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Hartree-Fock Calculation of Helium Hypernuclear
Binding Energies*
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The binding energies of the s-shell hypernuclei (pH', pHe', and ppHe6) have been calculated in the Hartree-
Fock model, using Gaussian particle-particle potentials. Parameters of the A.-E interaction were determined
from the experimental binding energies. These numerical results agree qualitatively with those of other
calculations and also with the experimental h.-E scattering data, if short-range repulsions are included.
Equality of the h.-E and A-A potentials is consistent with these calculations.

triplet state: a~= —2.07 F,

singlet state: a,= —2.46 F,

r,=4.50 F,

r,=3.87 F.

Several features of the A-X potential have been
deduced. solely from the principle of charge symmetry. 4

Since the lightest exchange quantum giving rise to this
interaction is either a E meson or two (or more) pions
or a combination, the range of this potential is neces-
sarily much smaller than that in the E-Ã potential
which is governed by a single-pion exchange. Second, if
the two- (or more) pion exchange is the dominant
process, the interaction is an ordinary Wigner force,
while if a single kaon exchange dominates, the resulting
potential is of exchange character which changes sign
when operating on two-particle states of negative
relative parity, e.g., the relative A-cV P state occurring
in ~He'. The resultant A-Ã potential is thin spin

*Work performed under the auspices of the U.S.Atomic Energy
Commission.

t Present address: National Bureau of Standards, Washington,
D.C.' D. H. Davis and J. Sacton, High-Energy Physics and Euclear
Structure (North-Holland Publishing Co., Amsterdam, 1967),
pp. 21—33; see also G. Bohm et at. , Nucl. Phys. 84, 511 (1968).

2 S. Ali et al. , Phys. Letters 268, 453 (1967).' See, e.g., G. Alexander, O. Senary, U. Karshon, A. Shapira,
G. Yekultieli, R. Englemann, H. Filthuth, A. Fridman, and B.
Schiby, Phys. Letters 19, 715 (1966).' R. H. Dalitz and B. W. Downs, Phys. Rev. 110, 958 (1958).
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I. INTRODUCTION

)NE of the richer sources of information about the
nature and strength of the A.-E interaction has

been the study of the hypernuclei with A&6. These
isotopes which have thus far been identified and their
respective separation energies are' ~H', Bq——0.32~0.17
MeV; ~H4, B~=1.95~0.14 MeV; ~He4, B~——2.07~0.09
MeV; ~He', 8~=3.10~0.02 MeV; ~He', B„~——4.09
MeV; and the double hyperfragment q~He6, Bqq=
10.7+0.6 MeV. The isotope ~H' has not been observed,
but a large number of heavy hyperfragments, i.e., with
A & 6, have been seen. Until recently, these hypernuclei
were the major reservoir of experimental data on the
A-E system. Within the past several years, however,
scattering experiments have yielded directly the two-
body A-S scattering lengths and effective ranges'; the
most recent determination is'

dependent, as is indicated by the low-energy scattering
parameters, and also it may have the type of tensor
component present in the E-S potential.

One would hope to relate the hypernuclear binding
energies listed above to the free A-E interaction. This is
not possible in every case, however. For example,
Bodmer5 has pointed out that in those hypernuclei in
which the core nucleus has isospin T=O (i.e., sHe',
sttHe', and also sHe') certain terms in the free-particle
interaction are suppressed. These correspond to
channel couplings which require that the virtually
excited core undergo an isospin change; for the case in
which the core is He', the excited state has T'=1.
Presumably, such isotriplet amplitudes are present in
the ~He' core, but these admixtures are small because of
the large excitation energy of He4. This suppression
should be small in the other cases. Thus, one cannot
hope to correctly calculate the binding energies of all
the above hypernuclei in terms of a single two-body
A-E potential.

The hypernuclei gH', gH4, ~He4, and qHe' have been
subjected to extensive and elaborate theoretical
analyses, the Q.rst of these &H' being investigated most
thoroughly. The majority of these investigations have
been variational calculations. ' ' Dietrich, Mang, and
Folk' and, later, Beck and Gutsch, ' assumed all inter-
particle potentials to be square wells (allowing the wells
to have a short-range hard core) and used an inde-
pendent-pair approximation with two strongly corre-
lated particles reacting under the inhuence of a back-
ground due to the other nucleons. In the purely
variational methods it has been generally assumed that
the hypernuclear wave functions are totally space
symmetric with all particle pairs in relative s states.
(Bodmer, ' in treating sHs, included the possibility of a

' A. R. Bodmer, Phys. Rev. 141, 1387 (1966).
6D. S. Lichtenberg, Nuovo Cimento 8, 463 (1958); S. W.

Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959); B. W.
Downs, D. R. Smith, and T. N. Truong, ibid. 129, 2730 (1963);
D. R. Smith and B.W. Downs, ibid. 133, B461 (1964).'R. C. Herndon, Y. C. Tang, and E. W. Schmid, Nuovo
Cimento 23, 259 (1964); Phys. Rev. 137, B294 (1965); R. C.
Herndon and Y. C. Tang, ibid. 153, 1091 (1967);159, 853 (1967).

8 R. H. Dalitz and B.W. Downs, Phys. Rev. 111,967 (1958).
9 K. Dietrich, K. J. Mang, and R. Folk, Nucl. Phys. 50, 177

(1964)."F. Beck and U. Gutsch, Phys. Letters 14, 133 (1965).
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mixed-symmetry S' state, known to be present in Ha

and He'. ") In these calculations a A-Z potential well

shape with different strengths in triplet and singlet
states was assumed, and the energy was minimized with
respect to trial functions of varying degrees of com-

plexity in order to determine the well depths. Two
conclusions result from these calculations: First, the
singlet potential is larger than the triplet potential, a
prediction apparently corroborated by the later analysis
of the scattering data. Second, in order to account
simultaneously for the binding of zH' and the non-
existence of ~H', it has proven necessary to introduce a
repulsive core term into the A-X potential. The latest
calculation reported by Herndon and Tang gives a
hard-core radius of 0.6 I' (assuming an exponential
well outside the core). Their resulting potential gives
scattering parameters in fair agreement with the
experimental values, ' although the effective ranges are
too low. A third aspect of the A-E potential is that in

these light nuclei, where all particle pairs are mainly
s states, the admixture of higher angular-momentum
components (e.g., d waves by the tensor force) produces
no significant effect other than perhaps rede6ning the
central part of the two-body potential.

The nuclei qHe' and qqHe' represent anomalous

systems. For the first of these, the core nucleus He' is
unstable against neutron decay, while the hypercore
&He' is stable. For this reason, the separation energy
I3„&given above is for the neutron-A. pair. Early varia-
tional calculations of this separation energy gave"
inconclusive results, as did some latter attempts with
nonvariational procedures, e.g., Lovitch and Rosati"
and also Ananthanarayanan. '~ The difficulty associated
with this system is that the last nucleon is in a relative

p state with respect to the other particles, thus requiring
knowledge of the p-wave E nand E Ap-otential-s. On

the other hand, +&He' is a system in which all particles
can be in s-state wave functions, because the spin,
isospin, and strangeness quantum numbers are all

distinct. Moreover, in this case one can expect to obtain
information about the nature of the A-A potential
because the effective A-X potential is assumed to be
identical with that in ~He'. On the basis of their
calculations for the binding energy of the heavier
hypernucleus &&Be', Tang and Herndon"" correctly
predicted the existence of p~He', estimating the AA-

separation energy to be 9.68 MeV, fairly close to the
experimental value. Ananthanarayanan' has also
attempted to evaluate this binding energy, using a

"B.F. Gibson, Nucl. Phys. 82, 501 (1967), and references
therein."B.Barselia and S. Rosati, Nuovo Cimento 13, 458 (1959);
L. H. Schick, ibid. 14, 426 (1959); C. Willian, Nucl. Phys. 81,
585 (1965)."L.Lovitch and S. Rosati, Nuovo Cimento 41A, 647 (1967) .

'4 K. Ananthanarayanan, Phys. Rev. 163, 985 (1967).
"Y.C. Tang and R. C. Herndon, Phys. Rev. Letters 14, 991

(&965).
&6 A. R. Bodzger and S. Ali, Phys. Rev. 138, B644 (1965).

Dawson-Walecka" procedure with attractive Yukawa
wells; the resulting binding energies are too large. In
part, this is due to the absence of a repulsive core in the
two-body potentials. Since a core is present in the E-E
and A-X systems, one would expect it to be present in
the A-A system as well, and, as has been argued, ""it is
very plausible that all three interactions exhibit the
same core with the same parameters.

All of the above calculations have assumed that the
interactions of a A particle with a nucleus results from
two-body potentials. Three-body interactions can also
be present, " in particular, if the two-pion exchange
dominates the A's dynamics. Bodmer and Sarnpathar'0
have concluded, how'ever, that in the qH', qH4, and
&He4 systems these three-body forces do not give
significant effects, although this may not be true of the
other hypernuclei. "

In this paper w'e present results for yet another
calculation of these hypernuclear binding energies.
This calculation uses a somewhat different method,
albeit a variational one, namely, the Hartree-Fock model
in configuration space. In the Hartree-Fock method, we
determine the best (i.e., that giving the largest total
binding energy) shell-model wave function, a Slater
determinant of single-particle orbitals. The interactions
that we use are of the Volkov form, " a sum of an
attractive Gaussian well and a repulsive Gaussian core.
When applied to He4, this model gives a binding energy
and a charge form factor which are in good agreement
with the experimental data. "Its use in the hypernuclei
calculation then allows a simple interpretation of the
nuclear core distortion. In Sec. II we present the
Hartree-Fock equations for the several hypernuclei.
Section III contains the numerical results, while Sec.
IV states our conclusions.

IL HARTREE-FOCI EQUATIONS

The Hartree-Fock method minimizes the expectation
value of the Hamiltonian with respect to variations in a
Slater determinant Co of single-particle wave functions
|Pq. Here, X refers to the set of quantum numbers needed
to specify a single-particle state: e the principle quan-
tum number, / the orbital angular momentum, m~ the
projection of /, m, the projection of spin, t the isospin
third component, and s the strangeness. The fq are
represented by

6=9 ~ (~) l~] I'~- (r) =-,~.

"J.F. Dawson and J.D. Walecka, Ann. Phys. (N.Y.) 22, 133
(1963)."S.Aii and A. R. Bodmer, Nuovo Cimento 50, 511 (1967);
Phys. Letters 24B, 343 (1967).

'9 A. Gal, Phys. Rev. 152, 975 (1966)."A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31,251 (1962) .
"R.K. Bhaduri, B. A. Loiseau, and Y. Nogarni, Ann. Phys.

(N.Y.) 44, 57 (1963).
"A.B.Volkov, Nuci. Phys. 74, 33 (1965).
»B. F. Gibson, A. Goldberg, and M. S. Weiss, Nucl. Phys.

118A, 225 (1968).
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m ~""
j,=] SSj

where M is the total hypernuclear mass. Since in these
cases every particle pair has at least one particle in an
s-state orbital, the second term does not contribute in

Eq. (3), and we can take

A p.2

s= p —',
i=i 2@i

(p;= —iAv;) . (4)

Each particle of mass m in a system „X~+" with E
nucleons and e hyperons has "reduced mass" p;

p;(„X~+")=3' /(IV m;)—(5)

with M =emq+ Em„, m~ =proton mass, and md, =A

mass. In view of the comments in Sec. I, the potential'0
is a sum of central spin-dependent two-body potentials
V;;. Variation of «, Eq. (3), then yields the well-known
Hartree-Fock equations. Because the nuclear Hartree-
Fock equations are, in their full generality, rather
complex, we quote below only the equations appro-
priate to the hypersystems in which we are interested.

We erst state explicitly the assumptions and approxi-
mations which have gone into these equations. First,
the Hartree-Fock method assumes that the only
correlation between particles is statistical, arising from
the Pauli principle. This is in contrast to the trial
functions used, e.g., by Herndon and Tang, ~ where
two-body rescatterings are emphasized. Moreover, in
all of these hypernuclei (with the exception of &He«),
the nz„ t, and s degrees of freedom serve to distinguish
each of the particles, eliminating the statistical correla-
tions also. Second, we ignore Coulomb eGects. These
corrections can be considered later as perturbations.
Third, we assume that the radial functions d))) are in-

dependent of m& and m, . This is actually valid only for
closed shell systems, e.g., &&He'. However, one cannot
avoid such an assumption in conGguration space

w'ith ™a function of the three variables nz„ t, and s.
In fact, for these hypersystems, all nucleons are in
either s or p states with /=0, 1, and their reduced radial
orbitals will be labelled briefly as &happ(r) = d))) (r) d)d)np(r) =
P„(r), and all A's are in the lowest s states labelled

4'10,—l(r) =@x(r) . The variations are then made with
respect to the form of the P functions.

The Hamiltonian is assumed to be the sum of the
usual kinetic and potential energy operators

(2a)

and we minimize

«=(cp~ re~ cp)=-z„ (2b)

where E& is the total binding energy. J excludes the
c.m. energy so that

Hartree-Fock calculations without enormously in-

creasing the numerical complexities of the problem.
In any case, these calculations do generate the best
product wave function within this restriction.

We present the Hartree-Fock equations and their
numerical results in terms of effective" two-body
interactions, i.e., after the spin dependence has been
removed. We shall then attempt to relate these effective
potentials to the spin-dependent interactions V;;. In
the systems &He' and»He' the core nucleus is He'.
In this core each nucleon sees one nucleon with spin
parallel (triplet) and two with spins opposed (—',

triplet+ 2 singlet) . Hence the effective potential
between two nucleons a distance r apart in the He4

nucleus is

P~&(He«, r) =—PV))(&( )(r)+V~~( )(r)g, (6)

where V~~' & and V~~& ) are the triplet and singlet
X-X potentials, respectively. This is also the effective
potential between nucleons in ~He' and»He'. Simi-
larly, the effective A.-E and A.-h. potentials in these
systems are

U~d((He4, r) = ~/V))(~(s) (r) +3V))(d((r& (r) g, (7)

&~d.(r) = V~~'"(r) (8)

The Hartree-Fock equations for these nuclei are then,
for gHe',

—fP

2p~(d), He') dr'
—+3I~~ (r) +I~d, (r) y, (r)

= «, (d)He') p, (r), (9)
—fP —+4I-() ~.()="(.H")~.(),

2pd), (gHe') dr'

and for»He',
—fP —+3I~N (r) +2I~d, (r) @,(r)

2p~())gHe«) dr'

="(-H")~.(), (10)
—fP

,+4Inv(r)+4—~(r) 4~(r)
2p, (,~He«) dr'

=«z(zzHe«) Pg(r).

In each set of equations the one-body potentials are
given by

drrr(r) = f dr'd. '(r') rrrrrr(r, r'),

Err(r) = f dr'dr'(r')Mrrr(r, r'),

Irrr(r) = f dr'dr, '(r')rrr, (r, r'),

drr(r) = f dr'dr'(r')Nrr(rr'), ,
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TABLE I. A-separation energies, no repulsive core.

Potential
g, (AN)

{MeV)
g (AN)

(F)

(a) gHe'

~A
(MeV) (MeV) (%) (F) (MeV)

39.4

0.60

1.05

0.60

1.9

3.07

—6.8
—5.9
—8.3
—7.6

22

+0.05

+0.01

+0.07

+0.03

717

926

760

1016

39.4

52.0

{b) AH4

1.05 &0, unbound

1.05 2.01

x—E
potential

(c) 44He', h —h potential parameters, no core

p (AA) + (AA)

(MeV) (F) (MeV)

1.05 12.9

39.4 1.05 9.0
30.0

49.0

1.05

1.05

10.8

10.7

W,(»)=S3.34 MeV,

W, (»&= ~45 Mev,

C (NN) 1 6P
a2(NN& =0.82 F.

Solution of the Hartree-Fock equations L(13) and
(14a) g in which U~~(He4, r) is taken to be a Volkov
potential with these parameters, gives the correct
binding energy, Eb(He4) = 28.31 MeV. In addition, the
charge form factor computed from the resulting wave
function agrees satisfactorily with the most recent
data"" for momentum transfers below q'~7 F 2. Hence
we can with some confidence use this X-S potential in
the hypernuclear calculations involving U~~(He4, r).

The triton binding energy is E&(H') =8.48 MeV.

2' R. Frosch, J.McCarthy, R. Rand, and M. R. Yeari@n, Phys.
Rev. 160, 874 (1967).

p, (r) and pq(r), and evaluates the self-consistent one-
body potentials I~~(r), I~4(r), etc. , Eq. (11). The
resulting Schrodinger equations, Eq. (9) or (10), etc. ,
are integrated numerically to obtain a new set of wave
functions and eigenvalues e, and eA. This cycle is
repeated using the new wave functions until the changes
in the eigenvalues over successive iterations are less
than one part in 104. The final wave functions and
potentials are then used to evaluate the binding energies,
Eq. (14), etc. Trial cases have shown that the program
produces accurate (1%) eigenvalues and wave func-
tions unless the magnitude of the eigenvalue is less than
4 MeV on a nuclear scale of dimensions. In all the cases
discussed here, the criterion for accuracy was satisfied.

One set of parameters given by Volkov for the E-1V
potential in He' is

W,&») =35.9 Mev, g (Ax) f 05 F ~

26 This transformation is discussed by B. W. Downs, Lectures
in Theoretical Physics {Wiley-Interscience, Inc. , New York,
1960), Vol. H, and in Ref. 18.

This value results from Eqs. (15) and (16) if we in-
crease the depth of the attractive part of the well to
8'i(») = 85.6 MeV, and we use this value and the other
parameters above for those cases involving U~~(H', r) .

We assume that the A-S and A-A potentials in all
cases are also of Volkov form, and we attempt to
choose the corresponding well parameters to give the
correct separation energies. These are evaluated
throughout by solution of the appropriate Hartree-
Fock equations and by use of the relations

B4(4He') =Es(4He') —Es(He'),

B4(4H4) =Es(4H4) —Es(H'),

B4s(4pHes) =Es(4gHes) —Es(He4) .

We first ignore repulsive core effects in the hyperon
interactions (Ws&~& = We&4~'=0). Dalitz and Downs'
employed a two-body model of AHe' in which the A

interacts with the averaged Geld of the He' core. They
fixed the depth of the A-He' potential by requiring that
the experimental SA be secured under radial com-
pression of the He4 core. Their potentials were con-
structed from Gaussian A-X interactions whose
intrinsic range corresponds to Yukawa's for 2m or E
exchange. ' From their results we obtain the following:

Two-pion exchange:
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Kaon exchange:

W,«» =149 MeV, g (AN) 0 60F

The Hartree-Fock equations L(9) and (14)$ give the
results for these parameters shown in Table I(a)
(potentials 1 and 2). Table I(a) also indicates the
effects of the nuclear core distortion. Ae, is the per-
centage change in the single-particle energies asso-
ciated with the nucleon orbitals, this change arising
from the presence of the A. 6 is the core compression,
defined by

A = —t'r~ (sHe') —r~ (He') $,

with r~ the rms radius of the nucleon mass distribution.
Finally, U4 is the volume integral of the 4-He4 potential,

r'dr4Ig~ (r) .

U4 is defined identically as that in other calculations. ' ""
In order to clarify the nature of the nucleon orbital

distortion, Fig. 1 illustrates the nucleon radial wave
function @,(r) in both the He' and &He' systems for
potential 3. As would be expected, the orbital is pushed
in slightly to smaller distances. As reQected in the
rather small value of 6, this squeezing is not very great,
although it has a marked effect on the single-particle
energy eigenvalue.

The BA's calculated by the Hartree-Fock method are
considerably too low. This appears puzzling in that the
core compressions (5% and 1% for potentials 1 and 2,
respectively) are cf the same order as those of Dalitz
and Downs' (8% and 3%). (Their nuclear compressi-
bility was, however, quite high: 280 MeV. ) In addition,
the Dalitz-Downs values for U4 are 910 and 695 MeV,
slightly smaller than those in Table I(a) .

In order to reproduce the experimental value of
Bz(sHe') by the Hartree-Fock method, it is necessary

istorted
orted

.20

0
0 t.o 2.0 3.0 4.0 5.0 6.0 7.0

r (Fermi)

Fxc. 1.Solid curve is the nuclear radial wave function in isolated
He4. The solid line with dots is the same quantity changed by the
A in gHe~.

' U'4's and compressions for various calculations are discussed
in recent review articles; see R. H. Dalitz, in Interaction of High-
Energy Particles with Nuclei, edited by T. E. O. Ericson (Aca-
demic Press Inc. , New York, 1967).

SA. R. Bodmer, Hypernuclear Spectroscopy in High Energy
Physics and Nuclear Structure {North-Holland Publishing Co.,
Amsterdam, 1967) .

to increase the A N-well depths by about 10% to those
given in Table I(a) (potentials 3 and 4) .

The Dalitz-Downs calculation, in fact, is also a
variational calculation, minimizing the average of the
same Hamiltonian as used above. The essential differ-
ence between the Dalitz-Downs and Hartree-Fock
methods lies in the nature of the trial function. Use of a
product trial function leads to the Hartree-Fock
equations. Dalitz and Downs, on the other hand, chose
a trial function of the form $(r)x, with 7C involving
only the internal coordinates of the He4 core, and P
a function of the A-He separation distance. Minimiza-
tion of the energy then leads to the Dalitz-Downs
results (see the Appendix) . The product function
permits no correlations (other than statistical) between
particles, while the Dalitz-Downs function assumes a
correlation of a specific form, between the A. and the
He4 core as a whole. On the other hand, the Hartree-
Fock method allows for distortion effects by the A,
whereas in the Dalitz-Downs model such distortion
effects can in practice be included only in a simple way
(e.g. , an over-all compression). It is clear from the
results in Table I(a) that the Dalitz-Downs model for
qHe' is superior in that it produces a larger binding
energy. This superiority is presumably a reQection of
the large He' excitation threshold, which binders those
core distortions which form the virtue of the Hartree-
Fock method. Presumably, also, these distortion
effects are more important in other hypernuclei whose
cores have much smaller excitation energies. Moreover,
it is not clear how' the Dalitz-Downs niethod, the
replacement of the AHe' system by essentially a two-
body system, could be applied to other cases, e.g. , the
limit of feasibility is &AHe, which would, by this
method, be replaced by a three-body system. "Although,
clearly, the Hartree-Fock method is not the best for
&He, its possible utility to other s-shell hypernuclei,
where the two- or three-body approximations may not
be superior, is plausible.

The potential parameters for AH4 are given in Table
I(b) .These potential parameters which are satisfactory
in &He' do not bind this lighter system, and one must
increase the well depth to that indicated by potential 5.

Relating these well depths 8"~'~& for AHe' and AH'

(potentials 4 and 5) to the A-X spin-singlet and triplet
potentials, Eqs. (7) and (17), we find that the triplet
well is very much shallower than that in the singlet
state. However, the scattering parameters in Sec. I
indicate that these wells should not be very different,
and that the singlet potential is only slightly more
attractive than the- triplet potential. If one accepts the
applicability of the Hartree-Pock model to these
hypernuclear systems, one must conclude that, as
suggested by Bodmer, 28 the triplet A.-N interaction in
AHe5 is greatly suppressed.

Having obtained an appropriate set of parameters
for U~s(He', r), we proceed to the case of ques,
choosing various values of the depth 8'~~A+ of the well
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TAsLE II. A-separation energies, Volkov-type potentials
(see Sec. III).

g7 (gN)

{MeV)
g (gN)

(F)
~A

(MeV)
U4

(MeV)

gH4 94.0

85.8 1.21

2.07

3.10 1606

Vqq(r). This interaction cannot arise from a kaon
exchange, and we choose its range to correspond to that
of the two-pion exchange, a~&~~~=1.05 F. The results
are shown in Table I(c). As noted above, this A-A

potential is the singlet interaction. It is interesting that
the well depth giving the correct value of Bpq, S'~~~~~ =
49 MeV, is rather close to the value of S'~|'~', 52 MeV,
obtained from zH'. The relatively large uncertainty in
the measured value of Bgi, (qqHe') allows the possi-
bility that these different well depths could be equal, in
agreement with Ali and Bodmer '

To include the effects of the short range repulsion,
we accept the hypothesis that the "core" parameters
should be approximately the same for the E-E, A-E,
and A.-A. potentials. Accordingly, we set 8'2 and a2

equal to the Volkov values given above for all inter-
actions. We drop here the restriction that the potential
ranges correspond to any specific-exchange quanta, and
we search for values of 8'~&~& and a~&~) by requiring
that when used in the U~ corresponding to each
nucleus, they give the correct separation energies for
qH4 and gHe'. A set of such parameters is given in
Table II. It is to be noted that the value of U4 for gHe'
is rather large for this potential. Inclusion of this short
range repulsion also results in there being no net core
compression, 6=0, and, in fact, the nucleon orbital in
this case is identical with the undistorted function.
The Herndon-Tang calculation7 of Bq(gHe') also
utilized a A-E potential containing repulsion, in this
case an in6nite short-range repulsion, and, in conse-
quence, a trial function with explicit two-body correla-
tions. They found also negligible core distortion.
Their value of U4 is 1021 MeV, considerably lower than
that resulting from the Hartree-Fock calculation.
Further comparison is impossible since the Hartree-
Fock procedure cannot be used with infinite repulsions.

Again, the attractive well depth in ~He' is smaller
than that in ~H4, rejecting the possible isospin sup-
pression. The A.-X potential in ~H4 should be directly
related to the free interaction. The scattering length
and effective range of this potential are in fact —2.15
and 3.35 F, respectively, in reasonable agreement with
the average of the experimental values. We have also
recomputed Bqq(qqHe') assuming the A-A potential to
be identical with the free iI-X interaction Lretaining
U~q(qHe', r) as the A-X interactionj. The result is

Bqq(qqHe') =10.8 MeV, in excellent agreement with
the experimental value.

Finally, we must consider the difference in A. separa-
tion energies for the isodoublet gH4 and ~He4. Part of
this difference arises from the proton Coulomb repulsion
in qHe . Previous calculations of this Coulomb energy
have given results of the wrong sign to account for this
difference, and it has been proposed that the hyperon
interactions are not charge symmetric but contain a
symmetry breaking term. "We estimate the Coulomb
energy AB&&+ by treating the Coulomb repulsion as a
perturbation on the Hartree-Fock generated wave
functions. If Ec(He') and Ec(qHe4) are the Coulomb
energies for each nucleus

ABii&c' =Ec(He') —Eo(gHe4) .

We use in each case the wave functions computed with
Volkov Potentials including the repulsive core terms.
In first order, Ec(He') =0.70 MeV, compared to the
experimental trinucleon Coulomb energy, 0.76 MeV.
Proton finite si~e has not been included, but this should
not affect the difference 6B~'~~. Again, in erst order,
Ec(qHe4) =0.72 MeV, so that AB~&c&i= —0.02 MeV.
The measured difference is ABq 0.1 MeV. Hence, in
this calculation also, Coulombic effects do not account
for this isodoublet splitting.

Iv. comcLUsroms

The above calculations suffer, of course, from the
intrinsic Qaw in all variational procedures: The method
is guaranteed to give only the lowest upper bound to
the binding energy within the class of allowed trial
functions, in this case products of single-particle func-
tions. We again emphasize that the Hartree-Fock
approximation does not allow for two-body correlations
in the trial wave function. Within this proviso the
following conclusions can be drawn: (1) It is possible
to 6t the ~H, ~He', and gee' binding energies with a
Hartree-Fock model by making quite reasonable
choices for the two-body interaction parameters. (2)
It is possible to choose a two-body A-X potential with a
repulsive "core" which gives the correct gH4 binding
energy and which is consistent with the two-body
scattering parameters. (3) This two-body potential
does not give the correct &He' binding energy. This
hypernucleus requires a considerably smaller A-Ã
attractive potential, indicating that the type of sup-
pression effects suggested by Bodmer are present and
important. (4) Coulombic effects are of the wrong sign
to account for the difference in binding energies of
zH' and &He4; these conclusions agree essentially with
those of other variational calculations~ assuming very
different nuclear models. (5) In addition, we may con-

2~ R. H. Dalitz and F. von Hippel, Phys. Letters 10, 153 {1964).
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elude from these calculations that equality of the A.-S
and A.-A interactions is consistent with the binding-
energy data of the various hypernuclear systems.

We can, unfortunately, say nothing at this point
about the exchange character of the A-S potential,
since our calculations here considered only s-shell
hypernuclei, and effects of Majorana exchange do not
enter. Also we can say nothing about the effect of
three-body forces.
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r=r~ —r,

ns +mR m +m)),
(A4)

and p, is the usual reduced mass

p=m m)tj(m +my).

Let the three He4 internal coordinates be labelled by
Sl, S2, and S3. The energy II thus depends only on the
8 variables. The ith nucleon position ri is

r;=r +t;,
with ti an appropriate linear combination of the S
vectors. Thus the A.-He4 potential is written

APPENDIX: RELATIONSHIP BETWEEN THE
HARTREE-FOCK AND DALITZ-DOWNS

METHODS

The Dalitz-Downs trial function is of the form

%D D=x(Sg, Ss, Ss)f(r),
and thus

(A5)

The calculation of the binding energy of &He' requires
the evaluation and minimization of (old, H%), with H
the Hamiltonian excluding the total c.m. kinetic
energy

(0' n, nRrrn n) R+ (d (r=),

P2 4

)d —+ g dS,dS,dS,
~
r(S,S,S,) ('Vrn(r t;) d(r)), —

2Q

(A6)
withe =(x, H y).

4 H &(R) is the mass density of the He4 core with
+s Z V»(r' rd')+ Z Vdu)((r~ r') (A&) respect to its c.m. r, then

i+j,i,j=l i=1

Here P is the total momentum of the He4 core which
has c.m. position r, P = P;=~'I';, and m its mass,
m =4m~. V~~ and V~ are the nucleon-nucleon and
A.-nucleon potentials, respectively. Use of a trial func-
tion of a product of single-particle orbitals leads to the
Hartree-Fock equations LEqs. (9)j. To generate the
Dalitz-Downs equations, we write H as

4

P(R) = g dS~dSsdS()dr ~X(S&, SR, Ss) ~'l)(r )t)(R—r;)
i=1

(A7)

dS)dSsdSs
~
X(Sg, Ss, Ss) ~'()(R—t;),

and thus

(+D Dr H+D D)— —
A2

P2 4

H=H + —+ Q VR~(rR r;), —
2P is=1

where II is the internal energy of the He4 core,

4 P2 P2
H = Q

' — +-', Q V»(r, —r;). (A3)
2~y 285& iQj; i, j=] Minimiza, tion of (H) from (AS) with respect to

variations in f(r) then leads to the Dalitz-Downs

equations.P is the momentum conjugate to the A-He4 separation,

P2
R +(d(r)=, —. + dRR(R) Vrn( ~ R) d(r)) . —

(A8)


