
PHYSICAL REVIEW VOLUME 181, NUMBER 4 20 MAY 1969

Coulomb Forces in the Three-Body Problem*
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(Received 28 December 1968)

The Faddeev-Lovelace equations, describing three particles interacting via short-range separable poten-
tials, are modi6ed to include the case in which two of the particles are charged. The three-body amplitudes
are split into pure Coulomb and Coulomb-distorted amplitudes, and a set of integral equations similar to
Lovelace's are obtained for the Coulomb-distorted amplitudes. The pure Coulomb contributions are taken
to be zero for rearrangement channels and are approximated by two-body Coulomb amplitudes for the elastic
scattering channel. Numerical results for deuteron-induced reactions on "0are compared with experimental
data, with encouraging results.

I. INTRODUCTION In the case considered the three-body breakup
channel is ignored, and the nuclear forces are assumed
to be separable. Form factors of the Hulthen form are
used, and the bound pairs are assumed to have l=o
bound states only. The formalism is based on an
approximate form for the Coulomb wave function
in momentum space originally suggested by Guth and
Mullin and used by Schulman' (hereafter the GMS
approximation). A set of equations similar to that ob-
tained by Lovelace~ is developed with the resulting
advantage of dealing directly with the scattering
amplitudes.

A convention used by Noble' is adopted to avoid
the difhculties encountered in using the Coulomb force
in a Lippmann-Schwinger (LS) type of equation. '
This treats the Coulomb potentials as though they
were cut off at a distance much larger than the ranges
of the other interactions involved in the problem.
After obtaining the final equations, this cutoff radius is
allowed to become arbitrarily large.

It is convenient to rewrite the two-body operators
modified by the Coulomb force using the GMS ap-
proximation for the Coulomb wave function, and this is
done in Sec. II. Section III deals with the Faddeev-
Lovelace equations for this case and their reduction to a
convenient form for computation. In Sec. IV some of
the matrix elements are shown explicitly, and Sec. V
deals with the numerical method. Application of the
resulting formalism to the d-"0 system is given in
Sec. VI.

S EVERAL treatments' ' of the three-body problem
which include the Coulomb force have recently

appeared in the literature. In one of these, Nutt' con-
sidered the case in which three charged particles
interact only via Coulomb forces. This requires a
knowledge of the two-body Coulomb T matrix off the
energy shell. Although in some special cases, such as
that in which one particle is much heavier than the
other two, it can be reduced to a manageable form, this
is a complex mathematical entity and the general case
seems to be intractable at present.

The Coulomb force is encountered in a simpler way,
however, in the case in which the three particles are
strongly interacting with only two of them charged.
Although the Faddeev kernels still contain the two-body
Coulomb T matrix in this case, there exists the possi-
bility of dealing with it if the charge number is low by
replacing it with the Coulomb potential. ' ' Another
possibility in this case is to redefine'' the three-body
scattering amplitudes in such a way that they do not
contain pure Coulomb contributions and solve the
three-body equations with the understanding that
Rutherford. -type terms are ignored.

The objective of the present paper is to begin
with a standard definition of the scattering amplitudes
and then systematically eliminate the pure Coulomb
contributions from the final three-body equations.
Three-body amplitudes obtained by solving these
equations will then be added to the pure Coulomb
amplitudes to obtain the final form. It is believed that
this procedure is more instructive than defining
directly the three-body scattering amplitudes which
are free of the pure Coulomb contributions.

II. TWO-BODY OPERATORS AND THE COULOMB
GREEN'S FUNCTION
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The system considered consists of two charged and
one neutral particle in which one pair is always bound,
so that the breakup channel is ignored. Let the charged
particles be labeled 1 and 2 and the neutral 3. Denote
the pair interactions by V&, V2, and V3, where V =
Vs~, rr, P, y= 1, 2, 3, is the nuclear interaction between
particles P and y. Following Noble, ' the total Hamil-
tonian H is
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where U is the Coulomb potential between particles
1 and 2, and

V= Vl+ V2+ Vs. (2)

Using the kinematic system of Lovelace, 7 the c.m.
momentum of the (2, 3) subsystem is

pl= {&2Imsms(ms+ms) $'"I 'I msks —msksf (3)

and the momentum of particle 1 relative to the (2, 3)
subsystem is

ql ——{V2I ml (ms/ms) (m]+ms+ms) ]' 'I

where p, is the reduced mass, Z& and Z2 are the charge
numbers of the (1, 2) pair, and

I C(k) I' is the barrier
penetration factor. Thus use(p) can be replaced by
C(k) S(k—p) whenever it occurs in the integrand:

y;(p) C(k) S(k—p). (13)

This approximation is valid only if f(p) is square-
integrable, but it will only be used with functions of the
Hulthen type for which the criterion is always satisfied.
Using it, the Coulomb Green's-function matrix element
in (10) can be replaced by

XLml(ks+ks) —(ms+ms) kQ, (4) (p, q IG"(s) lp', q'&

(14)
s(q, —q.)s(p —p) I c(p) I'

ps'+ps' —S
where m~, m~, and m3 are the masses and k~, k2, and ks
are the momenta of the three particles in the c.m. of
the three-body system. Then the c.m. kinetic energy of
the system is In the presence of the Coulomb field, the two-

particle amplitudes in the three-particle Hilbert space
which will be needed are defined as

T (S)—= V +V G ~(s) V,
which satisfies

(6)

(7) where
(16)T (S)—=V+V Gee(s) T (S),

Gs(s) =(Rj)—S) '
G ~(s) =(Hs+V+U S) '. —(17)

II0 Pl +gl . (5)

Other sets of momenta may be obtained by cyclic
permutation of (3) and (4).

Define the operators

G(S) =(H—S) '

Gse(s) =(Hs+U —S) '. (8)

Because particle 3 is neutral, its momentum is conserved
in the pure Coulomb field, so that in the "third-particle
coordinates" in momentum space

(p, q IG"(S) I
ps', qs')

=S(q,'—q, ) (p, I G,&(S—
qs ) I p, '). (9)

Using the spectral resolution of Gse(s), Eq. (9) can be
written

(p„q, I G.o(S)
I p, ', q, ')=S(q, '—q, )

d'k(ps
I
A') Qs'

I
ps')

ass+ ks —$
where (p I

&so) is the Coulomb wave function in mo-

mentum space. This simple 8-function factoring for q3

is true only in the (ps, qs) set; consequently the matrix
elements of the Coulomb Green's function should be
taken in that set and then transformed into the desired
set of coordinates by use of closure.

The GMS' approximation for the Coulomb wave
function is that

p pd —k It; pd = k p x'

where use(r) is the Coulomb wave function in configura-
tion space. At the origin

22rpesZlZ2/k

r" (S) =LA '+r (S)g ',

r-(S) =&
I
Go'(S) I )

(20)

(21)

The form (19) is chosen on the assumption that the
pair 0. possesses only one bound state.

The relation

(p., q. I
T.(s) I p.', q.')

=S(q-—q-') (p- I 4(s—v-')
I
p-') (22)

is exact for &x=3, while for o.=1, 2 it is true only under
the GMS approximation (13).Taking the form factor
to be of the Hulthen type, '

(~ I
p-)—=a-(p-) =&-/(p-'+l -'), (23)

and the matrix element in (22) then can be evaluated
explicitly. Thus only the matrix element of r (S) is
needed for (18) and (20).

For +=3,

(q lr(s) lq')=—S(q' —q)r(s;q)
lg'(k) I',

=8(qs' —qs) d'k, (24)
k2+g 2

2 Y. Yamaguehi, Phys. Rev. 95, 1628 t19S4).

If the nuclear potential is separable, (16) can be solved
exactly to give

T.(S) =
I es&r (S) (n I, (18)

where the caret indicates a two-body Hilbert-space
operator,

(19)
and
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where use has been made of (10). Using (23),

gs'(k) = gs(P) 0"(p)d'P,

and this can be evaluated explicitly, giving"

amplitudes on the energy shell, and consequently only
U p+(S) will be considered.

A generalization of Lovelace's equations to the case of
particles 1 and 2 charged and particle 3 neutral can be
accomplished by the replacement

gsc(k) =gs(k) Cs(ri) expL2ri tan '(kris ') ), (26) Vs~Vs+ U, (39)

with
7i =e'ZiZ, p/k. (27)

For 0.=1, 2 the integrations in the matrix elements of
r (S) can be carried out explicitly using the GMS
approximation (13) to give

&q- I r-(S) I
q-'&

=)(q.'—q.)r.(S; q.)

I g-(P-) I'G'(I v p-+v q-I) d,
p s~q s

where

U =(1—h~s) U (41)

and G(s) is defined by (1) and (6). The channel wave
functions become the solutions of

(&o+Vv+ "ovsU)
I xv) =E

I x.& (42)

For separable nuclear potentials the solutions of (42)
can be written explicitly. Using (19), Eq. (42) takes
the form

where U is the Coulomb potential and V3 the nuclear
potential. Using (39), Eq. (34) takes the form

U.,+(S) =(U.+V.) —(U.+V.)G(S) (V,+U,), (40)

where

with

/M M) ( M/M M) (H'+3"U E) Ix'& X'I 7)&vlx')
29

For y&3 this possesses the solution"

M =mt+rirs+ms, (30)
I x.&= —Go(E)

I v&, (44)

III. FADDEEV EQUATIONS

Denoting by p the channel in which particle p is
free, Lovelace7 defines the transition amplitude between
channels n and P on the energy shell to be

&- (S) = &x- I
U-+(S) I xp) (33)

where
U p+(S) =V —V G(s) Vp,

U p (S) = Vp —V G(S) Vp, (35)

V~= V—V~,

with
I x~) being the channel wave function, i.e.,

(&a+ V-) I x-& =E
I x-),

(36)

(37)

S=E+ie. (38)

The limit e~0 is understood in (33). Though the
operators U p+(S) and U p (S) possess diferent
off-shell extensions, they yield the same scattering

"D. R. Harrington, Phys. Rev. 139, 8691 (1965).

where m is the mass of particle n. The parameter X is
chosen to be

X '= —r (q' —E;q).
Expressions (24), (28), and (31) show that the
propagator (21) can be written

q I" (S) Iq'&=&q IL& IG,c(S)Go(q' —E) I~&

y(s—q. —E.) $-'
I q.'&, =1, 2, 3. (32)

and for y=3
I

xs&= —Go'(E) I 3), (43)

with Goo(E) defined by (8). Solutions (44) and (45)
are valid provided that

~,&~ I G.(E) I7)=-1 (46)

for y=1, 2, and

),&3 I G, (E) I 3&=—1 (47)

for p=3. This can be demonstrated by direct substitu-
tion in (43).

Equation (40) can be transformed in a straight-
forward manner into a set of coupled integral equations
similar to that obtained by Lovelace. ~ However, because
of the presence of U and Up in (40), the kernels of the
integral equations will contain pure Coulomb two-body
T matrices. 4 This causes no difBculty if one is interested
only in the case in which all the three particles are
bound, since in this case only one angular momentum
state is required after partial-wave analysis. However,
if one of the charged particles is free, as in the present
case, it will no longer be possible to do partial-wave
analysis on the integral equations, since it is known that
the partial-wave series for the on-shell pure Coulomb
scattering amplitudes do not converge. This causes the
inconvenience of having to deal with multidimensional
integrals.

These difhculties can be avoided if the explicit
presence of U and Up in (40) is eliminated by sepa-
rating the pure Coulomb contributions. The techniques

"G. C. Chirardi and A. Rimini, J.Math. Phys. 5, 722 t1964).
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for carrying out a similar separation are developed in
the literature" and will be adopted here for the case of
the Coulomb potential with minor modifications.
Defining

Qp+(5) =-1-G(»(Vp+Up),

Eq. (40) takes the form

U-p+(5) = (V-+ U-) Qp+(5).

(48)

Also defining

where
cp t &t(5) =—1—U G c(5), (50)

V —Vp= Vp —V . (56)

Making use of (41) and the fact that A p is defined
inside the matrix element (x I

A p I xp), Eq. (54) be-
comes

A p icU G c(S). ——— (57)

Using the "second" resolvent identity, ~

G c(5) =G (5) —G c(S)U G (5), (58)

~here 0.=1 is assumed to be the incident channel and

G (S) =(Hp+V 5) '. —(59)
Then

&x. I
A., I x,&=—i.&x. I

.-~'(5) U.G.(5) I xp&. (60)

Consider the system d-"O. If the incident channel is
labeled a, then for p =a

&x. I
A..I x.&

= &x. I ~.' "(5)U.
I x.& (61)

In this case U is the Coulomb potential of a proton
relative to "O. If U~ is the Coulomb potential of a
deuteron relative to "0, then U—U& vanishes asymp-
totically. ' Replacing U by Uq in (61), one obtains the
Rutherford scattering amplitude"

A = &x I
' "(5)U

I x ).
's K. Greider and L. Dodd, Phys. Rev. 146, 671 (1966).

(62)

G c(5) =(Hp+V +U 5) ' — (51)

the identity operator can be written

1=co ' 't(5)+U G c(S). (52)

The Coulomb potential U can be eliminated from
(49) by multiplying the first term on the right side by
(52) and rearranging so that

U p+(5) =to t 't(5) V Qp++ U LG c(S)V +11Qp+(5) .
(53)

Defining A p to be the second term on the right side in

(53) and using (48), it can be written

A p
——U G c(5) (Hp+Vp+U Up E ie), ——(54—)

where use has been made of the id.entity

(Hp+V +U S) '—(Hp+V—+U—S) '

=(Hp+V +U S) 'V (Hp+V—+U S) ' (55)—
and

and
pppH&(S) =1—Gpc(S) U

Gpc(5) =(Hp+Vp+U —5) ',

(66)

(67)

and substituting this into (64), one obtains

&x- I
U-p'(5) I xp&

= &x I
tp ' &'(5) U p+(5) top'+'(5)

I xp&+Acb p (68)

where
U p+(S) =V —V G(S)Vp. (69)

This is similar to the operator defined by Lovelace's
Eq. (3.2).r

Kith o, =1 as the fixed incident channel, the target
is labeled as 1, the proton as 2, and the neutron as 3.
Ignoring the breakup channel, then P = 1, 2, or 3.Having
defined. the channels, one may look for more manageable
forms for the transition amplitudes than the ones
dered in (68). The "distorting" operators rp & it and
~p~+& depend on both the nuclear and Coulomb poten-
tials, while the channel wave function

I xp& is asym-
metric in the sense that it is a solution of the nuclear
plus Coulomb potentials in (42). For P=3, Eq. (41)
gives Up=0, and from Eq. (66), top~+i(5) =1. For
P=1, 2,

&t&(5) lx &= —i G,'(5) lx & (70)

Since the Tp(5) are solutions of (16), it follows that

Gpc(S) Gpc(S) Gpc(5) Tp(S) Gpc(S) (71

From (17), (32), and (44),

~p&+~(s)
I xp& I q, &= iw;(5)—I xp& I qp&

—Go (5) IP& I qp&, (72)

"M. L. Goldberger and K.M. Watson, Co/lision Theory (Wiley-
Interscience, Inc , New York, 1.964).

For a&p and assuming that U may not give rise to
rearrangement, i.e., ignoring Coulomb stripping-type
contributions, then

(x. I
A., I xp&=0, a~P.

This is the same assumption used for the optical-model
potential. " In the present case the Coulomb potential
is treated essentially in the same way as the optical-
model potential is treated in rearrangement collisions.

With (62) and (63) the matrix elements of (54)
take the form

(x- I
U-p'(5)

I xp)

=(x Itp t &t(5) V Qp+(S) I xp&+Acb p. (64)

It remains to eliminate the explicit dependence of
Qp+ on Up in (48). This is accomplished by using
techniques similar to the ones used in deriving the
two-body, two-potential scattering formula. "Writing

Qp+(5) =L1—G(5) Vpl~p'+'(5) (65)
where
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where the property (22) and the fact that the above with GP(5) given by (67). Using the relation
operations are on the energy shell with

Go'(5) T~(s) =G~'(5) v~ (81)
5=E'.+is = qp' F—p+~e'.

have been used. The first term on the right side of (72)
can be dropped in the limit &~0 without causing any
of the known difhculties, "because on the energy shell
Goo(5) is nonsingular. Similar arguments can be used
for (x I

~ i ) t(5). Using (45) and (72), Eq. (68) then
takes the form

(x. I
U.p+(5)

I xp)

Eq. (80) becomes

U-p+(5) = Z v7 —Z U ~'(5) Go'(5) 7'~(5).

z.,(s) =(1—~.p) (~ I
G, (s) I P),

and the off-shell extension of X p(S) in (75) to be

(83)

Following Lovelace, ~ the "potential" is defined to be

Define the on-the-energy-shell amplitude

X-p(S) =(
I
Go'(S) U-p+(S) G,o(5) IP). (75) This reduces to (75) on the energy shell by virtue of

(78) and (21).Finally, using (16)—(21), Eqs. (82) and
(84) give

x.,(s) =—z.,(s) —Z x.,(s).-,(s)z„(s). (85)

This effectively indicates that the channel wave func-
tion for channel p is Goc($)

I p). Since on the energy
shell Goc(5) is nonsingular, the Coulomb potential
could have been included in (43) for all channels, or

=(~
I

Go (5) U.p+(5)Go (5) IP)+&c@p. (74) X p(5) (~ I
G,c(5) U p+(5)G,a(5)

I p)

—Z-p(5) 51+&prp(5) 3 (84)

(EE,+ U—S) I x,&= —X, I &)(& I x,)—O(.). (76)

)„(~IG, (s) I~)=—1, (78)

on the energy shell. This condition is the same as (31)
and is necessary in order to make the T matrix of (16)
possess a branch point on the energy shell (a simple pole
for the two-body problem). This is not possible with
condition (46), and thus it was necessary to remove
the explicit dependence of U p+(5) on the Coulomb
potentials, which then reappears in the equation for the
channel wave function (76) .

Since Ac in (74) is known, it remains to calculate
X p(5) in (75) . The procedure used is similar to that of
Lovelace, ~ except for the replacement of Go(5) by
Goo(5) . Using the resolvent identity

G(s) =Gp'(5) ZG(s) v~—Gp'(5), (79)

Eq. (69') takes the form

U.,+(s) = P v,—g v,G(s) v,
yea 8&P

= g v,—g &.8+(5)GB'(5) v8, (80)

' L. Foldy and W. Tobocman, Phys. Rev. 105, 1099 (1957);
S. Epstein, ibid. 106, 598 (1957); B. Lippmann, ibid. 102, 264
(1956).

Thus the channel wave functions, correct to terms of
order e, are given by

I x,) =—G,c(s)
I », (77)

with the condition

The solutions to (85) are the three-body amplitudes to
which the pure Coulomb contributions must be added.
They can be found if all the Z p(5) and all the t&(5)
are known. Again this equation is identical to that of
Lovelace, ' except that the "potential" Z p(S) and the
propagators 7.q(5) now contain Goc(sl instead of
Go(s).

As mentioned earlier, the pure Coulomb contributions
are approximated to be zero in all channels except in the
elastic channel, and even in the elastic channel they are
approximated by the two-body pure Coulomb scattering
amplitude. ' This approximation is not very well
justified when the deuteron is close to the target
nucleus. For the rearrangement channel, however, the
particles must come close enough together for the
nuclear force to cause a mass transfer reaction, and thus
the nuclear interaction should dominate in that
channel. On the other hand, the deuteron can scatter
elastically without coming close enough to the target
nucleus to feel the effect of the nuclear forces. Replacing
the proton Coulomb potential by the deuteron Coulomb
potential for deuteron scattering is justified if the
Coulomb repulsive force is strong enough. The ap-
proximation can be expected to be reasonably good for
systems like d-"0 or d-"Si and not for systems like P-d.

IV. MATRIX ELEMENTS OF THE POTENTIAL
OPERATORS AND THE SCATTERING

AMPLITUDES

The matrix elements of the potential "operators"
defined in (83) must be evaluated before (85) can be
solved. The operations are elementary and the results
will only be stated. For a, PW3,
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where

g-I:V»-'(qs'+V»'q-) lail V»-'(V»'qs'+q-) Jc'(V»-'
I

Vr'q- —Vrqs' I)

V» (V»q)q +'q ) +Vs

Pl Pl ) Vs'=V/, 7& 7& p
py py tN

+12 P2 p +12 Pl )

and Vis& and Vs'& are defined in (29) . For rr =3,

&q, lz„(s) lq, )=(I 3„);...(,( +,))C(l -'( q+q') l)g ( '(q+ q'))
Vs

'
Viqs

A similar expression is obtained for Z s(S) by replacing

P by n in (88) .
Using these expressions for the potentials and the

propagators, (85) can be solved. Its matrix elements in
the channel plane waves are

&q- IX-~(s) I
qs')= —

&q- I z.~(s) I qs')

p f (q I

x ~(s) I e )~~(s' q& )

x &q,
"

I z.,(s) I
qs')~'v, ", (89)

where

&q,
"l.-,(s) I q,"')=~(q,"—q,"').,(s; q,"). (90)

The expression in (89) is an integral equation with
three-dimensional integrals. Two of the variables of
integration can be eliminated by partial-wave analysis.
Writing

&q I X.)s(S) I
q')= g (2l+1)P)(cosa)X p'(q, g'; S),

(91)

where cos8 =j j', and similar expressions for the
Z p(s) potentials, (89) can be reduced in partial waves
to the form

x.t '(c v' s) = z-~'(n v' s)—
—kr Qfr s'(qq";S)rg(S;q")Ziqqq", q';S)q"' q", d

V. DEFORMED CONTOURS

The method of deformed contours used to solve (92)
is by now standard "'~ and the present discussion will

be limited to only a few comments. A detailed discussion
is given elsewhere. " The procedure is to avoid the
singularities which may develop on the path of integra-
tion of (92) by taking the limit e—R in (86), (88), and
(32) with S=E+ie. This is accomplished by rotating
the momenta into the fourth quadrant using the

mapping

qs~qs exp( —+), qs'—&qp' exp( —fy) . (93)

The solution to (92) is then obtained and q)q' is rotated
back to the real axis. By Cauchy's theorem this pro-
cedure is equivalent to solving (92) directly as long as
no new singularities are crossed by the mapping (93) .

For the uncharged particles and for the Hulthen
form factors the partial-wave integrations over (86) and
(88) can be carried out in a closed form. The singu-
larities turn out to be the branch points of the Q~(Z)
functions. "For the Coulomb case, however, integration
over the angles in (86) and (88) must be carried out
numerically because of C(k) . Consequently, the
singularities were located as a function of the angle of
integration and that nearest to the real axis was taken as
~;, with @=sr/;„ in (93).

To illustrate this point consider the unmodified
Hulthen form factors appearing in (86) and (88).
Rotating only one of the momenta,

g-(&) =&-I (Vsq+Vsq' exp( —s4) )'+J -'3 ', (94)

(92) gives the singularity

which is a one-dimensional integral equation. For the
partial wave which contains bound states (1=0 in the
present case), Eq. (92) cannot be solved by iteration,
because the Born series does not converge for bound
states and resonances. ""Consequently, (89) is solved
by matrix inversion techniques for all partial waves to
avoid developing an unnecessarily lengthy computer
code.

"S. Weinberg, Phys. Rev. 131,440 (1963)."P. E. Shanley and R. Aaron, Ann. Phys. (N.Y.) 44, 363
(1967), and refe rences therein.

er =«n 'I:(Vs'q'+~. '—VsV~') '"/Vsz*l, (9~)

with x=j.j', and y5 and y6 are constants. As a function
of x, Pr has a minimum at x= 1, and

41, ; = tan (p /Vs/) . (96)

The branch point in C(k) causes no diKculty under
(93), because only the square root with positive real

'7 J. H. Hetherington and L. H. Shick, Phys. Rev. 137, B935
|', &965).' K. Hamza, Ph.D. thesis, The Florida State University, 1968
(unpublished) .
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and the residual nucleus r, the sum is over all spin
projections, and

f p= (2~)'(es M mpMp/Ms). (9g)

Substituting the values of the spins for the d-"0 system,
this reduces to

/dn=f pIx p(q, q';s) I'.

The only parameters are those of the form factors
defined in (23) .

E is fixed by normalizing the wave functions defined
in (44) and (45). The integral can be carried out in
closed form~ and one obtains for E

IO 30 50 70 90 I IO I30 I50 I70
ec,m.

Fio. 1. Theoretical differential cross sections for "O(d p) "0*
{0.87 MeV) at deuteron incident energy of 1.3 MeV as compared
with experimental data (Ref. 23).

+a ='rr fraea(ea+fjta) y

e.=QZ.

(100)

(101)

value is taken. Also, the function expr 2rf tan '(kp ') j is
well behaved under (93). Writing rf =e/k in (27) and
noting that for

I
k I~O the function tan '(kP ')~k/P,

the factors multiplying g~(k) in (26) are well behaved
under (93). This shows that the Coulomb force pro-
duces no new pathologies in (92).

&a = 2 (fJ~+e~) /p~e~(e~+2fj~) ~ (102)

where a is the scattering length and is related to the
total scattering cross section at zero energy by

and A is the binding energy of the 0. pair. The p 's are
to be fixed from the two-body scattering data using the
relation given by Yamaguchi':

VI. APPLICATIONS AND DISCUSSION os (0) =4rra '. (103)

A relatively simple nuclear system to which the
restricted problem treated here can be applied is the
d-"0 system, if the deuteron bound state is taken to be
the S state. For the outgoing channels there is an
e-"0 bound state at 0.87 MeV relative to the ground
state of '~0 with a binding energy of 3.275 MeV, and a
p-"0 bound state at 0.500 MeV relative to the ground
state of ' F and with a binding energy of 0.096 MeV."

The system is treated as three distinguishable
particles. No attempt to include isospin is made, since
it is known that the Coulomb force breaks isospin
symmetry, ' but the spin of the particles is included.
For /=0 bound states spin and angular momenta
uncouple in the LS representation, ~ "and the total spin
and its projection are conserved. Since "0has a spin of
zero, the incident channel spin is that of the deuteron
triplet state and has the value 1.

The scattering cross section is given by

do. p/dQ= i(2 ~s+1)(2s,+1)] 'f pg I (s,m, , s&rN&, qI

XX p I
q'; s,m„s„res„) I', (97)

where s and m are the spins and their projections for the
incident particle i, the target t, the outgoing particle o,

T. Lauritsen and F. Ajzenberg-Selov, Energy Levels of Light
Nuclei (Printing and Publishing Office, National Academy of
Sciences —National Research Council, Washington, D.C. 20025,
1962) .

The scattering length for the triplet p-m state has been
measured to be 5.378 fm."For neutron scattering from

220-
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l80-

I60 (d, p)'70 (0.87 MeV)

Ed= I0.2 MeV—Theory
0 Experiment

&=0
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0
g l40"

—I20 -8
b

l00-

80-

60 ~

20-

0 89 1 y
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"M. Surgy, G. Ringo, and D. Hughes, Phys. Rev. 84, 1160
(1950);K. Melkonian, ibid V6, 1'144 (1949). .

FIG. 2. Theoretical differential cross sections for MO(d, p) "O~
{0.87 MeV) at deuteron incident energy of 10.2 MeV as compared
with experimental data (Ref. 24).
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FIG. 3. Theoretical differential cross sections for "O(d, p) "0*
(0.87 MeV) at deuteron incident energy of 4.0 MeV as compared
with experimental data (Ref. 23).
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Fro. 5. Theoretical differential cross sections for "O(d, I)' F*
(0.500 MeV) at deuteron incident energy of 5.02 MeV as com-
pared with experimental data (Rei. 25).
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"0 the total scattering cross section of thermal neutrons
at 1 eV was measured to be 3.75 b."This cross section is
constant for the resonance-free range of energies
0.5—1000 eV, and it is used in (103) to extract the
scattering length. The value of p obtained in this way
gave good results, and it was not further refined.

The same nuclear form factor g (k) is used for the
n-"0 pair and p-"0 as was suggested by Harrington. "
The presence of the Coulomb force modifies the nuclear
form factor of P-"0 from gs(k) to gsc(k) given in (26) .
The bound-state poles in the propagators are 6xed
through the X 's at the binding energy of each pair by
numerical integration using expressions (31), (28),

(24), and (73). Twelve-point Gaussian integration is
used2' for the partial-wave analysis and computing the
X 's. To solve Eq. (92) using the method described in
Sec. V, the integration range is subdivided into four
sectors and the seven-point rule" is used on each of
them.

Some of the numerical results are compared with the
data of Gallman e] al. ,

"Hamburger'4 and Yaramis"
in Figs. 1—5. Remembering that only the simplest
assumptions are made about the nuclear potential and
only one bound state for each pair is considered, the
results compare surprisingly well with the data. Since
the three-body deuteron-induced reaction calculations
reported in the literature" "do not include the Coulomb
force, it is not possible to make a direct comparison
between them and the present results. A qualitative
agreement is obtained, however, in the sense of a large
forward peaking and small contributions at backward
angles for the stripping channels.

The stripping differential cross sections above the
2.13-MeV (d, ts) threshold shown in Figs. 2 and 3 are
in good agreement with experiment, but the ht at an
incident deuteron energy of 1.3 MeV in Fig. 1 is poor.
This may stem from the fact that the higher angular
momentum bound states are ignored. " Since both '0
and ' F have an /=2 ground state, it is expected that
the present fit would be improved by including these
two states. This remains to be done.

I I I

IO 30 50 70 90 I IO l50 I50 l70

e„m

Fro. 4. Theoretical differential cross sections for "O(d, d) "0
at deuteron incident energy of 4.0 MeV as compared with experi-
mental data (Rei. 23).

"D. Hughes and R. Schwartz, Neutron Cross Sections, compiled
by D. J. Hughes and R. B.Schwartz (U.S. Government Printing
Once, Washington, D.C., 1958).

"Handbook of Mathematica/ Functions, edited by M. Abramo-
witz and I. A. Stegun (U.S. Department of Commerce, National
Bureau of Standards, Washington, D.C., 1966).

23 A. Gallman, P. Fintz, and P. Hodgson, Nucl. Phys. 82, 161
(1966}.

24 E. Hamburger, Phys. Rev. 123, 619 (1961).
» B.Yaramis, Phys. Rev. 124, 836 (1961)."R.Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136,

8650 (1964);R. Aaron and P, E, Shanley, ibid. 142, 608 (1966).
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Based on the fits at the energies available, it appears
that agreement with experiment is good for the (d, st)
channel and for the (d, p) channel above the (d, I)
threshold. The elastic channel shown in Fig. 4 is
dominated by pure Coulomb scattering and shows
none of the structure effects observed experimentally.
It is expected that better agreement will be obtained in
future analyses by including the higher angular mo-
mentum bound states.

One problem with the method presented here is that
the Hulthen form factor used in the separable approxi-
mation for the nuclear forces can only produce a 1s
bound state, while the 0.87-MeV state of '70 is a 2s
state. The method has nevertheless been applied to this
case, however, because it only requires that the two-
body T matrix give the correct on-shell data and have

the necessary analytic properties. '~ This is assured by
determining the parameters from the experimental
binding energy and phase shifts as discussed above.
While a form factor obtained from a 2s bound-state
wave function' might possess diferent off-shell exten-
tions than the simple one used here, it was hoped that
this would have little effect on the three-body ampli-
tudes, and the results obtained are encouraging. An
effort to modify the method to include various choices
of form factors is being made for future calculations.
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The Butler-Hewitt-McKellar-May theory of stripping reactions is modified to take into account the
blocking eftect of particle-hole correlations in the core, which populate the final neutron state with prob-
ability 1—I'. The basic relation of the theory between the direct-reaction matrix element M~ and the con-
tinuum matrix element Mjy is altered to iVo= S"(P S) 'hrs. —

1. INTRODUCTION

t THIS paper discusses the effect of exclusion-principle
blocking on the theory of stripping reactions pro-

posed by Butler, Hewitt, McKellar, and May. 1 We
consider the reaction A(d, p)B.

It is well known that, provided that the neutron is
captured into a single-particle state which is unoccupied
in the core (the ground state of A), antisymmetrization
of the theory with respect to the neutrons is trivial. ' '
Indeed, in this case the theory reduces to the form it
takes when the captured neutron is rega, rded as dis-
tinguishable from the others.

When the state of the captured. neutron is already
partially occupied in the core with probability 1—P,

* Supported in part by the Air Force Once of Scientific Re-
search, Ofhce of Aerospace Research, U.S. Air Force, under
AFOSR Grant No. 68-136S, and in part by the Science Foundation
within the University of Sydney.' S. T. Butler, R. G. I . Hewitt, B.H. J. McKellar, and R. M.
May, Ann. Phys. (N.Y.) 43, 282 (1967) (referred to as BHMM) .

2 M. L. Goldberger and K.M. Watson, Collision Theory (Wiley-
Interscience, Inc. , New York, 1964), $11.6.' Antisymmetrization of the protons introduces a qualitatively
new effect, exchange stripping, with which we will not be con-
cerned in this paper.

then the exclusion principle restricts the total single-
particle strength in the state of P. In the distorted-
wave Born approximation (DWBA) there is no formal
modification in the theory, 4 but the sum of the spectro-
scopic factors is now P.

One would be surprised if the BHMM theory were
not modified because of the emphasis in this theory on
the many-body aspects of the wave function %'&. In
this paper we show that the direct-reaction matrix
element Sf' is related to the continuum matrix element
Mz calculated by BHMM by

Mc= &A/(I' S) )fthm"s, — (1)

where A is the spectroscopic amplitude and S=
~

A ~'

the spectroscopic factor. Note that this reduces to the
BHMM result

Mo = PA/(1 —5) )Ms

in the absence of blocking (I'=1).
The form of Eq. (1) could, in fact, be guessed. When

the captured-neutron wave function contains no off-

z J. B. French, The Analysis of Reduced Widths, in fZtuclear
Spectroscopy, edited by F. Ajzenberg-Selove (Academic Press
Inc. , New York, 1960), p. 890.


