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It has been found that the experimental order of the low levels in 22Ne, 2Mg, and 26Mg can be reproduced
by a residual interaction which has the “correct’” amount of Majorana exchange. The dependence of the level
order on the range appears to be different for the three nuclei. A change of range is more effective on the

spectra for a Gaussian than for a Yukawa interaction.

N the first half of the sd shell the only even-even
nuclei which are expected to exhibit two or more
low SU; bands (i.e., two or more bands which belong to
the lowest SU; representation) are Ne, 2Mg, Mg,
and %Mg.! The latest experimental results> on the
low spectra of 2Ne, Mg, and 2Mg are shown in Fig. 1,
columns b, d, and f (Mg has not been included owing
to the scantiness of experimental data?).

From inspection of Fig. 1 one sees that Ne and
Mg exhibit what we have called® “anomalous level
ordering,” while Mg does not; namely, the sequence
of the two lowest excited states is 2%, 4+, in 2Ne and
Mg and 2+, 2+ in 6Mg.

In this work we seek a residual interaction which can
reproduce these features.

We have shown® that in 22Ne both the increase of the
amount M of Majorana exchange and the increase of
the ratio b/a (between the harmonic oscillator length
parameter and the range of the residual interaction)
produce a shift up of the K=2 band relative to the
K=0 band. As a consequence, by carefully choosing
the parameters of the residual interaction, we were
able to reproduce the experimental order of the ?2Ne
levels.

We now have extended the scope of our investigation
to #Mg and Mg, with the further aim of finding out
whether the dependence of the level order on 4/a and
on M which we found in 2Ne is peculiar to this nucleus
or represents a general trend.

The lowest SU; representations occurring in #Ne,
Mg, and Mg are (\u)=(82), (Au)=(84), and
(M) = (10, 2), respectively.! Therefore in the lowest
SUj; representation two bands (K=0, 2) are included
for 2Ne and *Mg and three (K=0, 2, 4) for *Mg.
We have computed the energy levels belonging to these
bands with the following effective interactions:

Vi(r) =Vu(d/a)[exp(—r/a)/(r/a) JW+MP=), (1)
Va(r) = Ve (b/a) Lexp(—7*/a?) (W +M P=), (2)
where WM =1, b/a varies from 0.6 to 1.7, and M
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varies from 0.5 to 1.0. Since we had expected!s7 that
the spacing between levels would be too small for every
reasonable value of Vi, and Vo, and anyhow we were
principally interested in the order of levels (and not in
their spacing), Vo and Vo, were not considered relevant
parameters at this stage of the calculation.

Our results show that the dependence of the relative
order of the second 2+ and the first 4+ level on the
exchange factor M is analogous in all three nuclei for
both effective interactions. In all six cases, for nearly
every b/a value in the range considered, if M is suffi-
ciently large, the “inversion” occurs, i.e., the first 4+
level appears below the second 2+ level. The dependence
on M of the excitation energies of the three lowest
excited states is qualitatively described for all of the
three nuclei and for both interactions by Fig. 2 of our
previous work on #Ne. On the other hand, the de-
pendence of the level order on b/a is different for the
three nuclei: the amount of Majorana exchange M,y
necessary to produce the inversion grows with 4/a in
*Mg and in 2Mg, while in Ne the opposite feature
appears. This feature, too, is qualitatively present for
both the Yukawa and Gaussian radial interactions, but
M,y varies more slowly with 4/a in the Yukawa case
than in the Gaussian one. This is easily explained if
one remembers that the Hamiltonian can be written as?

10
H= Zl M,H,
—_
where only the M, depend on the shape of the two-body
interaction, and only M, My, and My are affected by a
change of M ; therefore, the ratio

10 7
Ru=(2.M,)/( X M)
p=38 i=1

(where the M, are computed for a Wigner force) is a
measure of the effectiveness of a change of M. Now,
when b/a ranges from 0.6 to 1.7, Ry varies from 0.50
to 0.15 for a Gaussian interaction, and only from 0.40
to 0.23 for a Yukawa interaction. In other words, in the
language recently introduced by Vincent® the relative
amount of the basic interactions (00);, (22)s, and
(22)5 is a more rapidly varying function of d/a for a
Gaussian interaction than for a Yukawa one. [(00)3,
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Tasre I. Amount of Majorana exchange sufficient to create the first 4% level lower than the second 2+ level, tabulated versus b/a.

BNe *Mg Mg

b/a Yukawa Gaussian Yukawa Gaussian Yukawa Gaussian
0.6 0.85 0.90 0.60 0.95 0.75
0.7 0.85 1.00 0.90 0.65 0.95 0.75
0.8 0.85 0.95 0.90 0.70 0.95 0.80
0.9 0.80 0.90 0.90 0.75 0.95 0.80
1.0 0.80 0.85 0.90 0.80 0.95 0.85
1.1 0.80 0.75 0.95 0.80 0.95 0.85
1.2 0.75 0.70 0.95 0.85 1.00 0.90
1.3 0.75 0.70 0.95 0.90 1.00 0.90
1.4 0.75 0.65 0.95 0.95 1.00 0.95
1.5 0.70 0.60 1.00 0.95 1.00 1.00
1.6 0.70 0.55 1.00 1.00 1.00 1.00
1.7 0.70 0.50 1.00 s

(22)sand (22)5 are the only basic interactions that have
nonzero matrix elements in an orbitally antisymmetric
two-particle state.]

All the above-mentioned features are summarized in
Table I, where M,y is given as function of 4/a for the
three nuclei, and for both a Yukawa and a Gaussian
residual interaction. From Table I one can immediately
pick up the parameters of those residual interactions
which satisfy our requirements.

The following are the allowed parameters for (a) a
Yukawa interaction, and (b) a Gaussian interaction:

(a) M=0.90 b/a=0.6,0.7,0.8,0.9, 1.0,
M=095 bla=12,1.3,14,
(b) M=080 b/a=1.1,
M=085 bla=1.2,
M=095  b/a=1.5.
MeV

6~

6.00

In Fig. 1 we report the spectra calculated from 2Ne,
Mg, and Mg with that interaction which meets our
requirements and has the lowest M. The spectra for the
other eleven allowed cases are very similar. We choose
Voe=068 MeV; this is the strength required to reproduce
the excitation energy of the first 2+ 20Ne level with
b/a=1.1. 1t is apparent from Fig. 1 that for Mg the
order of the five lowest-excited levels is correctly repro-
duced, while for ?Ne and Mg the order is correct only
for the three lowest and the two lowest-excited states,
respectively. The experimental Mg 0+ level at 3.58
MeV obviously does not belong to the lowest SU,
representation. The corresponding level in Mg is much
higher (6.44 MeV); this fact is a further indication that
the SU; basis is better for Mg than for 2Mg.

Let us now check our assumptions. To confine the
basis to the lowest SU; representation is too restrictive
an assumption, as has been pointed out repeatedly.}:6.7:9

Fic. 1. The two lowest bands in 22Ne,
Mg, and #*Mg. (a), (c), and (e)—
Gaussian interaction with b/a= 1.1, M=
0.8, and V;=68 MeV, respectively.

(b)

exp.

(a)

theor.

(c)
theor.

(d)
exp,
2Ne Mg
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Our underlying assumption has been that configuration
mixing would improve the spacing, but not change the
order of levels. This has now been conclusively proved
by Wathne and Engeland in the Mg case.® They
found that by gradually expanding the basis, the same
order (the wrong one) consistently appears in the 2#Mg
low levels, while the spacing is almost doubled. (The
calculation was made with a Gaussian Rosenfeld
potential.) As for the effective interaction, the main
unorthodox feature in our assumption is the dropping of
both the spin and the isotopic spin exchange. This

0 K. Wathne and T. Engeland, Nucl. Phys. A94, 129 (1967).
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assumption is however not so unrealistic as it may
seem, since it is based on recent theoretical results of
Parikh and Bhatt.® Their analysis of the effective
residual interaction of Kuo and Brown!! showed that
the latter’s matrix elements have in fact a Majorana
exchange character. Finally the strength of the effective
interaction has been derived from the excitation energy
of the first excited ¥Ne state because detailed calcula-
tions show!?:3 that this value is hardly affected by con-
figuration mixing.
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The total energies of finite nuclei are expressed as a functional E[pp, pa] of the local proton and
neutron densities p, and p,. The binding energies and densities of any nucleus are found by minimizing
E[pp, pn] with respect to pp and p, separately. The potential-energy functional is initially derived from
a nuclear matter calculation but later adjusted to reproduce experimental binding energies. Results for
light nuclei have already been reported, and here the calculation is extended to medium and heavy nuclei.
Binding energies and mean radii are well reproduced but surface thicknesses are too large and rms radii

too small.

I. INTRODUCTION

HE idea of deriving bulk properties of nuclei by
means of statistical methods goes back to the earlier
days of nuclear physics. The main task consists of
reproducing the binding energies, the sizes, and the
shapes of nuclei without appealing to a microscopic
description. Remarkable results have already been
recorded within the framework of the Thomas-Fermi
approximation using simple nuclear forces. Improve-
ments in our understanding of the nucleon-nucleon
interactions, as well as in the description of many-
fermion systems, allow us to accomplish the program
with greater accuracy and more confidence in the
theoretical background. The Thomas-Fermi theory,
for instance, has been recently reviewed in detail by
Bethe,! assuming realistic nuclear forces with a re-
pulsive core, which ensured its validity in the nuclear
case.
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The presence of a shell structure may well require
the use of Hartree-Fock-like theories rather than
statistical approaches. This is obviously the case for
observables strongly depending on single-particle
states. As an example, the shell-model potential
experienced by a particle inside the nucleus is hardly
given by a statistical expression. Nevertheless, solving
Hartree-Fock-type equations results in a tedious
computation, especially if use is made of a realistic
two-body force, for which the Brueckner-Goldstone
formalism has to be introduced. Thus, it remains
worthwhile to derive general properties by means of
more practical methods.

Another reason for dealing with statistical theories
has been pointed out by Myers and Swiatecki.? It is
essential to separate liquid-drop and shell effects in
the semiempirical mass formula, in order to extrapolate
the mass formula and to investigate heavy and super-
heavy nuclei. Higher-order corrections to the usual
Bethe-Weizsiicker expression, arising from the surface
symmetry energy, curvature effects, or exchange
Coulomb energy, are difficult to extract from the actual
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