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Rb Atoms in a Rare Gas. Theory

C. C. Bouchiat

Laboratoire de Physique Theorique et IIautes Enerf ies, Faculte des Sciences d'Orsay, Orsay, France

and

M. A. Bouchiat and L. C. L. Pottier
I aboratoire de Spectroscopic IIertzienne de l'Ecole No~ale Superieure, Faculte des Sciences de Paris, Paris, France

(Received 21 October 1968)

Relaxation experiments performed on optically polarized Rb atoms in a rare gas have been
previously reported; their detailed interpretation is given below. It is shown that the relax-
ation governed by the spin-orbit interaction is strongly affected by the formation of chemically
unstable Rb-Kr molecules bound by van der Waals forces. Tvro processes of molecule for-
mation are analyzed: binary resonant collisions leading to metastable states and three-body
collisions producing actual bound states. A relaxation model valid for any disorientation
probability per single Rb-Kr interaction is developed. Aside from clear evidence for the
existence of alkali-rare-gas molecules, the success of the theoretical interpretation of the
relaxation experiments yields the equilibrium constant X=1.7 && 10 cm /molecule for the
reaction Rb+ Kr=Rb-Kr at 300'K, the average lifetime of a Rb-Kr molecule in the gas phase,
&= 0.65 x 10 sec, at a krypton pressure of one Torr, and the average spin-orbit coupling
constant in a Rb-Kr molecule, ph = 0.63 MHz. It is also shown that the spin-orbit potential
is predominantly short-range.

I. INTRODUCTION

Relaxation of alkali atoms in a diamagnetic buf-
fer gas usually involves two mechanisms: it is
induced (a) by wall collisions after diffusion
through the gas, (b) by collisions against the gas
molecules. The problem has been reinvestigated
recently under different experimental conditions
so that mechanism (b) becomes the dominant one.
Experiments were also performed in a wider
pressure range. ' The results obtained for the
Rb-Kr pair look at first glance quite puzzling:

(i) the relaxation rates of (Sz) depend strongly
on the magnetic field, while no field dependence
is expected up to several thousand gauss for col-
lisions lasting for a time of the order of 10 "
sec, a typical value for binary-collision duration
in the gas phase.

(ii) In low fields the same relaxation rates are
not proportional to the gas pressure P. This also
is unexpected, because any relaxation mechanism
involving binary Rb-Kr collisions should lead to
a relaxation rate proportional to the collision rate,
i.e. , to P. On the other hand, above 200 G, re-
laxation rates become proportional to P.

The purpose of the present paper is to give a
theoretical interpretation of these relaxation ex-
periments. Owing to the peculiar field and pres-
sure dependence of the relaxation rates, the ex-
perimental data are rich enough to allow a de-
tailed description of the disorienting mechanism.

The paper is organized in the following way:
First (Sec. II), the general form of the interaction
between a rare gas having zero nuclear spin and
an alkali atom is deduced from simple invariance
considerations. It is argued that the relaxation
of Rb atoms by collisions against rare gas atoms
without nuclear spin is likely to be governed by
the spin-orbit interaction. Then, in Sec. III,
different types of Rb-Kr collisions are analyzed;
emphasis is put on parameters playing an essen-
tial role in the relaxation mechanism: the colli-
sion rate and the duration of the disorienting in-
teraction. A sharp distinction appears between
the binary collisions which last only a few 10 "
sec (hereafter called "sudden" two-body colli-
sions) and the three-body collisions which lead
to the formation of Rb-Kr molecules loosely bound
by van der Waals forces and likely to be destroyed
at the next collison against a Kr atom. From the
energy spectrum of the Rb-Kr molecule the equi-
librium constant of the Rb+ Kr Rb-Kr reaction
is computed. A crude estimate of excitation and
break-up cross sections is given for collisions
between a Rb-Kr molecule and a Kr atom. We
study also the process of formation of molecular
metastable states by two-body resonant collisions.

Next (Sec. IV), we turn to the relaxation prob-
lem itself. For "sudden" two-body collisions,
perturbation relaxation theory can be used be-
cause these collisions are weak; the motional
narrowing condition is satisfied. However, this
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is no longer always true for collisions leading to
the formation of Rb-Kr molecules; at a low Kr
gas ressure a molecule lives long enough to al-
low to perform a complete precession around
the total molecular angular momentum I+S so
that the spin-flip probability is of the order of
unity. Consequent1y we have developed (in Sec.
V) a model of relaxation valid for any value of the
spin-flip probability per single Rb-Kr interaction.
We obtain the explicit dependence of the relaxation
rate versus the gas pressure, the temperature
and the dc field in terms of averaged physical pa-
rameters. In Sec. VI, we show that the relaxa-
tion theory proposed in this paper gives a satis-
factory interpretation of experimental results.
The field-dependent part of the relaxation is as-
sociated with collisions leading to formation of
molecules. The predicted theoretical pressure
and field variations are well reproduced experi-
mentally. "Sudden" two-body collisions account
for the relaxation rates measured at field values
larger than 200 G. From a fit of theoretical
"urves with experimental data, we obtain values
for the physical parameters of the theory (the
equilibrium constant, the averaged collision life-
time and the averaged spin-orbit coupling con-
stant for a Rb-Kr molecule), which agree with
theoretical estimates. Finally a comparison of
the relaxation rates measured at 0 and 200 G
yields some information about the range of the
spin-orbit potential.

II. INTERACTIONS BETWEEN A ZERO-NUCLEAR-
SPIN RARE GAS AND AN ALKALI ATOM

We shall describe the interaction between a
rare-gas atom of spin 0 and an alkali atom of nu-
clear spin I and electronic spin S, by a potential
U(r, p, I, 5), where r and p are the relative co-
ordinate and momentum of the two atoms. We
shall first restrict our discussion to the case S
=I= —,'. We shall deal later with the case in which
I takes an arbitrary value. Keeping only terms
linear in the momentum, ' the most general poten-
tial compatible with invariance under space rota-
tion, space reflection and time reversal can be
shown to be of the form

U= U(r)+ [a+ o.'(r)]f I

+P(r)[(S r)(l r)/r' -,'S I]-
+y (r)5 N+ 6(r)f N (1)

where IN= rxp is the relative orbital angular
momentum of the two atoms.

The dominant term is obviously the purely cen-
tral term U(r) which describes the electrostatic
and exchange forces between the constituents of
the two atoms. Atom-atom scattering experi-
ments, at low energy, ' have been analyzed in
terms of a U(r) of the 12-6 Lennard-Zones type:

(2)

For the Rb-Kr pair, experimental results can be
fitted with e = 10 ' eV and r~ =4.53A (r~ is the
value of r for which U(r) is minimum and equal to
—e).

The other terms in U, which play a negligible
role in the scattering process, govern the relaxa-
tion of polarized Rb atoms. As a consequence of
time-reversal invariance, no electrostatic inter-
action (including exchange) can remove completely
the degeneracy of a system of 2 atoms for which
the total electronic angular momentum is half-
integral (Kramers theorem). So in the present
case spin-dependent interactions have necessarily
a magnetic origin and are consequently quite small.

We discuss now each term of U separately. The
hyperfine interaction aS ~ I for free alkali atoms is
modified by the quantity o.(r) which describes the
effect of the distortion of the 's electronic wave
function during a collision. Since we shall deal
only with experiments concerning longitudinal re-
laxation in a relatively low magnetic field, our
prepared system of polarized Rb atoms shall be
described by a density matrix diagonal with re-
spect to F'= (I+ S)2 and Iiz = fz+ Sz, so that the in-
teraction n(r)S ~ I will not participate in the relax-
atxon process.

It is likely that the nuclear spin-orbit interaction
6(r)I N is smaller than the electronic spin-orbit
interaction y(r)S ~ N by a factor of the order of the
ratio of the electron to the nucleon mass, but
there is no a Priori argument to tell which one of
the two: spin-orbit interaction y(r)S N or aniso-
tropic hyperf inc interaction

P(r)[(f. r)(l r)/r' —-', 5' I]
is the dominant one. In the simple case of the H,+
molecule, calculations have been made; both come
out with the same order of magnitude. ~ For the
case of the Rb-Kr pair, only the spin-orbit cou-
pling interaction has been estimated by Herman. '
To prove that the spin-orbit interaction is likely
to be the dominant one, it is necessary to refer to
the results of a phenomenological analysis of re-
laxation measurements performed on the two iso-
topes of Rb [I("Rb)=2, and I("Rb) =-,']. In the
case where the motional narrowing condition is
satisfied, theory predicts that the mean value of
(S ' I) relaxes with only one time constant TH while
the time evolution of the electronic polarization
(Sz) is governed by two time constants Te and T„.
It can be shown that for a Zeeman splitting asso-
ciated with a magnetic field of about 200 G, the

s betwee~ the tim
relative to the two isotopes can be predicted both
for the spin-orbit interaction' and for the aniso-
tropic hyperfine interaction. ' Table I summa-
rizes the theoretical predictions one obtains when
the correlation time is assumed to be shorter
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TABLE I. Theoretical and experimental relaxation rates. The numbers presented in this table are the ratios be-
tween the relaxation rates of different observables relative to an ensemble of Rb or Rb atoms. TII, T, and

refer respectively to the relaxation rates of (S ~ 1), (Iz), and (Qe) = (Sz)- (2/[(2I+1)~ —2j}(Iz). The values
predicted by theory when it is assumed that the disorienting interaction is either the spin-orbit (S N) or the aniso-
tropic hyperfine interaction are compared to the experimental values measured at 200 0 for the relaxation of Rb
induced by collisions with Kr.

S ~ N interaction

Theoretical values
anisotropic hf

interaction

Measured values with
experimental accuracy

for Rb-Kr

Rb T /T~
Tn/Ta

T /T~
Tn/TII

T 85/T 87
n n

1
18

2.25

1.09
1.6

1.035
3.79

0.89

1+ 0.15
8.5 6 0.6

1 + 0.15
18.1 + 1.8

2.1 ~ 0.16

than the inverse of the hyperfine frequency 54TV '. '
Experimental results shown also in Table I favor
unambiguously the spin- orbit interaction as the
dominant one.

For an alkali nuclear spin I larger than —,', in-
variance principles allow types of interactions
other than those just discussed. They will con-
tain higher-order tensors built from the nuclear
spin operator I. During the collision an electric
field gradient will appear along the line joining
the 2 atoms; it will couple with the quadrupole
moment of the nucleus, giving rise to an interac-
tion of the form

g(r)[(f r)(f r)/~'- —,'~. .f'].'
U

A crude estimate of its order of magnitude can
be obtained in the following way. The same in-
teraction plays a predominant role in the nuclear
relaxation of a rare gas (with IW —,') induced by
collisions between identical atoms. The case of
"'Xe has been investigated in detail. ' lf one as-
sumes an order of magnitude not too different for
the Rb-Kr pair, it will certainly play a negligible
role in the relaxation of Rb atoms. Furthermore
it can also be eliminated owing to arguments sim-
ilar to those used above for the anisotropic hy-
perf ine interaction.

In conclusion we shall assume in the rest of the
present paper that the relaxation of Rb atoms by
collisions against rare-gas atoms without nuclear
spin is~overned by the spin-orbit interaction
y(r)s N.

III. GENERAL PROPERTIES OF THE Rb-Kr SYSTEM

A. Introduction

interaction between a rare gas and an alkali atom
has an unexpectedly long correlation time. As a
first explanation, one might think that the disori-
enting interactions relative to two successive col-
lisions might be correlated. This would imply
the presence, in the correlation function, of a
characteristic time of the order of the time of
flight. However, a detailed analysis shows that
even if such a supposed correlation should exist
it could not account for the amPlitude of the ob-
served variation of relaxation time constants with
the Zeeman splitting.

As we shall show in the rest of this paper, the
correct explanation for this long correlation time
seems to go along the following lines: A Rb and
a Kr atom have a certain probability to stick to-
gether (mainly after a three-body collision),
giving rise to a Rb-Kr molecular state likely to
be destroyed at the next collision. The disorient-
ing interaction will then last for the lifetime of
this molecular state, i. e. , roughly the time of
flight, 10 ' to 10 ' sec, for a Kr pressure vary-
ing between 0.1 and 10 Torr.

In this section, after a short review of the two-
body problem for a Rb-Kr pair, we shall describe
the energy spectrum of Rb-Kr bound and resonant
states. Using statistical- mechanics considera-
tions, we shall evaluate the fraction of Rb atoms
engaged in a Rb-Kr molecular state at a given
time. A very crude estimate of excitation and
break-up cross-sections for a Rb-Kr molecule
collision with a Kr atom will be given. Finally,
the lifetime and production cross sections of reso-
nant states in two-body collisions will be dis-
cussed.

B. The Two-Body Problem

The experimental results recalled in the intro-
duction suggest that the stochastic spin-dependent

The relative motion of the Rb-Kr pair is re-
duced to the motion of the relative particle of
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mass

i =M „~ „/(m +~ „)
and energy E =P'/2 p, , in the effective potential

UN(r) = U(y)+N(N+ 1)h'/2gr' (3

where SN is the relative angular momentum of
the pair.

Typical shapes of UN(x) are given for different
values of N (Fig. 1). For 0 & N& Nc, UN(~) has
the shape of a potential well protected by a cen-
trifugal barrier. The phase space allowed for
the relative particles can be decomposed into
three domains corresponding to the regions I, II,
and III of the (E, x) diagram of Fig. 2. The states
in region I are ordinary bound states which can
be formed and destroyed only in three-body col-
lisions. Region II corresponds to metastable
states. They can decay via the tunnel effect, but
apart from a few states in the vicinity of the top
of the barrier, their natural lifetimes are much
longer than the time of flight of the pair, so that
they can be treated on the same footing as true
bound states. The states in phase-space region
III are the normal diffusion states. When 0&E
&Emax(N), the relative particle has a finite prob-
ability of passing to region II because of the tun-
nel effect, but this probability is negligible un-
less E is equal to the energy of a metastable
state near the top of the barrier. For these few
cases, we are dealing with a resonant diffusion
with a collision time given by the lifetime of the
corresponding metastable state. In all other
cases, the incident particle is reflected and the

C. Energy Spectrum of Bound and Metastable States

The energy of the bound states can be obtained
with good accuracy in the semiclassical approxi-
mation, using the Bohr-Sommerfeld quantization
rule

with

h(v +-,')= f2'p(r)d~,
1

p(~) = (2q[E(t, N) —U(~)

—h'(N+-,')'/2 p~'j }'I'

and v an arbitrary zero or positive integer; x,
and x, stand for the classical turning points.
Following the usual prescription, we have re-
placed N(N+ 1) by (N+ 2)' in the expression of the
centrifugal potential. For different values of v

disorienting interaction will act for a period of
the order of the range of the spin-dependent po-
tential divided by the velocity of the relative par-
ticle; this is what we call a "sudden" two-body
collision.

It thus appears that we have to deal with two
very different kinds of collisions: "sudden" col-
lisions having a large rate, but a short duration,
and "sticking" collisions (i. e. , three-body col-
lisions or two-body resonant collisions, yielding
the formation of a molecule), which have a small-
er rate, but which lead to quite a long Rb-Kr in-
teraction. Before investigating the relaxation
process induced by collisions of each type, we
analyze below a few characteristics of the "stick-
ing" collisions.

. , 10
C

1

C

Nc =90

N =70
+ "10
C

6 -1
C

Emax (N)

dis/ance in A

ce in A

FIG. 1. Typical shapes of the effective potential
U~(r) for various values of ~, computed for a Lennard-
Jones 12-6 potential. (&~=4.53 ~; e= 10 eV).

FIG. 2. Phase space allowed to the relative particle
describing the relative motion of a Rb-Kr pair charac-
terized by the relative angular momentum ~: region
I corresponds to actual bound states, region II to meta-
stable states, and region III to normal diffusion states.
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the energies E(v, N) plotted as a function of (N
+ —,)' in Fig. 2 appear as straight lines. " The en-
ergy E(v, N) is given as a sum of two terms:

E(v, N) =E + ft'(N+ ')'/2I-(v) (6)

with 0~¹N (v)
max

The first term independent of N is interpreted
as a vibrational energy. The second term is a
rotational energy, the moment of inertia &(v) be-
ing a slowly varying function of the vibrational
number v. The rotational band is cut off at an
integral value Nmaz(v), which is the largest in-
tegral value of N such that inequality

E(v, N) - E (v, N)

holds.

g. being the multiplicity of the level E.. The con-
t/ibution of the discrete spectrum reads

v ¹N (v)max

(2N 1)
PE( N)

and the one of the continuous spectrum is

en '1'd'p

with A. = h(2qP/g)'~'T

(In the unbound pair associated with region ill,
the particles are considered as free particles.
This is legitimate since we are working with a
gas at low pressure). For the Rb-Kr pair at
300'K, A. T = 1.58&&10 cm. The volume Q is of
the order of a few cubic centimeters; so, the
number of states in the continuum is much larger
than the total number of bound and metastable
states, which is around 3&&10', and we can write
6'(v, N) as

g(, N)=~ ~ 1(2N 1)

5000 7000

The total number of Rb-Kr molecules in a (v,
N) state is given by

n(v N)=N N g(v N)

Ql

Qp

C .4 e levels m=8 to 14

e not represented.

D. Equilibrium Populations of the Rb-Kr Molecular
States

Let us consider a Rb-Kr pair. The total num-
ber of pairs is NKrNRb where NKr and NRb
are the total number of Kr and Rb atoms in the
volume g. We are concerned with the case for
which NRb «NKr. The probability of finding a
pair Rb-Kr in a bound state (v, N) having energy
E(v, N) is given, assuming thermal equilibrium,
by

(P(v, N) =(2N+ l)e ' /Q. g. e
—PE(v, N)

The sum g runs over all states E& of the dis-
crete and continuous spectrum of the Rb-Kr pair,

FIG, 3. Energies of the different rotational-vibrational
molecular states of the Hb-Kr pair computed for a

0
Lennard-Jones 12-6 potentia1 (~~ =-4.53 A; &=10 eV),
by using the W.K.B. approxi-mation.

and the fraction of Rb atoms in a (v, N) molecular
state by

n(v, N)/N =N 6'(v, N) (10)

Apart from the Boltzmann factor, which is not
too different from unity at 300'K, this ratio does
not depend on v; it is proportional to the multi-
plicity 2N+1 of the state. For a mixture of Rb
and Kr at one atmosPkere of Kr, the total frac-
tion of Rb atoms engaged in all molecular states
is obtained, after computation" of Z v N &(v, N)
=3.70&10~, as

Z n(v N)
n v ¹N (v)Rb-Kr max

Rb Rb

—=3.56X10 ' .

Rb-Kr Rb Kr

from considerations of pure statistical theory:

X='V Q Z 6 (v, N)
v ¹N (v)max

Equation (11) is just the law of mass action writ-
ten for the equilibrium condition Rb+ Kr Rb-Kr.
We have deduced" the equilibrium constant
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= 1.46 x 10-"cm'/molecule, or v(v, N)/T (v, N) =N P(v, N) . (14)

at 300'K.
Before closing this section we would like to give

a simple. relation which will be of some use later.
Let v(v, N) be the lifetime of a, molecular state
(v, N) of given energy and Tf '(v, N) the probabili-
ty per unit time for the capture of a Rb atom into
that same Rb-Kr molecular state. Writing that,
at equilibrium, the number of molecular states
produced is equal to the number of states de-
stroyed per unit time, we obtain the relation

n(v, N)/v(v, N)=N /T (v, N),

v, N
(v, N) '

then satisfies the relation

7'/T =n /N =N 'U 'X .

Later we shall assume that all molecular states
involved have the same lifetime 7. . The forma-
tion rate of a Rb-Kr molecule

E. Break-Up and Excitation Cross Sections of Rb-Kr Molecules

We present now a crude evaluation of the inelastic scattering cross sections of a Rb-Kr molecule by a
Kr atom. A full treatment of the three-body problem involved is obviously out of the question, and we
will have to rely on approximations which are not always fully justified. Our discussion will be a classi-
cal one; quantum effects are certainly present, but they do not affect the gross structure of the scatter-
ing process. We shall also assume that Rb-Kr and Kr-Kr interactions are identical.

(I) The break uj c-ross section will be discussed first. Let us introduce the two following average
break-up energies; ~~ and ~~, defined as follows:

sE = Q (P(v, N)[E(v (N), N) —E(v, N)]/Q 6'(v, N),

~E = Q 6(v, N)[E(v, N (v)) E(v, N)]/ Z 6'(v, N),
v, N v,N

where vmax(N) [Nm~(v)] is the highest vibrational [rotational] number for a given value of N [v]; AE~
[ AEv] corresponds to a transition where the energy is transferred to the molecule only in the form of
rotational [vibrational] energy. Using the results of Sec. III C, one finds numerical values for 4E and

b,E =0.45&=4.5x10 ' eV, 4E =0.26m=2. 6xlQ ' eV.
V

(16)

These numbers have to be compared with the average kinetic energy of the incident Kr atom in the rest
frame of the molecule

E. = —,
' p-'=5. 6e=5.6xIO ' eV.

Z

To have a rough idea of the break-up cross section, we use the classical analog of the impulse approxi-
mation: the incident Kr atom is assumed to interact only with one of the two atoms of a Rb-Kr molecule,
the other atom acting as a spectator. Such an assumption is justified only when the classical rotational
and vibrational periods of the molecule are much longer than the collision time; this is probably realized
for collisions having a small impact parameter. The binding energy and the kinetic energy of the atoms
of the Rb-Kr molecule are neglected with respect to the kinetic energy of the incident atom. Let g be the
scattering angle in the center-of-mass frame of the two interacting atoms, the kinetic energy given to the
target atom (assumed to be initially at rest) being Eisin )t/2. If the mass of Kr and Rb atoms are taken
to be equal, half of this energy will be transferred as vibrational and rotational energy of the molecule,
the rest of it being found as kinetic energy of the center of mass.

The geometry of the collision is specified in Fig. 4. We have denoted by A. the center of mass of the
atom of the molecule interacting with the incoming Kr atom. J3 is the center of mass of the other atom
and 0 the c.m. of the molecule. p~ is the recoil momentum of A. , g and g define the direction of themo-
lecular axis with respect to the direction of the Kr atom incoming with momentum p. . The quantity P
denotes the angle of p~ with the molecular axis.
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FIG. 4. Coordinate system used to specify a co11ision
between a Rb-Kr molecule and a Kr atom.

Ql
o
o

0

The energies transferred to the molecule as vibrational and rotational energies are, respectively,

5E = -,' cos'g sin'(y/2)E. , 6E = —,
' sin'g sin'()t/2)E . .

5 (is)

The total energy 5E„+5E~ = —,
' (sin'y/2)Ei, necessary to break-up a molecule, depends on the angle g.

The average break-up energy 4=(5E&+DE~)av, averaged over g and the initial molecular state, can be
readily calculated in terms of AE~ and AEz, if the curvature of the curve Em~(N) of the energy dia-
gram (Fig. 3) is neglected. One finds &=0.37& =3.7x10 ' eV.

Let us for a moment forget about atom B. The differential two-body cross section do/d(sin'y/2) for
the scattering angles involved here, is nearly constant, so that the average break-up cross section ne-
glecting atom B is simply wb, ', where the impact parameter b, =0.89~~ corresponds" to the scattering
angle y, given by

,' E.sin')t /2 =—L.
2

If the two atoms A and B were very far apart the break-up cross section would be simply 2mb, '. But
the two spheres of radius b, centered at A and 8 overlap, and instead of the factor 2, a simple geometri-
cal factor s(b„p) depending on q has to be inserted. One can check that the break-up energy depends
only weakly on r/ so that s(b„q) can be readily averaged. The average break-up cross section in our
simple impulse approximation is then given by

o'~ = »0' f (&s0, '))d/( co))s/7f d (cos7i) = 1.53»0' = 1.2« (19)

The above estimate is obviously very crude and multiple-scattering corrections are certainly not negligi-
ble. Nevertheless we believe that we have obtained the right order of magnitude.

(2) We shall now discuss the scattering process involving an excitation of the molecule with a certain
transfer ~N of orbital angular momentum. Let us call N the average angular momentum of our ensemble
of Rb-Kr molecules. We shall by convention call scattering collisions such that ) &N(/N & 0.1 purely
elastic, since the spin-orbit interaction yS N is practically not affected by the collision (we neglect the
effect on y of a change of vibrational number). We shall discuss only the small-angle scattering for
which ~N is certainly small. To evaluate ~N we shall approximate the trajectory of the incoming atom
by a straight line and write h &N= f (OAx F~+OBx FE)dt, where 0 is the center of mass of the mole-
cule and F~ and F~ the forces acting on atoms A. and B. Since we are interested in the large impact
parameter collisions, we shall take only the attractive part of the Lennard-Zones potential. When 7i =n/2, '

the quantity &N is along the trajectory of the incident particle and given by

N=cb K 6([(~ y —g ) +g 2] -7/2 [(~ ~ +Q )2+/ 2]-7/2].
x I BZ g X Sl $ X

with c=—,
' ~VS er /SV =121, (2i)
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b~and b& being the components of the impact parameter b relative to the center of mass of the molecule
(see Pig. 4), and V the relative velocity of two Rb and Kr free atoms averaged over the thermal distri-
bution.

The relation j &N j = 0.1N defines a certain closed curve 8 in the xy plane perpendicular to the incident
momentum. For b outside this curve the transferred angular momentum is such that I 4N) ~ 0.1N. The
area enclosed in the curve gives an upper limit of the cross section for scattering with g=m/2 and
I 4N) & 0.1N. One finds

a(q =m/2, [ aN[& 0.1N) & 3.4m.

Since &N=O for p =O, w, it is necessary to perform an average over p:

o([ &N[&0 1N) .= Jo(q, [&N[&0.1N)dcosr[/ JdcosrI &3.3m.

(22)

(23)

One can verify that practically all the collisions leading to a break-up of the molecule have their impact
parameters lying inside 6 . Then, an upper bound of the excitation cross section of the molecule is ob-
tained by substracting from the above bound the break-up cross section

a ([ &N[& 0.1N) & 3.3n ' —o -2m'
8 rn b m

(24)

In conclusion, it seems safe to say that the excitation cross section with ) ~NI &0.1N is at most of the
same order of magnitude (xr ') as the break-up cross section.

F. Natural Lifetimes and Two-Body Excitation
Cross Sections of Metastable States

1/v. (v, N) =1/7 (v, N)+D(v, N)/w, . (29)

The natural lifetime of metastable states can
be obtained by semi-classical consideration. "
If we call v, the classical period of oscillation of
the relative particle in the potential well,

the decay probability per unit time v ' is ob-
tained by multiplying 7 0

' by the transmission
coefficient D:

(26)

We shall be interested here in metastable states
near the top of the centrifugal barrier (r = xmaz).
The effective potential is approximated by a
parabola

U (~) =E (N) —~ p. (o '(x —x )'. (27)

The transmission coefficient is given rigorously
by

D ' = 1+exp/2m[E —E(n, N)]/h&u

For a small value of D one can use the approxi-
mate formula

D(v, N) = exp{- 2w[E —E(v, N)] /K~ ) . (28)
max

The total lifetime of a metastable state is given
by

, = 2 f' "'=2 J*" —[z - rr )r)) ) d~, (»)

The lifetime due to collisions 7c(n, N) is of the
same order of magnitude as the time of flight de-
fined conventionally as

'U 'mx 'V
Vl

(30)

N =N (v)+g
v max v

(31)

with 0 & g & 1 (see Fig. 5). The transmission
vcoefficient for the metastable states lying near

the top of the barrier is given in terms of gv by

and equal to 1.25 &&10 ' sec at a Krypton pressure
of 1 Torr. " For the range of Kr pressures in-
volved in the experiments (0, 1 Torr to 20 Torr),
7y varies between 1.25 x10 ' sec and 0. 62 x10 '
sec. The metastable states, the natural lifetime
of which is much larger than 10 ' sec, will be-
have like true bound states, but a special treat-
ment is needed for metastable states of shorter
natural lifetime ~ 7f}.

To get an accurate estimate of the natural life-
time is a very difficult if not impossible task.
The reason is the exponential dependence of the
transmission coefficient upon the energy of the
metastable state. For a given vibrational num-
ber v, we have seen that the energy E(v, N) is
given by Eq. (6) for ¹ Nm~. Let us call N„
the solution of the equation E(v, N) Em~(N) =0, -
where Emaz(N) is the top of the centrifugal bar-
rier. The integer Nmax can be written in terms
ofN, as
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E max (N) E {w,N)
for the value E of the relative energy is given by
the mell-known Breit-Wigner formula

v& (2N+1)I" (u, N)I' (v, N)x2 e t

[E —E(v, N)] + [I' (v, N )/2]

with W = h/(2 p, E)'~'; (35)

I' (v, N ) = h / q (v, N ) = h D(v, N )/ r

I

I

I

Nmax{& Nmax {o')+1

is the elastic width while I' (v, N) =k/v (v, N) is
the total width. The cross section has to be
averaged over the thermal distribution f (E) of the
relative energy:

o = fa (E)f(E)dE
v, N v, N

Angular momentum N

FIG. 5. Structure of the molecular levels lying near
the top of the centrifugal barrier: the heavy dots cor-
respond to the position of the levels.

(2N+1)[1/r (v, N)]

1

x [p,/2E(v, N)] 'e (36)

D(v, N) =exp[-2wa (q +N —N)],
v v max

with

(32)

The rate of formation [Tf (v, N)] ' is givenby"

(u, N) 3~- 1 —PE(v, N)N 2N+1 e
T (v, N)

dE N —Ev, N
a =(h(u )'I, (33)

)N=N
= N 6'(v, N ) . (37)

as one can deduce from Egs. (28) and (31) using
a Taylor expansion of E (N) and E(v, N) around

max
X=Nv. We give in Table II the values of av for
the different vibrational numbers involved. An

inspection of this table shows that D is extremely
sensitive to the value of gv. To know 'gv within an
error, say of 10 ', implies that one has evaluated
E(v, N) with a precision of 10 ', and this is proba-
bly not the case with our semiclassical approxi-
mation. Furthermore there is certainly some un-
certainty in the determination of the Rb-Kr poten-
tial. So the only reasonable thing one can do is to
derive upper and lower bounds for D(v, N) from
the inequality 0 ~ gv

~ 1.
Finally, we would like to derive the probability

per unit time to produce a Rb-Kr metastable state
(v, N) in a two-body collision. The cross section

Note that the above formula is identical with the
one obtained in the case of production of bound or
metastable states in three-body collisions (see
Eqs. 14 and 9). We can thus conclude that in the
case of a metastable state the total formation and
destruction rates [T (v, N) and 7 (v, N) ]
taking into account two-body and three-body pro-
cesses also satisfy the relation

(v, N)/T (v, N) =N p(v, N), (3S)

as a consequence of thermal equilibrium.
Actually, it will be shown in Appendix B that

resonant two-body collisions play a negligible
role in the pressure range covered experimentally.
They might become important in the relaxation
process induced by "sticking" collisions only at
pressures lower than 0. 1 Torr.

TABLE II. The numerical value of 2&@v. For each vibrational number, the value of 2&av=log [D(v, N-1)/D(v, N)]
[see Eq. (32)] yields the ratio between the transmission coefficients D of metastable states (v, N) and (v, N- I), both

lying near the top of the centrifugal barrier.

10

2.4 3.6 3.8 3.2 3.3 4.0 12.5
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IU. RELAXATION IN SUDDEN TVfO-BODY COLLISIONS

The relaxation induced by the spin-orbit potential in "sudden" two-body collisions will be described by
a stochastic Hamiltonian which we define now. I et us specify a collision by the impact parameter b, the
initial relative velocity V of the two colliding atoms, and the instant t~ when the distance x between the
two atoms reaches its minimum. The interaction Hamiltonian appears as a function of the stochastic
variables b, V, tc..

X (t —t, b, V ) = 5 ' y(r(t —t )) 8 ~ (p V x b ),

where r(t) is obtained by solving the classical equation of motion of the relative particle. We shall assume
that the actual motion is not very different from that of two colliding hard spheres having a radius ~,

r(t) = (b'+ U't')"', b ~so,

r(t) =(r '+ U' 't+2v'r '-b' Ultl)'~' b ~r

This assumption, which leads to tractable mathematical expressions, gives a reasonably good picture
of the real motion: for small impact parameters attractive forces play no role and for large impact
parameters where they are predominant the deflection angle is small and the trajectory looks like a
straight line. The effective hard-sphere radius x, is obtained by comparing the distance of closest ap-
proach as a function of b (at a fixed value of the kinetic energy -

—,'kT) for a hard sphere and for a 12-6
Lennard-Jones potential (see Fig. 6). One finds that r, is practically equal to the finite value of r at
which the Lennard- Jones potential goes to zero, ro=rm /2'I'.

The probability that a Kr atom suffers a collision characterized by an impact parameter in the interval
b, b+db, with an initial relative velocity in the interval V, V+0 V within the time interval dt is given by

Un(V)d'Ud'b dt

where n(V)d'U is the number of Kr atoms per unit volume with a relative velocity in the interval V, V+d V.
Let us consider two eigenstates li) and lj) of the static Hamiltonian X, of the Rb atoms having an energy

interval S~z&. The average transition probability in the time interval t, t+ ~t is given in first order per-
turbation theory by

SQP .. t
ER', . =b (l f dt'e ~ (j 13C1(t'-t, b, V)li) I )

The time interval 4t is small on the macroscopic scale, in particular much smaller than the time of
flight rf, but large on the microscopic scale, i. e. , much larger than the average duration of a disorien-
ting interaction. For t &t~ &t + ~t, it is legitimate to replace the integration over the interval t, t+ ~t
by one from —~ to + ~. Using the probability law given above ~W" can then be written in theij
following form:

6or /V~

4
O
C0
N

C3
O

Hard sphere ro-rm/~6

Lennard- Jones [12-6j

rm~
I

Impact par ameler b

FIG. 6. Comparison between the distance of closest
approach &min as a function of the impact parameter
& at a fixed value of the kinetic energy (E= &&&=3.9&)

for a I ennard-Jones 12-6 potential (&, x~) and for a
hard-sphere potential of radius &0= x /2 i/6
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2(d "t
&IV.. = &N f Vn(V)d bd V I f e (jl&,(t, b, &)lt)dtl (42)

The squared integral represents the Fourier transform of the correlation function of the ij matrix ele-
ment of X, taken at ~ij

The relaxation time of an alkali atom without nuclear spin is readily obtained:

T' '=26W, , /&t=(p, '/31 ) f V'b'n(V)d'bd'V~ f e ' y(r(t))dtiS1 2 QQ
(43)

If it were possible to study experimentally T&1 as a function of the I armor frequency ~„ information
on the shape of y(r) could be deduced. Unfortunately only the range &u, x average collision time «1 is
accessible to experiment so that we can put ~, = 0 in the above formula (the exponential factor being prac-
tically 1 in all the domain where the expression to be integrated is not zero).

If, from the measured relaxation rate, one wants to deduce a value for the strength of the spin-orbit
potential, one has to make a specific assumption about the shape of y(r) At.heoretical analysis of the
spin-orbit potential indicates that the long-range part of y(r), due to van der Waals interactions, which
behaves like x 2 is probably much weaker than the short-range part associated with the repulsive elec-
trostatic and exchange forces. In our analysis we have used for y(r) the following expression:

y(r) =y ~ ' +y, (r,/r)
—«'(r ' —r, ') 2n

(44)

The first term, coming from repulsive forces, has to be characterized by a range I(
' small compared

with ro. For the second van der Waals term, arguments exist in favor of the value 8 for the exponent 2n. '
The effects of these two interactions may be considered separately, since one can easily show thai the
contribution of the cross term is very small. After lengthy computations one thus gets the following re-
sult:

T '=7 '(p, 'r '/h')[y 'F («r )+y 'E (n)j(r /r )', (45)

with

g2 ~2 1/2 t2E (u)= —,'m((uW2) +e u f x e [1—(2/Mw) f e dt] dx),

F (n) = —, {C /(2n —3)+2 f (sinu) cosu[f (1+x ) dx) du}, (47)

+ ~ 2 —n m 1 3 5 (2n —3)
n o 22 ~ 4 6 .(2n —2)

The numerical factors Eu(n p) and Eb(n) are typical of the shape of the spin-orbit potential. For 2n = 8
one finds Eb(n) =0. 105. Some numerical values of Eu(Krp) are readily obtained from Table III. Fe(harp)
is a rapidly decreasing function of I(x„due simply to the fact that the interaction duration is shorter the
smaller the range of the spin-orbit potential. If the numerical factors Fu(harp) and Fb(n) are taken sepa-
rately, the above expression (45) is easily interpreted. I et us consider collisions occuring with an im-
pact parameter of the order of x,. The Hamiltonian is

3C =y(r)f I 5'y(r )pr -V

the duration of the disorienting interaction is of the order of vcoii =rp/Vr and the collision frequency for
a given Rb atom is

TABLE III. The numerical values of log&p F'~(K~0)]

Kt'p

—log 10+ (K+0)

Kgp

—log10& (K&0)

1.0
0.137

4.5
2.472

0.772

5.0
2.637

2 ' 0

1.217

5.5
2.786

2.5
1.561

6.0
2.923

3,0

1.843

6,5
3.049

3.5
2.082

7.0
3.167

4.0
2.289

8.0
3.383
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vr ~ V N V-'=r -'(r /r )'.

Using the above physical parameters, Eq. (45) can be rewritten and gives as an order of magnitude of the
relaxation rate

T '-7 '(r /r )'x[y(r )p, r V /5']'x (r /V )', (46)

or

relaxation rate-collision ratex(lBC l') 8' 'x T'
1 av icoll

This is simply a very familiar result of the relaxation theory valid in gases when the motional narrowing
condition (IR11') h-'v'. coll «1 is fulfilled. " One can note also in Eq. (45) that the velocity dependence
is the same for TS1 as for rf, consequently one should observe experimentally that the disorienting cross
section is velocity independent.

The effect of the nuclear spin I of the alkali atom can be taken into account. Using Eq. (42) one can com-
pute (4I+ 1) longitudinal relaxation times which are related to TS1 by simple geometrical factors involving
only the nuclear multiplicity (see Ref. 6). For instance, the time evolutions of observables

(I ), (Q ) =(S ) —{2/[(2I+1)'—2]}(I ), and (S ~ 1)

are each pure exponentials characterized by the time constants T„,T, TH such thatgP

[2/(2I+ 1)'] T = T = T = T (49)

V. THEORY OF THE RELAXATION
INDUCED BY COLLISIONS LEADING

-TO BOUND AND METASTABLE STATES

In the preceding section we have obtained the
rate of relaxation induced by "sudden" two-body
collisions, by making use of the assumption that
the disorientation probability for a single colli-
sion is smaller than unity (the motional narrow-
ing condition applies). This condition is not al-
ways satisfied when one deals with the relaxation
induced by "sticking" collisions. This comes
from the fact that at low pressures, the collision
lifetime of a molecular state becomes long enough
to allow S and N to couple together and to precess
around their resultant, to such an extent that the
initial orientation of S is completely lost when
the molecule gets destroyed. For this reason
we would like to present now a derivation of the
master equation for the relaxation of Rb atoms
induced by this second mechanism, a derivation
which is valid whether or not the motional nar-
rowing condition be satisfied.

A. Model Specification

First of all, we shall assume that the first col-
lision undergone by a Rb-Kr molecule immediately
after its production either breaks the molecule or
leaves it with its orbital angular momentum un-
changed. The case of collisions inducing transi-
tions between states of different orbital angular
momentum, for which we have not been able to

perform a rigorous theoretical treatment, will
be only briefly discussed at the end of the pres-
ent section (part E).

To avoid unessential complications we shall
ignore the effect of the nuclear spin. Its in-
clusion does not raise special difficulties and
the corresponding results will be given without
the detailed proof.

The spin-dependent Hamiltonian in a Rb-Kr
molecule is written as

x =y s A' +yf N . (5O)

The first term represents the interaction of
the valence electron with a static external mag-
netic field H, . The second term is the spin-orbit
coupling. The coefficient y is the average value
of y(r) for a given state (v, N). We shall neglect
the dependence of y upon the vibrational number
and express all results by taking the average over
the different molecular states. Furthermore we
shall treat N as a fixed vector during the lifetime
of the molecule. This assumption needs obvious-
ly some justification. Although one can show
easily that in many circumstances the variation
of N under the influence of X is indeed negligible
there are at least a few instances in which this is
not true. However, a rigorous analysis can be
performed; it leads practically to the same re-
sult as the approximate treatment given below,
as is shown in Appendix A.

The spin-orbit interaction has the same effect
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as an external magnetic field H, = (y/ys)N and we
shall rewrite 3C as

X=- y~S ~ H (51)

—t TProbability(t~ T~ t+dt) =e dt/r, (53)

where & is the collision lifetime of the molecular
state (w is a,ssumed to be the same for all the
molecular states involved). The probability that
a "sticking" collision occurs for a given Rb atom
in the interval (t„ t, +dt) is dt/Tf. For the pres-
sure range of Kr explored relations (11) and (15)
show that Tf is always much larger than r

We shall now proceed to the derivation of the
relaxation equation for the average polarization
(Sz) of an ensemble of Rb atoms subjected to the
stochastic interaction we have just described.

8. Oerivation of the Relaxation Equation for (Sz)

Let us consider the evolution of our ensemble
over a time interval &t chosen as follows: &t
is much larger than the lifetime of the molecular
states and much smaller than Tf the mean time
interval between two "sticking" collisions suf-
fered by a given Rb atom. Let us now separate
the Rb atoms into two classes: (a) the fraction
+f/Tf of Rb atoms which get bound to a. Kr atom
during the time interval &f; {b) the fraction

H=-H +H,

During the formation of a molecular state the
magnetic field acting on 5 jumps from the value
H, to the value H in a time of the order of 10 '"'

sec, short enough for the sudden approximation
to be valid. The stochastic magnetic field acting
on a given Rb atom is shown in a schematic way
in Fig. V.

At instant t, the Rb atom is captured by a Kr
atom in a three-body collision to form a molecu-
lar state, destroyed at instant to+ T. The same
process occurs again at some instant t, ' later
with an uncorrelated value of II,. The stochastic
variable T is governed by the exponential law

1 —ht/Tf of those which remain free during the
same time interval.

We neglect the atoms which participate twice
or more in a molecular state, as well as those
which are engaged in a molecular state at the in-
stants t or t+ &t, since they constitute a very
small fraction of the total number [respectively
of the order of (&t/T )2 and 27'/T ].

Let 4'(t) be the wave function o an atom of class
(a) at instant t. Between f and t, the evolution of
0 (t) is governed by the Hamiltonian Xp =z~s ~ Ho,
between f, and t, + T by X =y~f'(HO+ Hl), and
between t, + T and t+ &t by K, again. The final
state 4'(t+&f) is given by

e(f+ ~f) = ~(f„T,H, )e(f), (54)

with %, (t T H)=eOs

We have written explicitly in'Lt, the dependence
upon the stochastic variables tp + and H, . Two
kinds of average have to be performed: one over
the initial conditions, and the other over the sto-
chastic variables to, T, and H, . The first one is
done by describing the initial state of our ensem-
ble of atoms by a density matrix p~n(t) written
in the basis which diagonalizes X,. We shall re-
strict our investigation to the case in which p~s(t)
is diagonal:

p (t)=P {f)5
mn m mm

(55)

+(~f/T )«p(f)~ )„.
Using the fact that p(t) is diagonal an equivalent

way to write this i~

The density matrix of atoms of class (b) remains
constant in time, while the one of atoms of class
(a) is subjected to an evolution governed by the ma,
trix 8, suitably averaged. The density matrix of
the whole ensemble is given at time t+ 4t by

p(f+~f) =(1 ~t/T )p(f)

h H(r)
to to= TF

(f+ ~t) . (f) = (~f/—T )mn mn f
x[ 5 P (t)+Q,(e,~+,) P,(t)].

(58)

We shall first show that

l'g = l'0+ T

FIG. V. Schematic representation of the random
time-dependent magnetic fieM acting upon a given Rb
atom.

Indeed, let us write the explicit dependence of
%L ~91„" ~ upon the azimuthal angle Q of H,
with respect to H, (see Fig. 8)
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Ho,

z C. Explicit Ho and I' Dependences of the Relaxation Rate

%e have now to perform the average over T and
H, . It is convenient to introduce the following
quantities: &, the angle between H, and H; (), the
angle between Hp and Hy,

I'~-yP, S&oo-y H, k~ =y H (65)

FIG. 8. Relative orientation of the steady field Ho,
the random field II& unity, and the resultant field H

acting on a Rb atom which is engaged in a Rb-Kr molecule.

T -'=T 'fd(cose)(P((u )d~

, ~ sin28
1 + ((do + (d

~
+ 2(dorp~ cos() )7' (68)

Using simple identities involving Pauli matrices,
we obtain the following simple expression for T& .'

T ' = 2T '(sin'n sin'2+T) (66)s av

The average over T is performed readily:

f(sin'-,'&T)(P(T)dT =-'&u'~'/(I+ (u'~') (67)

After a few manipulations we arrive at the final
expression

i(m —n)Q&
num' nm'

The average over Q gives

(60)
Remembering the definition of &u, [Eq. (65)], the
distribution (P(&u, ) is obtained from the knowledge
of the probability +(N) of finding a Rb-Kr molec-
ule in a state of orbital momentum N

, i( —n)
av m, n

It then follows that pnln(t+ &t) remains diagonal.
Rewriting Eq. (58) in terms of the populations

P~(t) we obtain

(t~ af) —s (f) = —(~T/T )Q, [e

a 'FACT
(61)

&I& ]~
(62)

From this equation we can deduce immediately
the relaxation equation of the electronic polariza-
tion (Sz)

d(sg/dt=- T -'(s ) (62)

with T = 2T
—1 —1

—iS 'y S'HT
x(l (- '

I
e

I

')

(64)

Since we have chosen &f/Tf «1, the variation of
P (t), between t and t+ &t is very small. We are
now in position to write the master equations for
the population P~(t):
d~ (f)/df= T-~g,[e-

~(N) ~ Z
v&v (N)max

(2N+ 1)e

The discrete law of probability (y(N) shown in
Fig. 9 can be approximated by the following con-

"2s 1Q

04
N

0

f0
0
C

—"10-2

c

10 30 50 70'

The dashedparabola stands for the approximate distri-
bution used for averaging results over K

Orbital angular momentum N

FIG. 9, Law of probability for finding a Rb-Kr mole-
cule in a state of orbital angular momentum &:

(P(N) = Z (P(v, N)/2 (P(v, hl).
(e
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tinuous law:
S (v5)

(P(N)dN= (3/4N )N(2N- N)dN, 0 «N& 2N

with 2N=76

0 N) 2N

The average over coso can still be performed
analytically, but the final average over m, has
been done by numerical integration. The result
depends essentially on (~]2)av, which we shall
write explicitly as a function of the spin-orbit po-
tential. Let us define y such that

(N(N+ 1)) y' = 5 a (v, N)N(N+ 1)
av

[fdr ~y (r)i]
X

(p(v, N)

g, N

'y„N(r) being the radial wave function of the
molecular state (v, N). We find

(~ ') =(N(N+1)) y 2a 2-
1 av av

(vo)

(71)

The lifetime & should vary from one molecular
state to another. Since no precise estimate of the
break-up cross-section is possible, we have de-
cided to ignore this variation, and we write for
the destruction rate & ' and the associated (see
Eq. 15) formation rate

The dependence upon co, disappears as one might
expect, since the initial orientation of the elec-
tronic spin gets lost each time a Rb atom suffers
a "sticking" collision (unless H, be parallel to
H,).

(3) &u, » &u„&,7'» 1. The electronic spin S is
partially decoupled from H„ i. e. , the large dc
field a, decouples angular momenta 5 and N:

(vs)

D. Effects of the Alkali Nuclear Spin

We shall now state the results which are valid
when the alkali nuclear spin I is taken into account.
We suppose the dc field Ho so small that the Zee-
man splitting remains much smaller than the hy-
perfine structure. Collisions leading to Rb-Kr
molecular states have a negligible effect on the
time evolution of observable 5 I. This result is
the consequence of two facts: (1) the interaction
yS S H1 is weak compared to the hyperfine cou-
pling; (2) the lifetime of the molecular states is
very large compared to the reciprocal of the hy-
perfine frequency. The time evolutions of observ-
ables (Sz) and (Iz) are identical, and the relaxa-
tion rates T~ ' = Te ' are given by the expression
(6S) with the following definitions of ~, and v, :

'0 'V o=PPV o
Kr My Mr

T -1= V (pP)2Xo,Mr

(72) I~ I=y a /(2I+1)e,

I ~ t=yN/(2I+1)h
1

(77)

where o is an average cross section, X is the
equilibrium constant. VMr = Vr&3/2 is the aver-
age thermal relative velocity of a Rb-Kr molecule
and a Kr atom, and P = (kT) '. We neglect here
the formation of metastable states by two-body
resonant collisions. This mechanism is dis-
cussed in Appendix B and showntobe of no practical
importance in the pressure range covered experi-
mentally.

The functional dependence of T& upon P and H,
is then defined by the three phenomenological
parameters 3*., o, and y. We would like to dis-
cuss first the general expression of TS for some
particular cases:

(1) +,7'«1. This is the so-called "motion narrow-
ing condition. " The two averages are performed
readily

1 2T -1(~ 2) 7 2/(1+ (g 27 2) (74)S'f 1av 0
This result is identical to the one which would be
obtained by using the general perturbation theory
of relaxation. The relaxation rate varies with the
Larmor frequency as the Fourier transform of the
correlation function of the perturbation.

(2) w, »&o„&u,v»1. We have to deal with
"strong collisions"

A =A+f(P/P+)

~,=a,+~(p/p*) .
(v9}

(so)

The functions f and g are represented in Figs.
11 and 12. The three parameters A*, P*, H, *
are given in terms of y, 0, and X by

a *=[(»+1)I/y j((~ ') )'~'
1 8 1av (sl)

Let us then describe briefly the main features of
the variation of T„versus I' and H, in the general
case.

As a function of Ho, the quantity Tz ' can
always be represented to good approximation
by a Lorentzian curve:

A/[1+(a, /~a, )2j . (vs)

In Fig. 10 we have represented the extreme case
I' = 0 when the deviation from an exact Lorentzian
is maximum. We conclude that such a deviation
cannot be observed experimentally. The I' de-
pendence of the parameters of the Lorentz curve
~0 and A, which will play an essential role in
the interpretation of the experimental results,
can be conveniently expressed as follows:
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P=O .6
CL

E

Reduced magnet'ic field Ho /H~

FIG. 10. Theoretical curve illustrating the field
variation of the relaxation rate induced by sticking
collisions. The curve is drawn in the limit case P= 0

(meaning P/P*«1) and compared with a Lorentz curve
(dashed) .

5

Reduced pr essur e P/P

FIG. 11. Pressure dependence of the relaxation rate
induced in zero field by three-body collisions leading
to bound and metastable molecular states: theoretical
curve A=A*f (P/P*) with reduced units defined by Kqs.
(83), (84) .
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FIG. 12. Pressure dependence of the steady-field
value in which the relaxation rate induced by three-
body collisions leading to bound and metastable states,
is twice smaller than in zero field: theoretical curve

~*g(P/P ) with reduced units defined by Eqs.
(81) and (83).

[or Q 6 (6 }1/2y N/y5 (82)

using the distribution p(N) described by Eq. (69)j,
P*=y &I*/(21+1)ePV o, (83)

&*= 6 Xy 'H *'/(2l+ 1)'h ' V rS My
(84)

These parameters have simple physical interpre-
tations: H, * is the root-mean-square value of the
effective magnetic field simulating the spin-orbit
interaction; I'* is the pressure at which the aver-
age lifetime T' is equal to (2m) ' times the Larmor
period of F=S+I in the field H,*; A* is the asymp-
totic value of 4 at high pressures where, the mo-
tional narrowing condition (d, '7' «1 is fulfilled.

E. Effects of Molecular Inelastic Collisions

We shall now discuss the modifications to the
present theory, which might come from collisions
inducing transitions between molecular states of
different orbital angular momentum. Let us de-
fine two collision rates and their corresponding
cross sections:

'= pPV 0
Mg b

&tz represents a phenomenological correlation
time for the relaxation process and 7b the mean
lifetime of a molecular state. Ot is of the order
of the cross section associated either with a
break-up of the molecule or an excitation with
~/N& 0.1 (Eq. 23), and o& is the break-up cross
section. From the theoretical considerations of
Sec. III it follows that the ratio ofT/oy probably
lies between 1 and 3. Note that the formation
rate is still related to &b

' or ob by the expres-
sions

'= XPPT ' = X(PP)'V o
b My b

It is no longer possible to give a complete treat-
ment of the relaxation problem for any value of
I', but the following results can be easily obtained
in the two extreme pressure ranges. In the high
pressure range, the motion-narrowing condition
(&ul )avTt&6« I is fulfilled and 7„' is given by

T ((d ) T
av A'

8 3T 1+(d T
0 tx
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2T -1
n ' f if ~ '«(~ ') (89)0 1 av

-1 2T -1 if ~ 2))(~ 2) (90)

The low-pressure limit of A(P) is multiplied by
the factor o&/of~

The asymptotic expressions for A(P) and ~,(P)
are unchanged provided we replace &by Otz in
A* and P*. In the low pressure range, (~1')av
XTt~' » 1, the qua. ntity T~ ' should read

100
I

~ -50'

C0
0
X
o

A4
0
0

P —1.I5 Tor r

~s-1
AH {P)

A=~ {0)

+~
+

go +

Magnetic t'ield Ho {gauss)
while that of ~0 is unchanged.

So, finally, we have at our disposal two possible
ways of analyzing the data: (a) a three-parameter
fit (y, V=ofz=~y, X) where the full range of vari-
ation of P ca,n be used, (b) a four-parameter fit
(7, of~, o'f„X) where only the results of the two
extreme ranges are analyzed.

FIG. 13. Typical experimental data illustrating the
field variation of the relaxation rate at a given Kr pres-
sure g = l.45 Torr). The solid line is a fit to experi-
mental data, the dashed curve is the result of a best
fit performed with a Lorentz curve having amplitude
&g ) and half width ~0(J') .

VI. INTERPRETATION OF THE
EXPERIMENTAL RESULTS

We are going to show now that the theoretical
analysis developed in the previous sections allows
an interpretation of the relaxation experiments
performed on Rb undergoing collisions with Kr. '
Two Rb isotopes "Rb (I=—,') and "Rb (I = ~) have
been studied experimentally. The time evolution
of {Sz) is found to involve two exponentials, the
time constants of which will be called &z and ~e
( 9„&9 e). The time evolution of (S I) is a single
exponential with time constant V ~. E -' and We

'
are strongly field-dependent, between 8.1 and 200
Q. &~ ' is not. Let us call K„* ' and'We* 'the
"high"-field values, i.e. , the plateau in the field
dependence of &n ' and i e ' (see Fig. 13). We
are going to compare V'„'(P H0) —&„* '(P) and
&e '(P, H0) —&e* '(P) on the one hand, and

'(P), &e* '(P) and &H '(P) on the other
hand, with the theoretical relaxation rates of
observables (Iz), (Qe), and (S I) induced by the
tso0 uncorr elated relaxation processes just ana-
lyzed. "Sticking" collisions are responsible for
the rapid field variation of & ' and & ', while
"sudden" two-body collisions account for V'~ '
and the "high"-field values of E ' and

A. Interpretation of the Field-Dependent
Part of the Relaxation Rates

We first deal with

& -'(P, H )-& +-'(P)
n ' 0 n

For a fixed value of P, the Ho dependence of the
relaxation rate &z ' is represented to a good ap-
proximation by a Lorentz curve (Fig. 13). We

define the amplitude of this curve,

A(P)= r -'(P, H ) —r *-'(P),

and its half width measured at half amplitude
hH, (P) in the same way as we did for the theo-
retical relaxation rate T„'(P,H0) (Sec V, par.t
D). A and AH, have been measured systematical-
ly for both "Rb and "Rb as a function of P; the
points of Figs. 14 and 15 illustrate the results.
At first sight the general features of the theoreti-
cal curves (Figs. 11 and 12) can be recognized.
Moreover, simple relations predicted by the
theory are found to be satisfied within experi-
mental uncertainties, e. g. ,

hH, (P) and A(P) independent of I at low pressure,

A(P) ~ 1/(2I +1)'
at high pressure.

We can then proceed to the determination of the
parameters giving the best agreement between
theory and experiment. We are going to try the
two possible fits described at the end of Sec. V:

(1) The .r. esults of the three-parameter fit are
illustrated by the curves of Figs. 13 and 14. The
corresponding values of the parameters P,*, P*,
A* are

II,*=9.35G,
4P*("Rb) = 6P* ("Rb) = 10.6 Torr,

16A*("Rb)=36A*("Rb)=6.26x10' sec '

From these values, using formulas (82), (83),
and (84), we deduce
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FIG. 15. Pressure variation of the parameter ~0
defined on Fig. 13. Experimental points and theoretical
curve (three-parameter fit) .

y/)'2=0. 63 Mhz, o'=2. 23mr

X=1.68x10 "cm'/molecule.

The corresponding destruction and formation
rates for P=1 Torr are

8 10
Kr pressure P in Torr

FIG. 14. Pressure variation of the field-dependent

part of the relaxation rate &. Experimental points
and theoretical curve (three-parameter fit) .

(2&+ 1)P* =9. 5 Torr,
(2I+ I)'2*=6.26x102 sec ',

leading to

y/I2=0. 63 Mhz, o =2. 5vrtr m'

X = 1.88x10 "cm'/molecule, o /o'& = l. 25.tr

The value obtained for y will be discussed later on;
o and gtr have the right order of magnitude (see
Sec. III, part E). One can see from Figs. 12 and
13 that a fairly good account of experimental re-
sults is obtained within the assumytion otr /&I, = 1.
However most of experimental points of Fig. 15
lie above the theoretical curve, and this may be
an indication of the fact that otr/v5 is slightly dif-
ferent from 1 as it is suggested by the less pre-
cise four-parameter fit.

The value obtained for 3'. is larger than the cal-
culated value by a factor 1.15 to 1.3. The agree-
ment can be considered as satisfactory if one
bears in mind the experimental errors and the
uncertainties affecting the shape of the Rb-Kr
potential. "

B. Interpretation of the High - Field
Values of the Relaxation Rates

We are now concentrating our interest on
'(P), 1'e* '(P), and O'If '(P), which we shall

interpret in terms. of the relaxation rates induced
by the spin-orbit interaction during "sudden" two-
body collisions.

'(P), &s* '(P), and && '(P) have been
measured for both isotopes; they are linear func-
tions of I'. The slopes obtained for the experi-
mental straight lines are Compared, in Table I,
with the expected theoretical values given by
Eq. (49). One can see that the agreement is quite
good. Taking an average over all experimental
results, one can deduce what would be the relaxa-
tion rate induced by "sudden" two-body collisions
for a Rb isotope without nuclear spin, at a Kr
pressure of 1 Torr

g 1 1(2I 1)2 g g 1 g -1
81 ' n 0

7. '=1.55x10' sec ', '=84 sec ' . = 32 sec
e

The fraction of Rb atoms engaged in a bound Rb-
Kr is then found to be

/& =7./T =5.4x10 'P, (P in Torr).

(2) The four-parameter fit, which unfortunately
relies on the experimental data obtained at the
lowest and highest pressures, gives

C. Range of the Spin&rbit Potential

Using the theory developed in Sec. IV, we have
at our disposal new information concerning the
spin-orbit potential y(r) Inserting. the experi-
mental value 7&l '=32 sec ' in Eq. (45), we get
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a relation between parameters y~, y~, v, ~ defining
the spin-orbit yotential:

y=hy(r ), (93)

where $ is a parameter of the order of unity de-
pending on the shape of y(r). Thus the second
relation reads

—~'(r~' —r0')
( / )2n) 2

= 0. 403 x 10"h' sec ', (94)

r /r =2"'
m 0

Let us assume first y~ =0. Following Herman
we shall take n=4. The shape parameter $ has
been computed by replacing the expectation value
of y(r) for the state v, %by the average of y(r)
over the classical trajectory. We hope that the
effects of the quantum oscillations, neglected
here, average out when the sum over all molecu-
lar states is performed. One finds in this way

$ =0.55. Then two values of y5' can be obtained
from Eqs. (92) and (94); they differ by a factor
of 10. So, the hypothesis of a spin-orbit poten-
tial with only a long-range part does not seem to
agree with the experimental data.

Let us consider now the case y~ 4 0, yy = 0 and
assume for a moment that g =1. A solution of
Eq. (92) and Eq. (94) is then obtained with 5 'y~
= 35 x 10'Hz and n"p = 4. The value obtained for
the range parameter v looks reasonable. If one
computes by the same semi-classical method as
above the shape parameter ( relative to this
particular potential one gets $ =0. 92, in agree-
ment with our a Priori assumption that g = 1.

A complete determination of y~, y~ a,nd ~+p

from Eqs. (92) and (94) is of course impossible.
However, one finds [ y5 /y [ & 0. 3 when zr, ~ 3
and (y&/y ) ~0. 07 when er, o4. It must be noted
that our separation between short-range and long-
range spin-orbit potentials is in fact meaningful
only if n'p ~ 2 since for zrp= 2 the slopes of the
"short range" and "long range" potential curves
become equal. So in conclusion y(r) appears to

y 'E (zr ) +y 'F (n) =10.5x10"h' sec '. (92)a a 0

Another relation can be obtained from the parame-
ter y deduced from the analysis of the relaxation
via bound-state formation and defined by Eq. (70).
We shall write y as

be predominantly short-range as was predicted
by the theoretical analysis of Herman. '

CONCLUSION

The relaxation study of polarized alkali atoms
in the ground state yields information about spin-
dependent interactions between alkali atoms and
diamagnetic atoms and molecules. The method
is sensitive enough to detect effects of interac-
tions as small as fractions of 10 ' eV, but only
the gross structure of the interaction can be ob-
tained through averaged physical parameters.
We have shown that the relaxation in gas phase
is strongly affected by the presence of chemically
unstable molecules like Rb-Kr bound by van der
Waals forces. We have developed a model of
relaxation valid for any value of the probability
of disorientation per collision leading to molecu-
lar states. The theoretical predictions agree
well with experimental results. Besides con-
stituting unambiguous evidence for alkali rare-
gas molecules, the relaxation experiments yield
the chemical equilibrium constant of the Rb+Kr
= Rb-Kr reaction: X =1. I x10 "cm'/molecule
(for T =300'K) . This number corresponds to a
proportion of one bound Rb atom to 1.8x10' free
Rb atoms when the Kr pressure is P=1 Torr.
One can also deduce an average lifetime of a
molecule in gas phase, 7 =0.65x10 'P ' sec
(krypton pressure P in Torr). These values of
X and v compare favorably with the theoretical
estimates given in this payer. In agreement with
experimental findings, it is shown that the forma-
tion of metastable states in two-body resonant col-
lisions plays a negligible role in the relaxation
process, at least in the pressure range explored
experimentally. Finally, by comparing the re-
sults concerning the strength of the spin-orbit
interaction acting on a Rb atom in fast two-body
collisions and in a bound Rb-Kr molecule, one
may conclude that the spin-orbit potential is pre
dominantly short-range, in agreement with the
theoretical predictions of Herman. The average
spin-orbit coupling constant in a Rb-Kr molecule
yh ' is found equal to 0. 63 Mhz.
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APPENDIX A

In this Appendix we shall examine the validity of the approximation made in Sec. V where the evolution

of the orbital angular momentum N due to S N coupling was neglected during the lifetime of the molecule.
We shall show that the exact treatment leads to the same result provided N is large compared to unity;
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this condition holds in our case since the average value of N is about 40.
The proof below is valid for any value of the static external field. The nuclear spin of the alkali atom

is assumed to be zero. During the lifetime of the molecule, the effective Hamiltonian acting on the angu-
lar momentum part of the molecular wave function is

X= y~ S ' Ho+yS ' N.

The transition probability from a state jN, MN, S,MS = —,) to a state )N, MN+1;S, MS= ——,') after a time
interval T is given by

'L2 2)

Let us denote by P~(M ) the two eigenstates of 3C corresponding to a given eigenvalue M& of J'z =Nz+Sz
(J'z is a good quantum number). By solving the secular equation the eigenenergies h~~ corresponding to
g~ are computed to be

h&u = 2(y+ h&u), (A-3)

with h(u=[(y II )'+(yN)'+2y II y(M +-,')]"'.

The expansion of g~(M&) in terms of the states (N, MN, S,MS) reads

P (M ) =C '/'(M )iNM;S ~) +C ' '(M )iN M;S —~),

with C ' '/C '/'= —C '/'/C '/' = y[(N+M + 1)(N —M )] '/'/[he —y II —y(M + —')]
+ + N N S 0 N

(A-5)

(A-6)

Inserting in the expression for 8'(p/2 ](2, the eigenstates of K one obtains, using the orthogonality
properties of the C's

&(,(, ,(,) =4l C+'~'C+ '~'sin, +T J (A-7)

The expression has to be averaged over T and the intial values of X and M&. Let us perform first the
average over T. The relaxation rate reads

1 4T -1((C 1/2C -1/2 [2 ~2/2/(1 + ~272))
S f + + av N, M

When the average is performed the largest contribution comes from values of N of the order of X=38. If
in the expressions for C~'/' and &u terms of the order of 1/N are dropped, the error in TS

' will be of the
order of 1/N:

/T 2[/ C 1/2/C 1/2 gC 1/2/C 1/2 + (8~/~)~2 ~ 2/(1 ~2 ~ 2)]
S S + + + +

Let us define cos8=MN/N. Neglecting terms of the order of 1/N, &o can be rewritten as

her=[(y II )'+(yN)'+2y II yNcos8]'/'= (y H +yg(,

where N is a classical vector of length N such that N Ho NHocos8. Similarly

C "'/C "'=y sin8/(h~ —y II —yN cos8) = sinn/(1 —coso.),+ S P

where o. is the angle between ySH0+yN and ySIT0 (see Fig. 8). One finds immediately

(A-9)

(A-10)

(A-11)

2)C ' 'C ' ')= )sinn j.
+ +

The relaxation rate TS ' can be written finally as

(A-12)
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T ' = 2T '(sin'n sin'-,'~T)
av N, M, T (A-13)

This result is identical to the one given by the approximate treatment of Sec. V [see Eq. (66)] if the
discrete average over N and MN is replaced by an integral.

APPENDIX 8

In this Appendix we are going to discuss the
role of the two-body resonant collisions in the
relaxation mechanism induced by "sticking"
collisions. We have shown in Sec. III that the
production and destruction of metastable states
of intrinsic lifetime of the order of the time of
flight or shorter is the result of two competing
processes: (a) three-body collisions and (b) two-
body resonant collisions.

In the absence of the external magnetic field,
the relaxation rate induced by "sticking" colli-
sions can be written as

T '(e =0)=A(P)
S 0

&(v, N)&u, (v, N) 7 (v, N )
2

'K
v, N 1+[v, (v, N) 7 (v, N )]

2

Here we have exhibited the explicit dependence of
the total lifetime of the molecule 7 (v, N) on the
molecular state v, N. In Sec. V we have approxi-
mated [7 f(v, N )] 1 by

[7 (v N)] =r =N 0 oV, (8 2)

where o is the average break-up cross section.
For metastable states we have simply to add the

spontaneous decay rate

f( )]
—1

= N 'U 'o(v, N ) V +D(v, N )7

n.A(P)=A (P)-A (P),ab a (B-6)

where Aat, (P) and Aa(P) are given by expression
(B-1)by making the substitutions

[w (v, N)] =v (v, N) +D(v, N)vo

and [7 (v N)] = [7 (v N)]

respectively. An upper bound of ~A. has been
computed in the two extreme regions of low and
high pressures, using (B-1), (B-3), (B-4), and
then compared to the experimental values of A(P)
at the same pressures. The results are the fol-
lowing:

P=0. 2 Torr, I &Al /A & 0. 12
P = 10 Torr, j 4A ) /A & 0. 16 .

This evaluation has been made by assuming that
the strength of the spin-orbit interaction hv, in
the (v, N) level is

k&u, (v, N) =yN (B-6)

where y is taken from the analysis of the experi-
mental data. Actually for the metastable states
with high values of N lying near the top of the
centrifugal barrier the value of

straight-line approximation for the trajectory,
and were found to be larger than the calculated
value of o roughly by a factor 2 with a slow varia-
tion with n E, i. e. , o(v, N ) «(n E )'~'.

The role of two-body resonant collisions is
illustrated by the value of the difference

= [7 (v, N)] +D(v, N)~,

where 7, is the classical period and D(v, N) the
barrier-penetration coefficient (Sec. 111, part F).
No precise evaluation of D(v, N) is possible; only
upper and lower bounds have been derived:

2mqav, , 2m(q + 1)a„ (B-4)

where q =Nmax(v) —N and av is a numerical coef-
ficient tabulated in Table G. %'e have also kept
the dependence on the molecular state of the break-
up cross section a(v, N), since the energy trans-
fer &E necessary to dissociate these states is
much lower than the average value &. The break-
up cross sections have been reevaluated using a

(y(~)) = f iy„N(~) i'y(~)«,

is certainly lower than y, since the centrifugal
forces have a tendency to pull apart the two atoms
of the molecule. Each term in the sum (B-1)
being an increasing function of &o,(v, N), we are
overestimating ( nA( by using (B-6).

The sign of &A/A is found positive at 0.2 Torr
and negative at 10 Torr. This might be expected:
an increase of the rate of formation (and destruc-
tion) of metastable states has a positive effect on
the relaxation rate at low pressures when "stick-
ing" collisions are "strong" (T& '«Tf '), and
a negative effect at high pressures when the mo-
tional narrowing condition applies (TS '~ v'Tf '),

Finally, over the entire range of pressures ex-
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plored, the value 0. 16 can be considered as an
overestimated upper bound of i &A I/2, and it is
safe to conclude that resonant two-body collisions
are of no practical importance. However, if ex-

periments could be performed at lower pressure
this would no longer be true: resonant two-body
collisions would manifest themselves by inducing
a relaxation rate proportional to I', instead of I".
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