has been proposed by
Bethe and Elton® and proved to yield very satisfactory
results in fitting electron scattering and muonic
x-ray data in Pb%%, For protons it is given by

po(r) =po[14p(r*/R*) ]
{1—% exp[(r—R)/n]}?,
=po(14p)% exp[—v(r—R)], (8)

Incidentally, the fourth parameter v is determined
by fitting the binding energy. We have tried a similar
expression, namely,

p(r) =po(1+pr*+ir') {1—F exp[ (r—R)/b1}.  (9)

This yields results quite comparable to those of the
modified Gaussian.

r<R
7> R.

Fic. 1. Ca®: proton (solid line) and neutron (dashed line)
density distributions obtained using the variational method and
the theoretical saturation curves of Ref. 4.

11§, A, Moszkowski (private communication).
121, A. Bethe and L. R. B. Elton, Phys. Rev. Letters 20, 745
(1967).

In order to check our model and to investigate
effects of the nonproportionality between proton and
neutron densities systematically, the energies and
densities of Ca®, Ca®, Sn'®, and Ph*® were calculated.
This choice is dictated in part by the existing experi-
mental data on charge distributions. No equivalent
data are available for neutron distributions (except
for Pb?8 as we shall see later). The results are listed
in Table I and the corresponding densities are plotted
in Figs. 1-4. We denote by 7, and 7, the rms of
the proton and neutron radius, respectively, 7os is
the half-density radius, £, and #, are the proton and
neutron surface thicknesses (defined in the usual way,
as the distance in which the density falls from 90
to 109 of the central value). The calculation has
been made for n=8; in the case of Pb*® we also quote
values corresponding to n=7 for comparison.

As we can see, the experimental situation is fairly
well reproduced by the model. The experimental
binding energies are taken from the “1964 mass table,”’
whereas data concerning the charge distributions are

0.12

0.03

Fic. 2. Ca®: proton (solid line) and neutron (dashed line)
density distributions obtained using the variational method and
the theoretical saturation curves of Ref. 4.

1 J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl.
Phys. 67, 1 (1965).
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derived from the work of Hofstadter and Collard*
as well as from Frosch ef al.’® The rms of the proton
radius is systematically smaller than experiment by
~0.3 F. The proton-size correction, which is of the order
of 0.1 F at most and is not included here, is not sufficient
to account for this discrepancy. This may, in part,
be due to the fact that the Brueckner-Coon-Dabrowski
calculation saturates nuclear matter for zero neutron
excess at a density of 2x=21.44 F~, as compared with
the experimental value of 1.36 F~! obtained from the
central density of heavy nuclei, but may also be due
to an inability of the model to reproduce the detailed
structure of the distributions.

In the case of Pb?® the change in 5 does not affect
the results very much: Lowering n from 8 to 7 increases
the binding energy and decreases the surface thick-
nesses by ~5%.

Fic. 3. Sn: proton (solid line) and neutron (dashed line)
density distributions obtained using the variational method and
the theoretical saturation curves of Ref. 4.

Finally, we would like to discuss the symmetry
energy, i.e., the variation of the binding energy against
the neutron excess within an isobaric set of nuclei.
The calculation has been performed for 4 =48, 116,
and 208 nuclei and the results are shown in Fig. 5.

The well-known parabolic shape of the function -

Egp(Z) is reproduced, but the fit to experiment is not
very good. For this reason and in order to fit the total
binding energies better, the constants in the potential
energy and the parameter n were adjusted as described
in Sec. IV. The binding energies were obtained by
solving the differential equation with the proton and
neutron densities treated separately. Figure 5 also
shows the results obtained after varying the para-
meters. One should keep in mind that the energy
differences between two isobars is small and that shell
effects are expected to be important. It is the shell

14 H. R. Collard, L. R. B. Elton, and R. Hofstadter, in Nuclear
Radii, edited by H. Schopper, Landolt-Bornstein (Springer-
Verlag, Berlin, 1967), New Series, Group I, Vol. 2.

B R. F. Frosch, R. Hofstadter, J. S. McCarthy, G. K. Nodelke,
K. J. Van Oostrum, M. R. Yearian, B. C. Clark, R. Herman, and
D. G. Ravenhall (to be published).
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Fic. 4. Pb?8: proton (solid line) and neutron (dashed line)
density distributions obtained using the variational method and
the theoretical saturation curves of Ref. 4.

closure at Z =50, for instance, which makes the binding
energy of Sn'® lower than that of Cds.

IV. DIFFERENTIAL-EQUATION METHOD

The first functional derivatives of E[p] with respect
to p.(r) and p,(r) are zero when E[p] is minimized.
These relations give directly a pair of equations, the

.4
N

(MeV)
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F16. 5. Symmetry energies: The binding energies as a function
of Z are plotted for A =48, 116, and 208 isobars. The experimental
points are the circles and crosses. The solid lines are the results
obtained with the saturation curves of Ref. 4 normalized to the
binding energy of Ca®, Sn!%, and Pb?® in each case. The dot-
dashed lines are the results without normalization obtained with
the adjusted saturation curves. The dashed lines are obtained
from the liquid-drop part of the mass formula of Myers and
Swiatecki (Ref. 2).
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“ solutions of which are the exact density functions for
minimum E[p]. In principle, therefore, the differential-
equation approach leads to better solutions than the
variational approach, since no a@ priori assumptions
about the general shape of the densities have to be
made. In practice, however, the physical boundary
conditions may be impossible to satisfy (because of
breakdown of E[p], for example) and the presence
of singularities in the equations imposes the need
for cutoffs on the solutions, introducing uncertainties
and errors.

Initially a surface symmetry energy term was
included in E[p], although it is a small contribution
to the total energy, for this leads to symmetry be-
tween p,(r) and p,(r) and allows two boundary
conditions to be imposed on each of them. The term
included was of the form

0(%2/8Mn) [V (pn—pp) I,

where 6 was a constant taken to be equal to the ratio
of the coefficient of a2in V (p, &) to V (p, 0) when p=0.2.
The differential equations to be solved are then

V2o, = (M /%) LD (pp, pu) — (1/6) F (pp, £u) ], (10)
V2o, = (M /4#?) LD (pp, pu) + (1/8) F (pp, pu) 1. (11)
The functions D and F are given by

D(pp, pn) =038(p) /3put+08(p) /0pp— (EntEp),  (12)
F(pp, pn) =08(p) /0pn—08(p) /Opp— (En—E,),  (13)

where E, and E, are Lagrange multipliers enabling
the particle number conditions to be satisfied. It was
found, however, that the solutions to the coupled
equations (10) and (11) were extremely unstable and
the boundary conditions could not be satisfied. There-
fore the surface symmetry term was dropped from
the energy functional (and added into the total energy
later as a perturbation) and the simplified set of
equations

Vo= (2M /1) D(py, pn),

F(Pp; Pn) =0

were solved instead. [In practice, it was found to be
simpler to replace Eq. (15) by a differential equation
dF/dr=0 and use F=0 as a boundary condition
at =0.] This meant that one less parameter had to
be hunted, making the solution rather easier, but also
meant that one less boundary condition could be met,
and hence that the solutions were less satisfactory.
The boundary condition that was dropped was the
condition that the derivative of p, should vanish as p,
tended to zero at the edge of the nucleus. Note that
the energy functional E[p] breaks down at the edge
of the nucleus for two reasons: (a) The Thomas-Fermi
approximation fails for low densities, and (b) at the
edge of the nucleus the neutron-to-proton ratio be-
comes very large, a tends to unity, and the potential

(14)
(15)
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V(p, @) is not accurate for large «. Indeed, a pure
neutron gas is unbound. Thus the boundary condition
at the edge of the nucleus can only approximate to
the physical condition. In this work, the boundary
condition imposed was that the derivative of the total
density should vanish at the edge of the nucleus, since
this imposes something akin to an exponential tail
on the density. However, the tails of our solutions
should only be regarded as an indication of the behavior
of the density distribution and not treated with
certainty. Indeed, the variational solution probably
reproduces this region better than the differential-
equation solution.

When solving Egs. (14) and (15), it was, of course,
also necessary to solve Poisson’s equation for the
Coulomb potential. The linearity of Poisson’s equation
means that the solutions were independent of the
assumed value of ¢¢(0); only the sum of ¢¢(r) and
(E,—E,) occurs in Eq. (15). ¢¢(0) is known when
pp(7) has been found and the total energy may be then
calculated correctly and (E,—E,) adjusted.

The three parameters p(0), £,, and E, were hunted
by using Newton’s method for three variables. For
light nuclei convergence was extremely rapid, but for
heavier nuclei, particularly those exhibiting a bottleneck
effect, reasonable starting values were found to be
necessary before convergence was obtained because of
a tendency for the bottleneck to build up. The solutions
are unstable against a rapid increase in total density
when the density rises above a certain value dictated
by E, and E,. This is almost certainly connected with
the assumed form of V(p, @) and is not a physical
instability.

As mentioned at the end of Sec. III, the binding
energies of large nuclei and the shape of the Ep(Z)
curve could not be satisfactorily reproduced with a
constant value of . Nor was it sufficient to change
simply the depth of minimum in the saturation curve.
Lowering the minimum from —15.3 to —16.3 MeV
enabled us to fit Ep for all 4 with good accuracy
with =10.8 but the dependence of £z on Z was still
incorrect. The symmetry energy? eym in V(p, @)
needed to be increased from 56 to 68 MeV to give
substantially better agreement for Ez(Z). With the
saturation curve minimum taken at —16.6 MeV and
n=12.0, then the binding energies of all nuclei could
be well reproduced. These adjusted values are interest-
ing since they do not agree with the values in the mass
formula of Myers and Swiatecki,? which are —15.5
MeV for nuclear matter and an eym of 55 MeV. More-
over, the charge distributions appear to have a worse
shape than before when compared to the experimental
data. These results are discussed in the next section.

V. DISCUSSION

The present work, together with the results recorded
in I, shows the ability of the energy-density formalism
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Taste II. Binding energies and separation energies in MeV after adjustment of the saturation curves. Experimental results and
the theoretical estimates of Myers and Swiatecki (Ref. 2) and Kohler (Ref. 18) are also shown. The shell corrections have been sub-

tracted out of the Myers-Swiatecki mass formula.

Binding energies per particle

Myers- Ep E,
) Swiatecki Present Present Present
Nucleus Expt  (liquid drop) Kohler work Expt work Expt work
(021 —7.98 —7.54 —8.75 —7.50 —12.13 —7.46 —15.67 —10.81
Cat0 —8.55 —8.47 —8.72 —8.48 —8.34 —5.44 —15.73 —12.57
Ca® —8.67 —8.62 —8.65 —15.26 —13.09 —9.93 —6.18
Sn1ié —8.53 —8.51 —8.57 —9.11 —6.90 —9.39 —8.09
Cel0 —8.39 —8.34 —7.79 —8.39 —8.01 —7.61 —9.06 —6.69
(Bai®)
Ph208 —7.87 —7.80 —7.66 —7.79 —8.04 —6.67 —7.38 —5.08
Pu2t6 —7.51 —7.50 —7.45 —6.68 —5.97 —4.00
11428 —7.12 —6.90 —4.03 —4.03
Prop. densities

11428 —7.12 —7.02 —4.05 —4.23

Separate densities

to reproduce properties of the finite nucleus. As far
as the bulk properties are concerned, namely, the
binding energy and the size and shape of the mass
distribution, the calculation can be performed to a
sufficient accuracy in assuming a constant neutron
excess. This reduction of the number of independent
variables leads to an appreciable simplification in the
minimization process. Nevertheless, details of the
proton and neutron distributions can only be studied
in varying p, and p, separately.

Tables IT and IIT compare our results with a very

recent self-consistent field calculation by Kohler.!®
Here the comparison is particularly interesting, because
Kohler is using an effective K matrix. The interaction
he used was proposed by Seyler and Blanchard,” and
was adjusted to reproduce the mass-formula param-
eters of Myers and Swiatecki? The Kohler binding
energies, however, contain a small uncertainty since
the correction for the self-consistency requirement
between the K matrix and the single-particle energies
is not included. The major differences lie in the size
of the nuclei, which is larger in the self-consistent field

TasLE III. Proton and neutron radii and surface thicknesses in F found using the revised saturation curves. Note that the surface
thicknesses are too large and the rms radii too small.

rms mass
Neutron Proton half-radius rms charge Surface thickness radius
half-radius 7p,0.5 radius 7, radius Present
Nucleus Tn,0.5 Expt Calc Expt Calc Expt Calc Kohler work
Q16 2.65 2.70-2.74 2.65 2.75-2.71 2.56 1.83-2.05 2.44 2.56 2.55
Cat 3.52 3.58 3.59 3.50 3.24 2.65 2.80 3.36 3.23
Cat 3.79 3.74 3.74 3.49 3.29 2.30 2.75 3.38
Sl 5.17 5.27-5.28 5.20 4.50-4.55 4.32 2.37-2.40 2.78 4.37
Cet0 5.54 5.55 4.56 2.69 5.08 4.62
(Bals®)
Ph2s 6.43 6.48-6.70 6.43 5.39-5.55 5.16 2.0-2.35 2.43 5.77 5.24
Puy2is 6.84 6.83 5.43 2.29 5.53
11428 7.33 7.33 5.85 2.52 5.85
Prop. densities
11428 7.37 7.37 5.81 2.10 5.90

Separate densities

16 H, S. Kohler (to be published).

7R. G. Seyler and C. H. Blanchard, Phys. Rev. 124, 227 (1961); 131, 355 (1963).
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F16. 6. Binding energies of nuclei with «=0.2 plotted against
4. The circles and upright crosses are experimental values. The
solid line shows the result obtained for proportional neutron-
proton densities with the theoretical saturation curves of Ref. 4
and 7=7.0. Also shown are the experimental values (diagonal
crosses) for Snl6, Ce40, Hg200 Pb28 and Pu?%, and the correspond-
ing calculated energies (ringed dots) obtained with the saturation
curves adjusted as described in Sec. IV and »=12.0.

calculation, and in the fact that, in contrast to the
Thomas-Fermi result, the surface of semi-infinite
nuclear matter is symmetric with respect to the
half-density point.

When the saturation curves were adjusted to obtain
better binding energies, the binding energies of two
nuclei (Ca® and Pb*®) were fitted to the liquid-drop
part of their total energy. This energy was estimated
from the empirical formula of Myers and Swiatecki,?
and Figs. 5 and 6 show the results. Tables II and III
give the new binding energies, rms charge radii, half-
density radii, and charge surface thicknesses. For 11429
the results are compared with that obtained assuming
pp and p, are proportional. It will be seen that enforcing
this condition smooths out the bottleneck effect in p,
and also flattens the charge surface, since p, now has
to extend out with p,. The binding energies of all
nuclei investigated are now in close agreement with
those of Myers and Swiatecki but we still have too large
surface thicknesses and too small rms radii. Both of
these results may be due to the fact that a statistical
density is oversmooth and that there is an insufficiently
sharp edge to the distribution. We have looked at
the possibility of obtaining better values for the rms
radii and surface thicknesses by adjusting the saturation
curves further. Estimates show that large changes
would be needed to obtain a fit to experimental data.
For example, a change of the order of 1009 in the
curvature of the minimum would be needed to improve
the surface thickness. A change of 259 in the value
of the nuclear matter density would fit the rms radii but
would make the half-radii too big. These large changes
are not justified. A shell calculation is needed to re-
produce the detailed structure of the distribution.

It is interesting to note that the surface energy
coefficient, defined as

l;sul'bAz/3 = Etot— Hooul— A Egay (PO; Of) y
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only varies between 21.3 and 18.7 MeV over all the
nuclei in Table II. The scatter can be attributed to
the approximate treatment of the symmetry contribu-
tion. In the above expression, Fcou includes both the
direct and exchange Coulomb energies and Fa(po, @)
is the minimum in the saturation curve at the ap-
propriate o [=(N—Z)/A] for the nucleus. One
should also remark that with =12.0 the gradient
energy coefficient is in close agreement with the
coefficient calculated by Bethe.! Bethe uses B=24
MeV, whereas our equivalent B is 24.9 MeV.

The neutron half-density radius is very close to the
proton half-density radius especially for the heavier
nuclei. But as will be seen from Figs. 1-4, the neutron’s
distribution extends about 0.2-0.5 F beyond the
proton’s, except for Ca® and, more generally, for
other nuclei having an equal number of protons and
neutrons. This is in agreement with K-meson absorp-
tion experiments in nuclear emulsions in which evidence
is found for the presence of a neutron excess at the
surface.!®

The energy-density formalism allows also a study
of the mean potential experienced by the last bound
nucleon as well as by a scattered particle in the static
approximation. Therefore, it should be comparable
to the usual Wood-Saxon potential. For a pure Thomas-
Fermi calculation, the nuclear potential is given by

Va,p(r) = Ey p—const py 2. (16)
The formula is no longer so simple if a gradient-type
correction is applied to the kinetic energy but is
approximately valid in the interior of the nucleus
where the density is nearly flat. V,,,(r) is not a good
shell-model potential for the deep particles but it is
at least as good as a Wood-Saxon potential and is
reasonable for the states near the Fermi surface, that
is, for the last major shell.

The experimental result that the rms proton radius
of Ca® is less than that of Ca® cannot be reproduced
by the statistical model. However, part of the shift
is seen, since the rms radius of Ca® is less than would
have been expected from an A3 law. Also, the Ca®®
proton surface thickness is less than that of Ca%, in
qualitative agreement with experiment. A calculation
of shell effects based on the V,,,(r) does not fully
account for the rest of the isotope shift.!®

It has been suggested by Nolen, Schiffer, and
Williams?® that the energy of the isobaric analog state
together with the charge radius may be used to calculate
the radius of the neutron distribution. They applied

18D, H. Davis, S. P. Lovell, M. Osejthey-Barth, J. Sacton, and
G. Schorochoff, Nucl. Phys. B1, 434 (1967); E. H. S. Burhop,
4bid. B1, 438 (1967).

B K. A. Brueckner, Wing Fai Lin, and R. J. Lombard (to be
published).

20 J. A. Nolen, Jr., J. P. Schiffer, and N. Williams, Phys. Letters
27B, 1 (1968) ; see also Ref. 21.
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their method to Pb?® and found the neutron rms
radius larger than the charge radius by 0.074-0.03) F.
This is in good agreement with our results in Table I.
On the other hand, it is to be emphasized that we find
that the proton half-density radius lies close to that
of the neutrons. This point has been discussed by
Bethe and Siemens.?

The charge densities of 0%, Caf, Sn'6, Ce*0, Pb2%,
and Pu?® are plotted in Fig. 7, giving a good outline
of the variation of the shape against the mass number.
The “wine-bottle” effect only starts around 4 =200.
A comparison of these curves with those of Figs. 1-4
shows the effect of altering the saturation curve
parameters. In Fig. 7 the lack of a tail on the charge
distributions for heavier nuclei can be seen. This
stems directly from the choice of boundary conditions
to Egs. (14) and (15).

The energy-density formalism constitutes a very
good tool for studying the existence of superheavy
nuclei. For instance, the binding energy of the 114X15:*%,
which is supposed to be the next closed- or semiclosed-
shell nucleus, is of the order of 7.0 MeV/particle.
Obviously shell effects are very important for such a
large nucleus and have to be included in order to
study the stability against spontaneous fission. Cal-
culations along this line are now in progress, together
with a study of the changes in density as the nucleus
deforms.

The shape of the distribution especially at the
surface shows that it is necessary to improve the energy
functional. The tails of our densities are shorter than
those of the Fermi-type functions used in analyzing

o‘l 2 T T T T T T T T

0.09
-3

0.0

0.03

Fi1c. 7. Charge densities of nuclei obtained using the adjusted
saturation curves. These curves should be compared with those
of Figs. 1-4. The flatter shapes result from the increased gradient
energy contribution.

21 H. A. Bethe and P. J. Siemens, Phys. Letters 27B, 549 (1968).
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electron scattering data, or, as pointed out by Bethe,!
at the point of the steepest slope, p is roughly 0.3 po,
whereas it is 0.5 po in case of a Fermi distribution. The
Thomas-Fermi approximation is known to fail for
densities lower than 0.15 po, that is, for a region which
still contains an appreciable fraction of the particle
number or, in other words, which contributes quite
significantly to the total energy. We have also seen
that this is a region of large a. In the case of Pb%®
Bethe and Elton!? have shown that both Fermi- and
Thomas-Fermi-type distributions can reproduce elec-
tron scattering and muonic x-ray data. On the other
hand, as remarked above, self-consistent field calcula-
tions favor Fermi distributions. It would be interesting
to make further investigations to get more insight
on this problem.

In summary, we have been able to reproduce the
binding energies of nuclei from a mass formula that is
fundamentally based in theory. The adjustments to
the saturation curves described above are well within
the errors inherent in the derivation of those curves
and we can proceed with confidence in the formalism.
Although our energy functional has to be improved to
reproduce the charge distributions more consistently,
the formalism has proved to be very useful in investigat-
ing nuclear structure. It can be substituted for the
Hartree-Fock approximation each time one is looking
for a gross structure rather than a microscopic de-
scription. This is the case, for instance, in heavy-ion
scattering problems, where the energy functional can
be used to calculate the scattering potential between
two heavy ions.22 How the results depend on the chosen
nucleon-nucleon interaction is mainly expressed through
the saturation curves. The Reid potential has been
used by Bethe.! His results are in qualitative agreement
with ours. However, the Reid potential does not give
enough binding energy to nuclear matter, so that
the potential energy had to be arbitrarily increased
by 209%. This gives rise to the problem of whether the
saturation curves have to be determined from a
realistic static potential, which generally does not
give enough binding energy, or from an effective
interaction. The nonlocality of the interaction could
be essential here and it would be very interesting to
repeat the calculation with a more fundamental force
based on meson-exchange theory in which the momen-
tum dependence has been introduced with some care.?

22 K. A. Brueckner, J. R. Buchler, and M. M. Kelly, Phys. Rev.
173, 944 (1968).

23 R. A. Bryan and Bruce L. Scott, Phys. Rev. 164, 1215 (1967) ;
L. Ingber, ibid. 174, 1250 (1968).



