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The binding energies of the s-shell hypernuclei (AH?, sHe?, and 4aHe®) have been calculated in the Hartree-
Fock model, using Gaussian particle-particle potentials. Parameters of the A-AV interaction were determined
from the experimental binding energies. These numerical results agree qualitatively with those of other
calculations and also with the experimental A-N scattering data, if short-range repulsions are included.
Equality of the A-V and A-A potentials is consistent with these calculations.

I. INTRODUCTION

NE of the richer sources of information about the
nature and strength of the A-IV interaction has
been the study of the hypernuclei with 4 <6. These
isotopes which have thus far been identified and their
respective separation energies are! ;H3, By=0.324-0.17
MeV; A%, By=1.95+0.14 MeV; \Het, By=2.0720.09
MeV; pHe’, By=3.10+0.02 MeV; ,HeS, B,y=4.09
MeV; and the double hyperfragment s HeS, Byp=
10.740.6 MeV. The isotope yH? has not been observed,
but a large number of heavy hyperfragments, i.e., with
A> 6, have been seen. Until recently, these hypernuclei
were the major reservoir of experimental data on the
A-N system. Within the past several years, however,
scattering experiments have yielded directly the two-
body A-N scattering lengths and effective ranges?; the
most recent determination is?

a;=—2.07F,
ae=—246F,

=450 F,
=3.87F.

triplet state:

singlet state:

Several features of the A-N potential have been
deduced solely from the principle of charge symmetry.*
Since the lightest exchange quantum giving rise to this
interaction is either a K meson or two (or more) pions
or a combination, the range of this potential is neces-
sarily much smaller than that in the N-N potential
which is governed by a single-pion exchange. Second, if
the two- (or more) pion exchange is the dominant
process, the interaction is an ordinary Wigner force,
while if a single kaon exchange dominates, the resulting
potential is of exchange character which changes sign
when operating on two-particle states of negative
relative parity, e.g., the relative A-IV p state occurring
in pHe®. The resultant A-N potential is then spin
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dependent, as is indicated by the low-energy scattering
parameters, and also it may have the type of tensor
component present in the N-N potential.

One would hope_to relate the hypernuclear binding
energies listed above to the free A-IV interaction. This is
not possible in every case, however. For example,
Bodmer® has pointed out that in those hypernuclei in
which the core nucleus has isospin T=0 (i.e., pHe?,
asHeb, and also JHe®) certain terms in the free-particle
interaction are suppressed. These correspond to
channel couplings which require that the virtually
excited core undergo an isospin change; for the case in
which the core is He? the excited state has 7I'=1.
Presumably, such isotriplet amplitudes are present in
the yHe?® core, but these admixtures are small because of
the large excitation energy of He* This suppression
should be small in the other cases. Thus, one cannot
hope to correctly calculate the binding energies of all
the above hypernuclei in terms of a single two-body
A-N potential.

The hypernuclei \H?, y\H% ,He%, and p,He® have been
subjected to extensive and elaborate theoretical
analyses, the first of these yH? being investigated most
thoroughly. The majority of these investigations have
been variational calculations.>~® Dietrich, Mang, and
Folk® and, later, Beck and Gutsch,!® assumed all inter-
particle potentials to be square wells (allowing the wells
to have a short-range hard core) and used an inde-
pendent-pair approximation with two strongly corre-
lated particles reacting under the influence of a back-
ground due to the other nucleons. In the purely
variational methods it has been generally assumed that
the hypernuclear wave functions are totally space
symmetric with all particle pairs in relative s states.

(Bodmer,’ in treating 42H? included the possibility of a

5 A. R. Bodmer, Phys. Rev. 141, 1387 (1966).

6 D. B. Lichtenberg, Nuovo Clmento 8, 463 (1958); B. W.
Downs and R. H. Dalitz, Phys. Rev. 114 593 (1959) B. W.
Downs, D. R. Smith, and T. N. Truong, 1bzd 129, 2730 (1963)
D. R. Smith and B. W. Downs, zbid. 133, B461 (1964)

"R. C. Herndon, Y. C. Tan and E. W. Schmid, Nuovo
Cimento 23, 259 (1964) Phys. Rev 137, B294 (1965) R. C.
Herndon and Y. C. Tang, 2bid. 153, 1091 (1967) 159, 853 (1967)

8 R. H. Dalitz and B. W. Downs Phys. Rev. 111, 967 (1958).
(19911) Dietrich, K. J. Mang, and R. Folk, Nucl. Phys 50, 177
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mixed-symmetry S’ state, known to be present in H3
and He®.t) In these calculations a A-N potential well
shape with different strengths in triplet and singlet
states was assumed, and the energy was minimized with
respect to trial functions of varying degrees of com-
plexity in order to determine the well depths. Two
conclusions result from these calculations: First, the
singlet potential is larger than the triplet potential, a
prediction apparently corroborated by the later analysis
of the scattering data. Second, in order to account
simultaneously for the binding of jH?® and the non-
existence of \H?, it has proven necessary to introduce a
repulsive core term into the A-NV potential. The latest
calculation reported by Herndon and Tang’ gives a
hard-core radius of 0.6 F (assuming an exponential
well outside the core). Their resulting potential gives
scattering parameters in fair agreement with the
experimental values,? although the effective ranges are
too low. A third aspect of the A-V potential is that in
these light nuclei, where all particle pairs are mainly
s states, the admixture of higher angular-momentum
components (e.g., d waves by the tensor force) produces
no significant effect other than perhaps redefining the
central part of the two-body potential.

The nuclei ,He® and saHe® represent anomalous
systems. For the first of these, the core nucleus He® is
unstable against neutron decay, while the hypercore
aHes is stable. For this reason, the separation energy
B, given above is for the neutron-A pair. Early varia-
tional calculations of this separation energy gave'?
inconclusive results, as did some latter attempts with
nonvariational procedures, e.g., Lovitch and Rosati®
and also Ananthanarayanan.” The difficulty associated
with this system is that the last nucleon is in a relative
 state with respect to the other particles, thus requiring
knowledge of the p-wave N-a and N-A potentials. On
the other hand, sxHe® is a system in which all particles
can be in s-state wave functions, because the spin,
isospin, and strangeness quantum numbers are all
distinct. Moreover, in this case one can expect to obtain
information about the nature of the A-A potential
because the effective A-N potential is assumed to be
identical with that in j,He’. On the basis of their
calculations for the binding energy of the heavier
hypernucleus xxBe®, Tang and Herndon'®! correctly
predicted the existence of aaHe®, estimating the AA-
separation energy to be 9.68 MeV, fairly close to the
experimental value. Ananthanarayanan has also
attempted to evaluate this binding energy, using a

u B, F. Gibson, Nucl. Phys. B2, 501 (1967), and references
therein.

12 B, Barsella and S. Rosati, Nuovo Cimento 13, 458 (1959);
L. H. Schick, ibid. 14, 426 (1959); C. Willian, Nucl. Phys. 81,
585 (1965).

1Y, Lovitch and S. Rosati, Nuovo Cimento 41A, 647 (19€7).

14 K. Ananthanarayanan, Phys. Rev. 163, 985 (1967).
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16 A, R. Bodmer and S. Ali, Phys. Rev. 138, B644 (1965).
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Dawson-Walecka!” procedure with attractive Yukawa
wells; the resulting binding energies are too large. In
part, this is due to the absence of a repulsive core in the
two-body potentials. Since a core is present in the V-V
and A-N systems, one would expect it to be present in
the A-A system as well, and, as has been argued,**® it is
very plausible that all three interactions exhibit the
same core with the same parameters.

All of the above calculations have assumed that the
interactions of a A particle with a nucleus results from
two-body potentials. Three-body interactions can also
be present,? in particular, if the two-pion exchange
dominates the A’s dynamics. Bodmer and Sampathar®
have concluded, however, that in the ,H? ,H% and
1He! systems these three-body forces do not give
significant effects, although this may not be true of the
other hypernuclei.?!

In this paper we present results for yet another
calculation of these hypernuclear binding energies.
This calculation uses a somewhat different method,
albeit a variational one, namely, the Hartree-Fock model
in configuration space. In the Hartree-Fock method, we
determine the best (i.e., that giving the largest total
binding energy) shell-model wave function, a Slater
determinant of single-particle orbitals. The interactions
that we use are of the Volkov form,? a sum of an
attractive Gaussian well and a repulsive Gaussian core.
When applied to He?, this model gives a binding energy
and a charge form factor which are in good agreement
with the experimental data.? Its use in the hypernuclei
calculation then allows a simple interpretation of the
nuclear core distortion. In Sec. II we present the
Hartree-Fock equations for the several hypernuclei.
Section IIT contains the numerical results, while Sec.
IV states our conclusions.

II. HARTREE-FOCK EQUATIONS

The Hartree-Fock method minimizes the expectation
value of the Hamiltonian with respect to variations in a
Slater determinant ®, of single-particle wave functions
Y. Here, A refers to the set of quantum numbers needed
to specify a single-particle state: # the principle quan-
tum number, / the orbital angular momentum, m; the
projection of I, m, the projection of spin, ¢ the isospin
third component, and s the strangeness. The ) are
represented by

‘P)\z [¢nls(7) /1’] Ylml(?) Em,ts, (1)

( u ].)F. Dawson and J. D. Walecka, Ann. Phys. (N.Y.) 22, 133
1963).
185, Ali and A. R. Bodmer, Nuovo Cimento 50, 511 (1967);
Phys. Letters 24B, 343 (1967).

1 A, Gal, Phys. Rev. 152, 975 (1966).

20 A, R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 251 (1962).

2R, K. Bhaduri, B. A. Loiseau, and Y. Nogami, Ann. Phys.
(N.Y.) 44, 57 (1963).

22 A, B. Volkov, Nucl. Phys. 74, 33 (1965).

2 B, F. Gibson, A. Goldberg, and M. S. Weiss, Nucl. Phys.
1184, 225 (1968).
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with & a function of the three variables m,, {, and s.
In fact, for these hypersystems, all nucleons are in
either s or p states with /=0, 1, and their reduced radial
orbitals will be labelled briefly as ¢io0(7) =¢s(7) p110(r) =
¢»(7), and all A’s are in the lowest s states labelled
¢é10,-1(r) =pa(r). The variations are then made with
respect to the form of the ¢ functions.

The Hamiltonian is assumed to be the sum of the
usual kinetic and potential energy operators

5e=1540, (2a)
and we minimize
€= (‘I’o I "Kf ‘ ‘P()): —Eb, (Zb)

where F, is the total binding energy. 3 excludes the
c.m. energy so that

4. p2 4
5= 2. 2ol

1
— =l
o1 2m; 2M =1

1
= n. (3
2 2P )
where M is the total hypernuclear mass. Since in these
cases every particle pair has at least one particle in an
s-state orbital, the second term does not contribute in
Eq. (3), and we can take

&, pd .

= PYRE) (P1= _iﬁvi) . (4)

=1 2pi
Each particle of mass 7 in a system ,X¥** with NV
nucleons and 7 hyperons has “reduced mass” u;

pi(nXNH") = Mmi/ (M —m) (5)

with M =wnms+ Nm,, mp=proton mass, and ma=A
mass. In view of the comments in Sec. I, the potential O
is a sum of central spin-dependent two-body potentials
Vs;. Variation of €, Eq. (3), then yields the well-known
Hartree-Fock equations. Because the nuclear Hartree-
Fock equations are, in their full generality, rather
complex, we quote below only the equations appro-
priate to the hypersystems in which we are interested.
We first state explicitly the assumptions and approxi-
mations which have gone into these equations. First,
the Hartree-Fock method assumes that the only
correlation between particles is statistical, arising from
the Pauli principle. This is in contrast to the trial
functions used, e.g., by Herndon and Tang,” where
two-body rescatterings are emphasized. Moreover, in
all of these hypernuclei (with the exception of jHef),
the m,, t, and s degrees of freedom serve to distinguish
each of the particles, eliminating the statistical correla-
tions also. Second, we ignore Coulomb effects. These
corrections can be considered later as perturbations.
Third, we assume that the radial functions ¢ are in-
dependent of m; and m,. This is actually valid only for
closed shell systems, e.g., aaHe®. However, one cannot
avoid such an assumption in configuration space
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Hartree-Fock calculations without enormously in-
creasing the numerical complexities of the problem.
In any case, these calculations do generate the best
product wave function within this restriction.

We present the Hartree-Fock equations and their
numerical results in terms of ‘“effective” two-body
interactions, i.e., after the spin dependence has been
removed. We shall then attempt to relate these effective
potentials to the spin-dependent interactions V. In
the systems pHe® and s He® the core nucleus is He*
In this core each nucleon sees one nucleon with spin
parallel (triplet) and two with spins opposed (3
triplet+% singlet). Hence the effective potential
between two nucleons a distance 7 apart in the He!
nucleus is

Uyn(Het, r) =3[ Van® (1) +Vin® ()], (6)

where Vyy™ and Vyy® are the triplet and singlet
N-N potentials, respectively. This is also the effective
potential between nucleons in jHe® and aaHeS. Simi-
larly, the effective A-V and A-A potentials in these
systems are

Una (He‘*, 7) = %EVNA(S) (1’) +3VNA(T) (7’) ]; (7)
Uaa(r) =Via® (7). (8)
The Hartree-Fock equations for these nuclei are then,

5
for yHe?,

h? @2
[m g T30 () +INA(r)] s(7)
=e(sHe?) ¢s(7), (9)

—h2 a2 i
[t g 4100 [ =,

and for xaHe?,
—h? a2 )
e o5 3L 7 .
[Zﬂp<AAHes) dr? +30wn () +2Ina(7) ] ¢ (7)
= e (anHe®) ¢,(r), (10)
A
e s TH I
[ZMA(AAHeG) ar? 4l (r)+ AA(’)] éa(7)
=ex(anHe®) pa(r).
In each set of equations the one-body potentials are

given by
Tux(r) = [ @92 usx(r, 1),
INA(") = / drl¢A2(rl) MNA(”, 1”) ) (11)
Taw(r) = f A2 () una(r, 1),

Isa(r) = fd’I¢A2(7')%AA(’, ),
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with uyy the spherical average of the effective two-body
potential Unw, etc.,

1t
unn(r, 7') = 5 dx Unn[Het, (©247"2—2r7"x) 2],
-1

(12)

The reduced masses u, and ua are given in Eq. (5).
Evaluation of the separation energies requires also the
solution of the Hartree-Fock equations for He*

—_— h2 d2

[m o +3INN(7)] ¢s(r) =e(He!) do(r).  (13)
Equations (9), (10), and (13) in conjunction with
Eq. (11), form three unrelated sets of nonlinear equa-
tions, each of which is to be solved separately.

Several comments about these equations should be
made. First, we are not interested here in the structure
of He* per se, but rather in using knowledge of that
structure to study the properties of yHe® and s HeS.
Hence we choose an effective potential Uyy(He?, 7)
empirically, i.e., that potential which when used in
Eq. (13) gives a satisfactory model of He*. We then use
that potential in Egs. (9) and (10). The fact that
Uny(HeY, 7) can be related to the basic two-nucleon
potential, Eq. (6) is convenient but irrevelant. Second,
the nonlinearity of these equations requires that the
method of solution be a self-consistent one; this will be
discussed later. Third, the single-particle energies ¢, and
ex are not the separation energies of the corresponding
particles. The separation energies are computed as the
differences in the binding energies. From the Hartree-
Fock equations and from Eq. (2) these binding ener-
gies are

Het: Fy= —4e(Het) 46 f dré2(NInn(r), (14a)

AHe5: Eb= —4GS(AH65) —-EA(AHC5) +6

X [ dr 62 (r) Iy (1) +4 / dr $2(r) Ina(r), (14b)

AAHCG: Eb= —468(AAH66) - ZEA(AAHGG) +6

X / dr 62(r) Iy (1) +8 / dr (N Ina(r) (14

+ [ ar () Taa),

where the ¢,, ¢ and the Iyn, etc. are generated from
the equations for that system. Finally, one cannot learn
from these three hypernuclei the relative strengths of
the various triplet and singlet interactions, since the
same combination of each appears in all three sets of
equations.

In sH* (and ,He*) we cannot remove unambiguously
the spin-dependence of the N-N potential in the core
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H?. Here again we adopt the philosophy that we are
not interested in H? per se, and that we may define an
effective V-V potential which gives the correct binding
energy for H? from the equation

_h2 d2
S} (1) = e (H) (7).

L5 3200 | )= 080, 19
with the binding energy being

HP:  Fiy— —3e,(H') +3 / dr 62(N Iy (7). (16)

The self-consistent potential Iy () has the same form
as in Eq. (11), but using Unn(H3, 7). Since the A-N
scattering data indicate the singlet potential to be
stronger than the triplet potential, the effective A-IV
potential is

UNA(}P, 1’) = %EZVAN(‘?) (1’) + Vn® (7’) :l

The Hartree-Fock equations for ,H* are

(17)

o d? \
[Z#p(AH4) P +2[NN(7‘)—|-INA(1’)] ¢s(7) =e.(WHY) ¢4(7),

(18)

_hZ dZ
—— =430, = e (4 ,
| 3 |68 = a1 9400
with Iyn(r), Ina(7), and Iay(7) defined in a way
analogous to Eq. (11), using Uny(H3r) and
Una(H3, 7). The binding energy is

H4Z Eb=—3es(AH4)——6A(AH4)+3
X / dr 62(r) Iyn () +3 f dr (N Ina(r). (19)

We assume all effective two-body potentials to be of the
Volkov form??

U(r)=—Wyexp[—(r/a))*]+ W, exp[ — (7/a2)*], (20)

with Wi, Ws, a1, and a» to be fixed as discussed above.
Here both W, and W, are positive; the second term
allows for a short-range repulsion (@;>a,). It is unlikely
that the binding energies depend on the detailed shapes
of these interactions, but rather on the presence or
absence of the core, and on the over-all depths and
ranges. Thus, this potential is convenient if only for its
mathematical simplicity.

III. RESULTS

The Hartree-Fock systems of equations in Sec. II
were solved self-consistently. The computer code that
was used is a fairly general one, applicable to a much
wider class of Hartree-Fock problems than those con-
sidered here, and its details will be described else-
where.?* One chooses an initial set of wave functions

2¢R. L. Tarp, University of California Lawrence Radiation
Laboratory Report No. UCRL-50430 (unpublished).
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TaBrLE I. A-separation energies, no repulsive core.

(a) AHeb
Wy(AN) a, (AN A €A Aes A Us
Potential (MeV) (F) (MeV) (MeV) (%) (F) (MeV)
1 149 0.60 1.9 —6.8 17 +0.05 717
2 35.9 1.05 1.6 —-5.9 12 +0.01 926
3 158 0.60 3.07 —8.3 22 +0.07 760
4 39.4 1.05 3.12 —7.6 18 +0.03 1016
(b) aH*
39.4 1.05 <0, unbound
52.0 1.05 2.01
(c) aaHeS, A— A potential parameters, no core
A—N A PR Bja
potential (MeV) (F) (MeV)
3 39.4 1.05 12.9
4 39.4 1.05 9.0
3 30.0 1.05 10.8
4 49.0 1.05 10.7

¢s(7) and ¢a(7), and evaluates the self-consistent one-
body potentials Iyy(7), Ina(7), etc.,, Eq. (11). The
resulting Schrodinger equations, Eq. (9) or (10), etc.,
are integrated numerically to obtain a new set of wave
functions and eigenvalues ¢ and e. This cycle is
repeated using the new wave functions until the changes
in the eigenvalues over successive iterations are less
than one part in 10% The final wave functions and
potentials are then used to evaluate the binding energies,
Eq. (14), etc. Trial cases have shown that the program
produces accurate (19) eigenvalues and wave func-
tions unless the magnitude of the eigenvalue is less than
4 MeV on a nuclear scale of dimensions. In all the cases
discussed here, the criterion for accuracy was satisfied.

One set of parameters given by Volkov for the V-V
potential in He*is ‘

W, = 83.34 MeV,
Wy = 145 MeV,

a®M=16TF,
"M =0.82 F.

Solution of the Hartree-Fock equations [(13) and
(14a) ] in which Uyy(He%, 7) is taken to be a Volkov
potential with these parameters, gives the correct
binding energy, F,(He*) =28.31 MeV. In addition, the
charge form factor computed from the resulting wave
function agrees satisfactorily with the most recent
data® for momentum transfers below ¢>~7 2. Hence
we can with some confidence use this N-V potential in
the hypernuclear calculations involving Uyy(He?, 7).
The triton binding energy is F(H?)=8.48 MeV.

% R. Frosch, J. McCarthy, R. Rand, and M. R. Yearian, Phys.
Rev. 160, 874 (1967).

This value results from Eqgs. (15) and (16) if we in-
crease the depth of the attractive part of the well to
W@ =85.6 MeV, and we use this value and the other
parameters above for those cases involving Uyy (H?, 7).

We assume that the A-V and A-A potentials in all
cases are also of Volkov form, and we attempt to
choose the corresponding well parameters to give the
correct separation energies. These are evaluated
throughout by solution of the appropriate Hartree-
Fock equations and by use of the relations

BA ( AHC5) = Eb ( AHe5) - Eb (H€4) 5

BA(AH4) = Eb(AH4) —Eb(Ha) )
and
Bar(aaHe®) = Ey(saHe®) — Fy(He?).

We first ignore repulsive core effects in the hyperon
interactions (WyAM =1,40=(). Dalitz and Downs?
employed a two-body model of ,He’ in which the A
interacts with the averaged field of the He* core. They
fixed the depth of the A-He* potential by requiring that
the experimental Bj be secured under radial com-
pression of the He* core. Their potentials were con-
structed from Gaussian A-N interactions whose
intrinsic range corresponds to Yukawa’s for 2w or K
exchange.?® From their results we obtain the following:

Two-pion exchange:

WM =35.9 MeV, a*M=1.05F;

26 This transformation is discussed by B. W. Downs, Lectures
in Theoretical Physics (Wiley-Interscience, Inc., New York,
1960), Vol. II, and in Ref. 18.
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Kaon exchange:

WM =149 McV,  a,4M=0.60 F.

The Hartree-Fock equations [(9) and (14)] give the
results for these parameters shown in Table I(a)
(potentials 1 and 2). Table I(a) also indicates the
effects of the nuclear core distortion. Ae; is the per-
centage change in the single-particle energies asso-
ciated with the nucleon orbitals, this change arising

from the presence of the A. A is the core compression,
defined by

A= —[fN(AHe5> —ry(He?) :I’

with 7y the rms radius of the nucleon mass distribution.
Finally, U, is the volume integral of the A-He* potential,

U= —dnx / PdrdT (7).
0

U,is defined identically as that in other calculations.’?7:%

In order to clarify the nature of the nucleon orbital
distortion, Fig. 1 illustrates the nucleon radial wave
function ¢s(7) in both the He* and pHe® systems for
potential 3. As would be expected, the orbital is pushed
in slightly to smaller distances. As reflected in the
rather small value of A, this squeezing is not very great,
although it has a marked effect on the single-particle
energy eigenvalue.

The By’s calculated by the Hartree-Fock method are
considerably too low. This appears puzzling in that the
core compressions (5% and 19, for potentials 1 and 2,
respectively) are of the same order as those of Dalitz
and Downs? (8%, and 39%,). (Their nuclear compressi-
bility was, however, quite high: 280 MeV.) In addition,
the Dalitz-Downs values for U, are 910 and 695 MeV,
slightly smaller than those in Table I(a).

In order to reproduce the experimental value of
Bi(aHe®) by the Hartree-Fock method, it is necessary

80F T=_ T T T T T
4 Potential 3
o 1\ |
_ \ ———- Undistorted
= L = — Distorted  _|
o 40 A\
\
.20 A\ —
N
0 | | | =
0 1.0 2,0 3.0 4.0 5.0 6.0 7.0
r (Fermi)

F16. 1. Solid curve is the nuclear radial wave function in isolated
He*. The solid line with dots is the same quantity changed by the
A in pHes.

27 Uy’s and compressions for various calculations are discussed
in recent review articles; see R. H. Dalitz, in Inferaction of High-
Energy Particles with Nuclei, edited by T. E. O. Ericson (Aca-
demic Press Inc., New York, 1967).

28 A. R. Bodmer, Hypernuclear Spectroscopy in High Energy
Physics and Nuclear Structure (North-Holland Publishing Co.,
Amsterdam, 1967).
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to increase the A-IV well depths by about 109, to those
given in Table I(a) (potentials 3 and 4).

The Dalitz-Downs calculation, in fact, is also a
variational calculation, minimizing the average of the
same Hamiltonian as used above. The essential differ-
ence between the Dalitz-Downs and Hartree-Fock
methods lies in the nature of the trial function. Use of a
product trial function leads to the Hartree-Fock
equations. Dalitz and Downs, on the other hand, chose
a trial function of the form y(7)x, with x involving
only the internal coordinates of the He* core, and ¢
a function of the A-He* separation distance. Minimiza-
tion of the energy then leads to the Dalitz-Downs
results (see the Appendix). The product function
permits no correlations (other than statistical) between
particles, while the Dalitz-Downs function assumes a
correlation of a specific form, between the A and the
He* core as a whole. On the other hand, the Hartree-
Fock method allows for distortion effects by the A,
whereas in the Dalitz-Downs model such distortion
effects can in practice be included only in a simple way
(e.g., an over-all compression). It is clear from the
results in Table I(a) that the Dalitz-Downs model for
1He® is superior in that it produces a larger binding
energy. This superiority is presumably a reflection of
the large He? excitation threshold, which hinders those
core distortions which form the virtue of the Hartree-
Fock method. Presumably, also, these distortion
effects are more important in other hypernuclei whose
cores have much smaller excitation energies. Moreover,
it is not clear how the Dalitz-Downs method, the
replacement of the ,He® system by essentially a two-
body system, could be applied to other cases, e.g., the
limit of feasibility is aaHe®, which would, by this
method, be replaced by a three-body system.!® Although,
clearly, the Hartree-Fock method is not the best for
aHeb, its possible utility to other s-shell hypernuclei,
where the two- or three-body approximations may not
be superior, is plausible.

The potential parameters for ,H* are given in Table
I(b). These potential parameters which are satisfactory
in sHe® do not bind this lighter system, and one must
increase the well depth to that indicated by potential 5.

Relating these well depths W™ for ,He® and ,H*
(potentials 4 and 5) to the A-NV spin-singlet and triplet
potentials, Egs. (7) and (17), we find that the triplet
well is very much shallower than that in the singlet
state. However, the scattering parameters in Sec. I
indicate that these wells should not be very different,
and that the singlet potential is only slightly more
attractive than the triplet potential. If one accepts the
applicability of the Hartree-Fock model to these
hypernuclear systems, one must conclude that, as
suggested by Bodmer,* the triplet A-N interaction in
AHe? is greatly suppressed.

Having obtained an appropriate set of parameters
for Una(He% 7), we proceed to the case of saHe?,
choosing various values of the depth W;(4% of the well
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TaBLE II. A-separation energies, Volkov-type potentials
(see Sec. III).

GIBSON, GOLDBERG, AND WEISS

W(AN) wAm By U,
(MeV) (F) (MeV) (MeV)
AH? 94.0 1.21 2.07
AHe® 85.8 1.21 3.10 1606

Usa(r). This interaction cannot arise from a kaon
exchange, and we choose its range to correspond to that
of the two-pion exchange, ¢;49=1.05 F. The results
are shown in Table I(c). As noted above, this A-A
potential is the singlet interaction. It is interesting that
the well depth giving the correct value of Baa, W40 =
49 MeV, is rather close to the value of W;(A¥) 52 MeV,
obtained from pH* The relatively large uncertainty in
the measured value of Bax(anHe®) allows the possi-
bility that these different well depths could be equal, in
agreement with Ali and Bodmer.!8

To include the effects of the short range repulsion,
we accept the hypothesis that the ‘“‘core’” parameters
should be approximately the same for the N-N, A-N,
and A-A potentials. Accordingly, we set W, and @,
equal to the Volkov values given above for all inter-
actions. We drop here the restriction that the potential
ranges correspond to any specific-exchange quanta, and
we search for values of W14" and ¢,“™ by requiring
that when used in the Uay corresponding to each
nucleus, they give the correct separation energies for
JH* and pHe’. A set of such parameters is given in
Table II. It is to be noted that the value of U, for \He®
is rather large for this potential. Inclusion of this short
range repulsion also results in there being no net core
compression, A=0, and, in fact, the nucleon orbital in
this case is identical with the undistorted function.
The Herndon-Tang calculation” of Bj(aHe®) also
utilized a A-N potential containing repulsion, in this
case an infinite short-range repulsion, and, in conse-
quence, a trial function with explicit two-body correla-
tions. They found also negligible core distortion.
Their value of Usis 1021 MeV, considerably lower than
that resulting from the Hartree-Fock calculation.
Further comparison is impossible since the Hartree-
Fock procedure cannot be used with infinite repulsions.

Again, the attractive well depth in jsHe® is smaller
than that in pHY reflecting the possible isospin sup-
pression. The A-NV potential in AH* should be directly
related to the free interaction. The scattering length
and effective range of this potential are in fact —2.15
and 3.35 F, respectively, in reasonable agreement with
the average of the experimental values. We have also
recomputed Bxa(aaHe®) assuming the A-A potential to
be identical with the free A-IV interaction [retaining
Una(sHe% r) as the A-N interaction]. The result is

181

Baa(aaHe?) =10.8 MeV, in excellent agreement with
the experimental value.

Finally, we must consider the difference in A separa-
tion energies for the isodoublet \H* and ,He% Part of
this difference arises from the proton Coulomb repulsion
in pHe* Previous calculations of this Coulomb energy
have given results of the wrong sign to account for this
difference, and it has been proposed that the hyperon
interactions are not charge symmetric but contain a
symmetry breaking term.? We estimate the Coulemb
energy AB,© by treating the Coulomb repulsion as a
perturbation on the Hartree-Fock generated wave
functions. If E¢(He?) and E¢(,He*) are the Coulomb
energies for each nucleus

ABA(C) = EC (Hes) —_ Ec (AHC4) .

We use in edch case the wave functions computed with
Volkov Potentials including the repulsive core terms.
In first order, E¢(He?)=0.70 MeV, compared to the
experimental trinucleon Coulomb energy, 0.76 MeV.
Proton finite size has not been included, but this should
not affect the difference AB,(©). Again, in first order,
Ec(yHe!)=0.72 MeV, so that AB,©=—0.02 MeV.
The measured difference is AByX0.1 MeV. Hence, in
this calculation also, Coulombic effects do not account
for this isodoublet splitting.

IV. CONCLUSIONS

The above calculations suffer, of course, from the
intrinsic flaw in all variational procedures: The method
is guaranteed to give only the lowest upper bound to
the binding energy within the class of allowed trial
functions, in this case products of single-particle func-
tions. We again emphasize that the Hartree-Fock
approximation does not allow for two-body correlations
in the trial wave function. Within this proviso the
following conclusions can be drawn: (1) It is possible
to fit the yH* ,He® and ,yHe® binding energies with a
Hartree-Fock model by making quite reasonable
choices for the two-body interaction parameters. (2)
It is possible to choose a two-body A-NV potential with a
repulsive ‘‘core’” which gives the correct 4H* binding
energy and which is consistent with the two-body
scattering parameters. (3) This two-body potential
does not give the correct sHe® binding energy. This
hypernucleus requires a considerably smaller A-NV
attractive potential, indicating that the type of sup-
pression effects suggested by Bodmer are present and
important. (4) Coulombic effects are of the wrong sign
to account for the difference in binding energies of
AH* and ,He?; these conclusions agree essentially with
those of other variational calculations’ assuming very
different nuclear models. (5) In addition, we may con-

29 R. H. Dalitz and F. von Hippel, Phys. Letters 10, 153 (1964).
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clude from these calculations that equality of the A-NV
and A-A interactions is consistent with the binding-
energy data of the various hypernuclear systems.

We can, unfortunately, say nothing at this point
about the exchange character of the A-N potential,
since our calculations here considered only s-shell
hypernuclei, and effects of Majorana exchange do not
enter. Also we can say nothing about the effect of
three-body forces.
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APPENDIX: RELATIONSHIP BETWEEN THE
HARTREE-FOCK AND DALITZ-DOWNS
METHODS

The calculation of the binding energy of AHe® requires
the evaluation and minimization of (¥, HY), with H
the Hamiltonian excluding the total c.m. kinetic
energy

& P2 Pe (PP
= Z:’ 2m, + 2my  2(mat-my)
4 4
+3 > Vwn(ri—r)+ D> Vaw(ra—1:). (A1)
1#5,%,5=1 =1

Here P, is the total momentum of the He* core which
has c.m. position Ta, Po= Y :iy* P;, and m, its mass,
ma=4m,. Vyy and V,y are the nucleon-nucleon and
A-nucleon potentials, respectively. Use of a trial func-
tion of a product of single-particle orbitals leads to the
Hartree-Fock equations [Egs. (9)]. To generate the
Dalitz-Downs equations, we write H as

P2 4
H=H,}+ ’2; + Z Van(ra—13), (A2)
=1
where H, is the internal energy of the He? core,
P2 P2 4
He= 2omy ™ 3 Vin(ri—1;). (A3
=1 2mp,  2mg +3 i#;;.’j=l ww ( 7). (A3)

P is the momentum conjugate to the A-He* separation,
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I=TI)—1T,,
Mo ma

P — —
Matma

Matmp

P, (A4)

and u is the usual reduced mass
u=mama/ (Ma—tmn).

Let the three He* internal coordinates be labelled by
Sy, Ss, and S;. The energy H, thus depends only on the
S variables. The ith nucleon position r; is

Ii= ra+ ti,

with t; an appropriate linear combination of the S
vectors. Thus the A-He* potential is written

i Van(ra—r;) = i Van(r—t;).

The Dalitz-Downs trial function is of the form

Yp_p=x(S1, Sy, Sp)¥ (1), (AS)

and thus

(¥p_p, HYp_p)=Es+ <¢ (r),

X[;—f— :‘: / d$1dS»dS; | x(S:S:S;) |2VAN(f—ti)]¢(f)>,

=1

(A6)
with E,= (x, Hux).

If P(R) is the mass density of the He! core with

respect to its c.m. 1, then

PRI= S [ dSidSSira | x(S, 85, 89 Fo(ra)s R

=1

(A7)

4
-3 f dS1dSx0Ss | x(S1, Ss, Ss) PS(R—ts),

=1

and thus

(¥p_p, H¥p_p)

P2
= Eot <¢(1'), [é; + /dR P(R) VAN(T—R)] ¢(1')> .
(A8)
Minimization of (H) from (A8) with respect to

variations in ¢(r) then leads to the Dalitz-Downs
equations.



