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The energy-density formalism is applied to the study of the isotope shift of nuclear charge distributions. It
allows us to determine the part of the shift due to a statistical change in the proton densities. The study is
improved by a shell-model calculation based on the Thomas-Fermi potential. The charge distributions are in
relatively good agreement with experiment. However, the present model cannot reproduce the part of the
shift due to nonmonotonic changes in charge distributions. These nonmonotonic effects are of a more com-
plicated origin; they are of the same order of magnitude as the statistical shifts. In the case of the
pair of Ca"-Ca" our results are consistent with shifts calculated in self-consistent (Hartree-Pock) methods.

I. INTRODUCTION

iHK accuracy of experiments on charge distribu-. tions in nuclei by means of muonic x rays and elec-
tron scattering has been improved greatly in recent
years. ' Density expressions with parameters adjusted
for the best fit to experimental results indicate that
changes in charge distributions of isotopes deviate
from the A"' law and show nonmonotonic variations
with the mass number.

Several recent calculations have attempted to explain
isotope shifts on the basis of the nuclear shell model. ~

Phenomenological potentials have been used with
parameters chosen so as to yield the known shell
structure, the binding energies of the last few nucleons,
and the best fit to the electron-scattering data, taking
density distributions based on single-particle wave
functions. Various refinements of the calculations have
been reported, but they are all empirical to some extent.

The energy-density formalism developed by Brueck-
ner et al.' provides a practical method for studying
variations in shape and size of proton and neutron
distributions as a function of N and Z. Obviously a
statistical approach is not supposed to reproduce non-
monotonic effects which originate from the shell struc-
ture and correlations between the nucleons. However,
the method allows the precise estimation of the isotope
shift due to statistical changes in the mean potential
and separates it from contributions having a more
complex origin.

On the other hand, the statistical theory can be
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(1966);L. R. B.Elton, Phys. Rev. 158, 970 (1967);B.F. Gibson
and K. J. van Oostrum, Nucl. Phys. A90, 159 (1967};H. A.
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'K. A. Brueckner et al , Phys. Rev. 1'71, 1. 188 (1968); 173,
944 (1968).

II. DENSITY DISTRIBUTIONS FROM
STATISTICAL THEORY

The main purpose of the energy-density formalism
is to replace the set of self-consistent equations de-

scribing the ground state of a many-nucleon system by
a functional E[p(r) j of the local density p(r). A
detailed derivation of the functional is given in pre-
vious papers, ' so we merely want to outline its form:

&[p]= &[p(r) ]d'r,

&[ph=-'(&'/2') (-'~') "I{-'[(~—~)"'+(~+~)'"jIp'"

+PV (P, n) + ', eP„rP, 0 738-6e'Po4"—+ .(fis/SM) rt (V'P) ',

with p(r) =p, (r)+p„(r).
The densities are subject to the conditions

p„(r)d'r =Z, p„(r) der =N.

improved by a shell-model calculation in which the
shell-model potential is approximated by the Thomas-
Fermi potential. Strictly speaking, this is the potential
experienced by the last bound nucleon. However, as
we shall see in Sec. III, this approximation turns out
to be sufhcient for the states lying within one to two
major shells from the Fermi surface. In other words,
it is certainly as good as any phenomenological Woods-
Saxon potential and the statistical theory yields, at
least, reliable predictions of the variations of the poten-
tial from one nucleus to the other.

Isotope shifts have been calculated for three pairs
of isotopes, namely, Ca"-Ca", Sn'"-Sn"4, and Pb"'-
Pb"'. This choice is dictated partly by existing experi-
mental data. The above shifts are small; it is easier to
study cases with a large difference in the neutron
number. The results will be compared with experimental
data and discussed in Sec. IV.
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The neutron excess is defined as

(3)

The first term in the functional represents the KE.
The potential energy is expressed by the second term,
which is directly derived from a nuclear-matter cal-
culation with variable neutron excess by Brueckner et
al.' It should be noticed that the results may depend
on the nuclear-matter calculation. However, it lies
outside the scope of the present work to study this
dependence, and we therefore restrict outselves to the
case of the Brueckner-Gammel-Thaler potential used
in Ref. 4, which has been proved to be very successful
in deriving gross properties of nuclei. The third and the
fourth terms are the Coulomb and the exchange Cou-
lomb energy, respectively, p, being the Coulomb
potential. The last term takes care of the finite range
of the nuclear force. There is some arbitrariness in the
choice of the parameter g, which is fixed to give an
experimental binding energy. In the present case the
criterion is the binding energy of Ca". However, iso-
topic changes of charge distributions are not sensitive
to variation of q over a reasonable range.

The ground-state density is obtained in seeking the
two functions p„(r) and p„(r) minimizing expression
(1). The problem can be solved either in considering
the Lagrange-type differential equations associated
with (1) or variationally using convenient trial func-
tions for po(r) and p„(r). It was shown in Ref. 3 that
the closest agreement with the solutions of the differ-
ential equations is obtained with the so-called modified
Gaussian distributions multiplied by third- (or fourth-)
order polynomials:

p (r) =po(1+pr'+tr') I 1+exp[(r' —R')/8'$ I
'. (4)

Other functions such as the so-called three-parameter
Fermi distributions, for instance, are insufficiently
general. The variational method consists of seeking the
two sets of parameters (E, 8, p, t) giving the largest
binding energy. It is interesting to note that a small
negative value of the parameter t is needed, because in
the Thomas-Fermi approximation the density which
minimizes the energy functional has to have its point
of steepest slope at a larger radius than the half-density
point. The constants po„and po„are determined by the
conditions on the numbers of protons and neutrons,
respectively.

The proton and neutron distributions have been cal-
culated for Ca 7 Ca

p
Sn", Sn"4 Pb'0', and Pb"8. For

Ca and Sn isotopes, q has been set equal to 8, whereas
for Pb a slightly lower value, namely, 7.5, has been
used. An r' term in the polynomial is used for the Ca
isotopes, which is replaced by r' for the Sn and Pb.

' K. A. BrUeekner et at. , Phys. Rev. 168, 1184 (&968).

TABLE I. Results of the energy-density formalism obtained
with modihed Gaussian distributions. A third-order polynomial
is used for the Ca isotopes, whereas in the case of Sn and Pb
the r' term is replaced by r4. The parameter g is chosen to be 8
for Ca and Sn and 7.5 for Pb. Comparison is made witb experi-
mental charge distributions of the Fermi type.

(a) Theory Experiment

Ca40

Ca4'

Sn"6

Sn'"

Sn124

Pb"'

Pb208

3.640

3.805

5.270

6.540

6.605

2.42

2.38

2.22

2.22

1.95

1.95

ro.5

3.58

3.74

5.28

5.32

5.44

6.7

2.65

2.30

2.37

2.53

2.37

2.0

(b)

Ca40 Ca'

Sn116 Sn124

Pb202 Pb208

Experiment

4. 4'%%uo

ar = thoro. &/ro. s

Statistical
theory

4. 5%%uo

2. 2%%uo

a 1~»aw

6 3'%%uo

2.2%

& O%%uo

The corresponding proton distributions are plotted in
Fig. 1.The results are also expressed in terms of proton
half-density radius r05 and proton surface thickness 5

(defined as the distance over which the density drops
from 90% to 10% of its central value) . They are sum-
marized in Table I (a) and compared to the experimental
data. As we can see the agreement is satisfactory al-
though the surface thicknesses are 5—10% too small,
except in the case of Ca~. In the case of Ca isotopes,
the change in the surface thickness t is about half of
its experimental value.

It is interesting to compare the relative changes in
the half-density radii with the predictions of the A'~'
law. In this later case, the half-density radius is given
by

r —r Ai/3

where ro is a constant. According to this, the relative
change in r0.5, defined as

hr = Aro. s/ro. s "&= (As'"—A '")/A 't'

is independent of ro. The different values are given in
Table I(b). Apart from the Ca case, the statistical
theory yields results for Ar in close agreement with the
A'~' law. This can be understood in light of earlier
results on half-density radii. Except for a dip in the
40—60 mass region, as found in experiments, r0.5 from
statistical theory obeys an A' t" law rather well. ' This
follows from the fact that an increase in the radius of
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Fzo. $. Nucleon densities for isotopes of Ca, Sn, and Pb. In each figure, curve I is the proton density from statistical theory (see also
the caption of Table I), while curves 2 and 3 are the shell-model proton and mass densities, respectively.

the neutron distribution increases the radius of the
nuclear potential seen by a proton, thus causing a
very nearly comparable increase in the radius of the
proton distribution.

The rms radii of proton distributions r„are very
sensitive to the tails of the distributions. Therefore, the
statistical theory is not suitable to study small changes

in r„. This quantity will be discussed in more detail in
the shell-model estimate.

III. SHELL EFFECTS

The next step towards a better understanding of the
isotope shift of nuclear charge distributions consists
in taking into account the shell structure. This will be
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TABLE II. Comparison of calculated eigenvalues (in MeV) of a few states close to Fermi surface of Ca40

with results from ML' and experiments. b ) =30.

State
This paper

Neutron Proton
ML

Neutron Proton
Experimental

Neutron Proton

id 5/2

2$y/2

idk/2

—15.91
—14.31
—8.94

—8.55

—6.45

—1.88

—20.08 —12.74 —17.5
—14.8
—12.6

—10.3
—7.6
—5.5 —15.63

—8.36

—8.34

—1.08

—21.78 —14.69

—18.10 —10.87

a Reference 6. b Reference 7.

done here in a simple way; the shell-model average
field is approximated by the Thomas-Fermi potential,
and the densities are obtained by adding the corre-
sponding single-particle densities.

A. Shell-Model Potential

The mean potential U„(r) [U~(r)] experienced by
the last bound neutron (proton) is given by the func-
tional derivative of the total potential energy with
respect to p„(r) [p~(r) ].The corresponding shell-model
potential V„(r) [V„(r)] is obtained by adding a
Thomas-type spin-orbit term with a strength param-
eter 'A, e.g.,

V„(r) = U (r) —Xrs(5/mc)'(1/r) (8/rlr) U„(r) 1.s, (7)

where the factor fr/mc is the nucleon Compton wave-
length. The same strength parameter X has been used
for both neutrons and protons. Its value is taken to be
30 in order to give a good fit to the available experi-
mental data on separation energies, level sequences,
spin-orbit splittings, and level spacings for the states

close to the Fermi surface, namely, the single-particle
energies in Ca", Ca ', and Pb"'. This choice is consistent
with values used in previous calculations based on
Woods-Saxon potentials. '

The statistical theory breaks down at low density.
In order to get rid of this difFiculty a potential tail of
Woods-Saxon form is 6tted to U„(r), [U~(r) —eP,+
~(0.7386e')p~'is, i.e., the nuclear well for a proton],
when p„(r) is less than 0.15&&p„(0), the first two deriva-
tives of the potential being made continuous. Since
isotopic shifts are small and since proton densities
usually vanish more quickly than neutron densities,
it is essential to have the proton wells of each isotopic
pair fitted with tails at approximately equal proton
densities. Typical results, the potentials for Ca4' and
Pb'", are shown in Fig. 2.

The calculated energy eigenvalues are given in
Tables II—V. Comparisons with results from other
calculations, e.g. , Masterson and I.ockett, ' and with
experiment7 are made when possible. We stay in the
local-field approximation and ignore the state depend-
ence of the shell-model potential, a point which we shall

20-

IO-
V(r)

(NieV)

0
I

r (fm) IO
This paper Experimental

TAsLz III. Comparison of calculated eigenvalues (in Me&, )
of a few states close to Fermi surface of Ca ' with results from
experiments. ' P =30.

"IO State Neutron Proton Neutron Proton

-20

-50

"40

"50

1Ch/2

if7/2

2Pk/2

~ Reference 7.

—14.54

—8.99
—4. 16

—13.25

—8.36

—12.40

9 94

—5.14

—15.26

—9.62

"60—

FIG. 2. S-state neutron and proton single-particle potentials
for Ca' and Pb 08. Dashed curves are proton nuclear wells. The
increase in potential depth for protons is the result of the sym-
metry terms in the energy density, the protons interacting strongly
with the excess neutrons.

' See, e.g. , A. A. Ross, H. Mark, and R. D. Lawson, Phys. Rev.
102, 1613 (1956); M. Blomquist and M. Wahlborn, Arkiv Fysik
16, 545 (1965); M. Bleuler, M. Beiner, and M. de Tourreil,
Nuovo Cimento 52, 45 (1967).

6 K. S. Masterson, Jr., and A. M. Lockett, Phys. Rev. 129, 776
(1963).

See 1VNclear Data Sheets Lcompiled by K. Way et al. (Academic
Press Inc. , New York, 1965)$ as well as G. Sartoris and L. Zamick
LPhys. Rev. 167, 1035 (1968)g for levels in Ca4'.
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TABLE IV. Comparison of calculated eigenvalues (in MeV) of a few states close to Fermi surface of Pb"'
with results from Ml, and experiments. & X =30.

State

This pap.er

Neutron Pro ton Neutron Proton

Experimental

Neutron Proton

1hll /2

1hg/2

2/7/2

3p3/9

2/5n

3pl/2

2gg/2

—17.05

—17.88

—17.72

—12.08

—12.14

—9 ~ 79

—9.54

—9.15

—8.34

—4.41

—7.41

—6.40

—6.02

—1.38

21 ~ 2

—22.6

—22. 5

—15.6
—13.5
—9.2

—10.9
—10.3
—8.8

—8.9
—10.4
—9.7

—9.16

—8.39
—8.05

—7.38
—3.94

—9.37

—8.53

—8.03

—3.77

~ Reference 6. "Reference 7.

return to in Sec. IV. Nevertheless the results show that
the above approximation is sufFicient for states close to
the Fermi surface, while the potential energy is too low
for the deeper states.

The choice of A. and the potential matching point are
subject to some arbitrariness. However, we have
verified that the energy eigenvalues, rms radii of den-
sities, and isotope shifts are not sensitive to these uncer-
tainties. This implies that the low-density part has now
been established with enough accuracy which is par-
ticularly important when comparing the rrns radii of
charge distribution r, . The level sequencies are affected
when level separations are small.

B. Shell-Model Densites

Shell-model neutron and proton densities are ob-
tained by adding single-particle contributions. In cases
where the neutron subshells are not completely filled,
as in Sn"4 a,nd Pb', we make an angular average to
obtain the radial neutron densities. Proton and mass
distributions calculated in the present work are plotted
in Fig. 1. In the proton case, the results of the energy-
density formalism are also plotted for comparison. It
can be seen that the results from the two approaches
are consistent with each other: The statistical density
is averaging the single-particle estimate. The corre-
sponding charge distributions result from folding the
finite distribution of the proton:

The calculated and experimental values are given
in Table VI.

IV. DISCUSSION

TAax, E V. Calculated eigenvalues (in MeV} of a few states
close to Fermi surface of Pb'". X=30.

Neutron
state Eigenvalue

Proton
state Eigenvalue

The energy-density formalism enables us to cal-
culate that part of the isotope shift arising from a
statistical change in proton distributions. Nonmono-
tonic effects appear to be of the same order of magni-
tude. They have a different origin and require a more
sophisticated theory.

The shell-model calculations based on the Thomas-
Fermi potential confirm the results obtained directly
from the energy-density formalism. As far as the rms
radii of the proton distributions are concerned, this
is necessary to remove the uncertainties related to the
tails of the distributions.

Because of the omission of the state dependence of
the shell-model potential, we expect the total shell-
model density distributions to be less accurate than
the changes in density. Thus the calculated isotope
shifts should be dependable, since the effect relies to a
large extent on the change in density distributions due

pr (r) =w sl'ap ' exp( —rs/up'),

(with ar ——0.65 fm) into the distribution of proton
centers in the nuclei. '

s L. R. B. Elton and A. Swift, Nucl. Phys. A94, 52 (1967).

1hg/2

1&I3/2

3p3/2

—11.89

—9.66

—9 59
—9.12

2d5/2

1hII/2

2d3/2

3$I/2

—7.35

—6.21

—5.13

—4. 78
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TABLE Vl. Shell-model rms proton r„, mass r, and charge r. radii (in fm) are compared with
results from statistical theory and experiments (see also Ref. 9).

Statistical theory Shell model Experimental

Nucleus

Ca4'

Ca 8

Sn~@

Sn 124

Pb2os

Pb208

3.12 3.11

3.20 3.25

4.28 4.31

4.34 4.40

5.16 5.20

5.20 5 ' 25

3.200

4.354 4.385 4.427

4.384 4.448 4.455

5.199 5.278 5.260

5.224 5.311 5.284

3.185 3.298)

3.225 3.353 3.322
0.73%

0.63%

0.46%

3.50 3.41'

49b 3 39c

4 55b 4.50d

4.67b 4.60d

5.49b

sr./r,

—0.3%b

—0.6%'

2 6%b

2.2%"

A "8scaling

6.3%

2.2

1.0

~ Reference 1.
Corresponds to Fermi distributions.

Corresponds to Woods-Saxon distributions.
Corresponds to Gaussian distributions.

to few upper states for which our potentials should be
suKciently accurate.

The calculated values of the rms radii are summarized
in Table VI together with the experimental results and
the predictions of A"' scaling. The shell-model pre-
dictions give considerably smaller radius increases than
the 2'l' scaling, particularly for Ca"-Ca", where the
calculation gives a small increase (0.73%), while A"'
scaling gives 6.3%%uo. This result agrees qualitatively with
the experimental result which actually gives a slight
decrease in rms radius of the charge distribution. 9 The
shell-model prediction of +0.63% for the tin isotope
pair, which again is considerably less than the A'1"

scaling (2.2%), now disagrees with the experimental
result which in this case follows the 2"' scaling closely. '
The prediction for the lead isotopes is also for con-
siderably less increase in rms radius than from 3'I'
scaling. No results are available, however, for the iso-

tope pair considered, although Anderson et al'." found
a negative hr, (rms) (defined similar to Eq. (6)j in

going from Pb'o' to Pb 0 a result which has been. con-
firmed by Khrlich et cl."

Adjusting the nuclear-matter saturation curve to
obtain more consistent binding energies gives statistical
theory results slightly different from those used above,
as reported by Brueckner et al.' With these new results,
the shell-model calculations have been repeated for the
Ca isotopes, giving an isotopic shift close to that
reported above.

' R. F. Frosch, R. Hofstadter, J. S. McCarthy, G. K. Noldeke,
K. J. van Oostrum, M. R. Yearian, B.C. Clark, R. Herman, and
D. G. Ravenhall (unpublished); earlier results are found in Ref, i."P. Barreau and J.B.Bellicard, Phys. Letters 25B, 470 (1967).

"H. L. Anderson, R. J. McKee, C. K. Hargrove, and E. P.
Hincks, Phys. Rev. Letters 10, 434 (1966)."R.D. Ehrlich, D. Fryberger, D. A. Jensen, C. Nissim-Sabat,
R. J. Powers, B. A. Sherwood, and V. L. Telegdi, Phys. Rev.
Letters 18, 959 (1967);Phys. Letters 23, 468 (1966).

As we have already said in Sec. I, the statistical theory
can only determine the isotope shift due to statistical
changes in the mean potential. Nonmonotonic varia-
tions have a more complex origin, and apparently are
not given with sufFicient accuracy by the improvement
over the statistical method resulting from the calcula-
tion of the single-particle states in the Fermi-Thomas
field. Our results, in fact, mainly confirm and improve
the statistical results. Actually both calculations of the
rms radii are close to each other. Thus the origin of
isotope shifts appears to lie in details of the nuclear
potential and of nucleon correlations outside of the
scope of the present simplified theory.

The weak point in the formalism is that the shell
structure is not taken into account in determining the
shell-model potential. This, of course, is the basic
failure of the energy-density formalism. From this
point of view, it is interesting to compare with other
self-consistent calculations. In fact, the Ca"-Ca"
isotope shift has become a challenge, and various
authors have tried to reproduce the negative hr, (rms) .
Using a Hartree-Fock calculation developed on a har-
monic-oscillator basis, Tarbutton and Davis" get
+1.0%. Other self-consistent calculations based on
simple effective interactions yield equivalent results,
namely, +1.7%%uo for Kohlerr4 and +1.2% for Pires et al."
In contrast, a Hartree-Fock calculation using the
Tabakin potential, without a Coulomb force, gives—6.5% "; including the Coulomb potential should not
affect the main feature of this result.

"R.M. Tarbutton and K. T. R. Davis, Nucl. Phys. A120, 1
(1968).

'4 H. S. Kohler (private communication) .
'5P. Pires, R. de Tourreil, D. Vautherin, and M. Veneroni,

Contribution to the Dubna Symposium on Nuclear Structure,
1968 (unpublished) ."J.P. Svenne (private communication).


