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Correlations and Distributions of Widths in Resonance
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Two-channel moments of amplitudes are calculated for a model in which the compound-nuclear wave
function consists of the sum of two vectors each randomly oriented on the surface of its own hypersphere.
The relative variances of partial radiation widths and of reduced neutron widths are calculated. Expressions
are found for the correlation coefficient of reduced neutron widths and partial radiation widths, and for the
correlation coeKcient of partial radiation widths to pairs of bound states. It is found that the relative vari-
ance value 2 for reduced neutron widths, as well as recent experimental findings for the statistics of partial
widths, can be incorporated in the present two-group model if one of the groups is composed of a vector space
of a large number of dimensions.

1. INTRODUCTION

~ ~HIS paper presents an extension of previous
statistical models' 3 to describe phenomena involv-

ing resonance reduced neutron widths and partial
radiation widths. Recently, it has been discovered that
positive linear correlations of reduced neutron widths
and partial radiation widths occur in several nuclides. 4'
This effect has been discussed in terms of a nuclear
structure picture in which the correlation measures the
single-particle contributions of the resonance and bound
states to the transition strength under the assumption
of a Porter-Thomas distribution of widths. ' The
concurrent ending of correlations of partial radiation
widths to pairs of anal states4 6 has also been considered
in the same model. ' However, strong evidence is now at
hand for a narrower distribution of the partial radiation
widths in several nuclides than that of the x' distribution
with one degree of freedom. '~ ' This contrasts with the
now well-established consistency of reduced neutron
widths with the Porter-Thomas model.

It is the purpose of the author to show how these
phenomena may all be reconciled within a single
statistical mode1. %e assume that a compound-nucleus
level can be expanded in terms of a complete, orthogonal
set of states composed of two groups, one having a large
number (E I +co) and th—e o—ther a smaller number
(rt) of members. The wave function of the smaller
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group is uniformly and randomly distributed on the
surface of a sphere in n dimensions of radius r&1. The
larger group is randomly oriented on the surface of a
sphere in (E—I) space of radius (1—rs)'ts. We will

show that the experimental 6ndings can be explained

by assuming that contributions to the reduced neutron
width come exclusively from the larger group while
both groups contribute to partial radiation widths.
The theory does not explicitly describe the nature of the
groups in nuclear structure terms but sets limitations on
the number of their states. An example is a model in
which resonance contributions to the reduced neutron
widths stem from single-particle states while those
states together with resonance two-particle —one-hole
components yield partial radiation widths. The single-

particle set would then come from the large-size group
of states while the two-particle —one-hole states would, to
some extent, come from the smaller group.

It should be noted that Rosenzweig has previously
considered a theory in which more than one group of
states contribute to the compound nucleus. ' However,
his results are based on the premise that only one group
is associated with p-ray emission. A positive correlation
of reduced neutron widths and partial radiation widths
cannot, in general, be accounted for in his theory.

In Sec. 2 we develop the mathematical formalism
leading to expressions for the moments of widths which
will be used in subsequent sections where predictions of
our theory are considered.

2. TWO-CHANNEL MOMENTS OF AMPLITUDES
AND WIDTHS

%e consider the wave function of the ith resonance
state X; expanded in terms of a convenient, complete
set of orthogonal basis functions jP, PpI, 1(re&st,
rt+1&P& JlJ as

&'= Z tt«'4'+ Z &tttA
P=n+1

where the u;, bp; are the real expansion coeflicients of
the resonance states in terms of the basis set.
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The reduced neutron width amplitude y;& is given by where

( $2 )1/2

y;o=
I

E2«Na j
1;4p~dS,

with a similar expression for Jp;.
The formal expression of the two-group hypothesis is

now given. The joint distribution of the E orthogonal
compound states is invariant under any orthogonal
transformation in e dimensions which leaves the group
of size n invariant, or in (X—e) dimensions which
leaves the group of size (X—I) invariant. The joint
distribution function is given in terms of the probability
density of the components a&; ~ .b; of a random vector,
1.e.)

where m is the reduced mass, a is the channel radius,
and Cp is the channel wave function of the compound
system.

We write Eq. (2) as

yio = Q aaiJao+ g bpi Jpo&
a P

(2')

$2 )1/2
Jpo=

I
4'pC'o d~.

2mu)

$2 1/2J o
——

I 4 C'o'd~,
E2«Na

(2)
J;= (16m/9)'/oLk, s/'/(2J+1)'/'g(4; IIH, II P.) (3")

(2") P(at; ~ b;) iz rtt (r) bl, g a„,s—r'j

yv= Z a-J-i+ Z bp'Jp/
A

(3')

The partial radiation width amplitude y;; of the ith
resonance and jth 6nal state is given by

y'i= (16~/9) "'5&.'"/(2J+1) '"3(c'i II&-.Il x'»
where k„ is the p-ray wave number, J is the resonance
spin, 4; is the Anal-state wave function, and H ~ is the
multipole Hamiltonian appearing in the reduced
matrix element. Equation (3) can then be written as

XBLQ bp' (1——r') /dr, (4)

where we assume a superposition of spherical shells of
radii r and (1—ro)i/o with a weighting function w(r).
The physical meaning of ti/(r) is discussed in the
Appendix.

We now develop an expression for the moment
(y;;"y;;.~), j, j'=0, 1 ~ ~ Ãr, where N/ is the number of
final states considered. k and ns are integers. Sy use of
Eqs. (2'), (3'), (4), and the binomial expansion, we 6nd

(y ~y 'm)= rw(r)dry(g a~is —rs)5(g bpis 1+rs) P—da;dbp;

k m, him
X g g ~, , ~

(g a.;J.;) (g bp;Jp;)o-"(g a.,J.;,) &(g b,,J„,) -i/D,
/ —o i=o Ii!(k—h)!l!(m l)! —' "

p

where D= (y;py;; o). If we write

and de6ne

D(y, ioy~p~) = g 1V'&&P!~!/h!(P h) !J I («N J) I

h, l

I(N, X) —= ti/(r) r"(1 r') ~rdr, —

then by methods similar to those used by Ullah' "we may evaluate Ss&. Replacing a; by a.;/u and bp; by bp;/z and
using Eq. (5) we find

basil"+"+' 'oo/+'+ " " ' '= ~ ~ r '(1—«') 'w(r)rdrbl Z (a '/r') —&')5{+Lbpo/(1 —r')~ —o2}

X(p a.;J.;)"(g b,;J„)—(Z a.,J.;.) (g b, ,J„,) g d...db, , (6).
o Nazakat Ullah, Nucl. Phys. 58, 65 (1964) .
"Nazakat Ullah, J. Math. Phys. 6, 1102 (1965).
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Multiplying both sides by 4gv exp( —I'—()2) and integrating with respect to I, 2) from 0 to ()0 yields

Nhl I'[(n+ h+ 1)/2)I'[(N'+ h+ 2/2 /2—h—l—)/27/I[22+ h+ l 2—, (N+ h+ q/2
—22—h —l—2) /2 j (7)

(2 &-'J- )"(2 b/''J/ ) ' "(2&-'J-') '(2 b/''Jp ')™l

X[-p(—g""—gb, '")jgd -'db'' (7')
a p a,p

g )h g )h—h g)l (g)m —l

=[I'(2)j —
I

—
I

—
I I

—
I «p4[Z (4'J-+»-')'+ 2 (!tJs/+»w')'7}l~=q=. =.=q

BC'j 88j 8/l j )),()/ j
(7lf)

h!l!(h —h)!(2/2 —l)!
2 2k+m

2y+q(g J 2)(h—y)/2(g J J ., )y(g J .,2)(l—y)/2(gp .2)(k—h-q)/2( QQ,J .,) q( gp .,2) (tn l q)/2——

~.q [(h—P)/23![(k—h —q)/23![(l—P)/2$![(2/2 —l—q)/2j!P!q!

where u, '= u, /r and b//,
' = bs;/(I —r2) '/' in Eq. (7') . The last expression is gained by expanding { } in Eq. (7")

in a Taylor series. The integer p can have any value from 0 to the smaller of h or l provided that each of the
quantities [ ] in Eq. (7 ) remain integers. The value q varies to the minimum of (k—h) or (222

—l) with a similar
proviso to that for p.

From Eqs. (5) and (7) it follows that

I'(I/2) I'[( N—22)/27k!2/2! I[22+h+l 2, (N+—h+q)z ql h—l —2)—/2—7
(y .hy, m)—

2"+"I[I—2, (N n 2—)/2—] h, l I'[(22+h+l)/2/l'[(N+h+222 22 h—1—)/27—

2u+q(g J .2) (h—q)/2(g J .J .,) 2 (g J .,2) (l 2)/2(gg— 2) (h—h—q)/2(g+, J,,)q(QP, ,2) (m—l—q)/2

[(h—p)/27![(k —h —q)/2]![(l p) /2]—![(2)2 l q)—/2—7!p!q!

By use of Eq. (8) we can write general expressions for the quantities of interest. For the correlation coeKcient
C(y;;, y~/ )=—C;; of two amplitudes we have

(y' y"&

((y"'&(y"'&) '"

22 'g J;J,'I[N,-(N—n —2)/27+ (N I) 'gpJ// J//, 'I[—22 2, (N—I.)/2j-
{g(J '/22)I[22, (N—22—2)/27+ps[J/)/'/(22 —2))I[22—2, (N—I)/27}'/'

)&{g[(J 2)/227I[N, (N —. n —2)/2]+gs[J/2'/(N —22) jI[22—2, (N 22)/2]}—'/2

The widths are defined as the square of the amplitudes, i.e., F;;=y;, . For convenience, we write the integral
I[22+a, (N—22+b)/21 as I,, h. The relative variance of the widths 2), is then given by

(Z/)Ja')' N —22, ') 2Z.J-q2ZPW'

( 2
3I—2,'2I—2,—2 I-2,0 I +, (3Io.()I—2.—2

—I-q,oIo.-2)
22(N —22

+ 3I2. 2I 2, 2
—Io. 2'

e2 I+2
(Zpp')'~, qZ-& pZpirp~ ~ (ZD./)'I,

I

The correlation coeKcient C(I';;, I',; ) is now given.

(I0)
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C(1'.. I',) —((I'..I', ) (I'..)(p, ))/((I'. 3) (p . .)2)1/2((p. ,2) (p )2) 1/2

2

I:Z~pP Z~p/"+2(Z~p~w')'3 — ', Z~pP Z~p/"

+ ' ' (4Z~ P /' ZhA/+ Z~/' Z Jp/'+ Z~-/" Z~p/')

'„'''(Z~-;Z&p +Z&- Z~p;)+ ' ', 'L~(Z~.~., )'+Z~ Z~. j
2—','Z~ Z~

a a N N' p—

+ ' ' ' (Zr.P Z~p + Z J.;. Z~„)+ ', ' Z~.;Z~.,' .
~—2, 0,—2

3. RELATIVE VARIANCE OF REDUCED
NEUTRON WIDTHS

The formulation of Sec. 2 is quite general. Equations
(9)—(11) are valid for any value of N or N. Henceforth,
we assume that E—m~. It will be seen from further
developments that this condition is necessary in order
to account for the Porter-Thomas distribution of the
reduced neutron widths. We proceed to the derivation
of an expression for the relative variance of the reduced
neutron widths.

The reduced neutron width 7;0 is defined in terms of
the amplitude y;0 as I';0—=y;0 .The most general expres-
sion for y 0 is one which contains contributions from
both groups, i.e., Eq. (2'). It is now shown that,
provided e is not too large, the Porter-Thomas dis-
tribution of reduced widths is consistent only with a null
contribution to the widths from the group of size e. In
order to proceed we erst assume the following relation-
ship which is derived in the Appendix,

r
1 1

rw(r) r"(1—r') (/r~)/'dr r///(r) r"'(1—r') (//~')/o

0 0

r (n—n&) (1 ro2) (m~~)/2 (12)

We de6ne a parameter R such that

ZJ o'
I

—Z ~.o'+ Z &po' I (13)
N (N N Np-

From Eqs. (10) and (12), we And the relative variance
vo of the reduced neutron widths to be given as

no= 2/1 —3R'/(0+ 2) $. (14)

It is clear that the relative variance can attain the
Porter-Thomas value, 2, only for E=O or for e—+~.
Thus, the group of size e cannot contribute to I';0 unless
e—+~. Henceforth, 8=0 and finite e are assumed.

4. MODEL EXPRESSIONS FOR CORRELATION
COEFFICIENTS AND RELATIVE VARIANCES

We now turn to partial radiation widths. Relation-
ships will be derived for the relative variance, the
correlation coeKcients of partial widths and reduced

widths and the correlation coe%cient of partial widths
to diferent Gnal states.

The partial radiation width 1;; for 1&j&Sy, where

EJ is the number of Gnal states considered, is dined
in terms of the amplitude y;; as F;;=y;,~. The amplitude
will generally have contributions from both groups. We
will consider the amplitude contribution of the group
of size S—e to be proportional to the reduced neutron
width amplitude y;0 as proposed by Lane and Lynn, i.e.,

tv=~a'*o+ Z -~. / (15)

where
x'o= Z &p*~po

P

We now turn to the relative variance e; of partial
widths to the jth final state. It is found from Eq. (10)
to be

v, = 2L1—3(1—CoP)'/(/o+2)]. (19)

The Porter-Thomas value e;=2 is approached only
when e—&~ or when C0,~~1.

The correlation coeScient of partial radiation widths
and reduced neutron widths C(I';o, I";;) is found to be

C(1''o, I''/) =Co'L1—3(1-Co/')'/(~+2) j'" (2o)

The correlation coeKcient of reduced neutron width
amplitudes and partial radiation width amplitudes can
be found from Eq. (9) to be

fo fo
Co= A~ZJpoo ZJ ~—

p E—e m

i/o

+& Z&po'
'

I
(17')

p N N—
The correlation coeKcient of partial radiation widths

to pairs of final states j and j' is found to be

Cgp =Co;Cop+a; p(1 Co/P) '/ (1 C() ~') '/' —(18)—
where v;; is defined by; = Z~-,~-;/(Z~-;Z~- )'".



and
z;& 2(n —1)/(n+2) (22)

C( '~ 'J ) =1—p(1 —Cij")I:(I+~~)/~Jj (23)

S. ANALYSIS OF EXPERIMENTAL INFORMATION
IN PRESENT MODEL

A model has now been presented that accounts for
the possibility of a Porter-Thomas distribution of
reduced neutron widths, narrow distributions of partial
radiation widths, non-negative correlations of partial
radiation widths and reduced neutron widths, and both
positive and negative correlations of partial radiation
widths to pairs of Qnal states. It is not the most general
model possible, but it accounts for the experimental
results. One could, for example, consider a three-group
case. However, extensions of our model would generally
lead to the occurrence of a larger number of parameters
than the n, CpP, and z,i that appear in (19)-(21).
The extra variables could not be precisely evaluated
with the experimental tools now available. In our
case, on the other hand, all the parameters can, in
principle, be evaluated from experimental data as is
now shown. From Eqs. (19) and (20), we find an
expression for Coj as

Co =C(I";o, r;;) (-',p,)"' (24)
and e is given by

n, =2t (3/(2 —p,))(1—C(I";p, r")(-'p )'i')' —1j, (25)
while r,y is found from (18), (21), (24), and (25).

Let us apply these equations to the case of neutron
capture in "'Tm. The results of a correlation analysis of
p rays from eight resonances to 15 6nal states have been
previously published. ' The average of C(rzo, I';;) over
final states, i.e., (C(r. ;p, I';;) );, was found to be 0.27.
Analysis of this and other results to account for ex-
perimental error and the hnite sample size indicated a
"best" value with 10 and 90% confidence limits to be

(C(r,p, rg) );=0.43 o,pp+o". (26)
Although this result is based on the multivariate normal

The theory allows only non-negative correlation
coeKcients to occur. We next And the correlation
coeKcient of partial widths of Anal states j, j', i.e.,
C(r;;, re') to be given by

c(r...r,,')
$C "—(2r "+1)(1—Cog) (1—Cp")/(n+2) j

L1—3(1—Co ')'/(n+2)7"E —(1—Co")'/(n+ )3'"

(21)
The coeKcient may take on either positive or negative

values.
For the situation in which Cp,~= 0, Eqs. (19) and. (21)

simply reduce to those given by Rosenzweig. ' Indeed,
one can make this statement under the more general
condition that (X—n) remains finite. Since Cpz~=0
implies PpJpoz=0 as is noted from Eq. (17), Eqs. (10)
and (11) forj,j '&0 reduce to Rosenzweig's equations,
i.e.,

distribution of amplitudes, it was found to be relatively
insensitive to the amplitude or width distributions.
Analysis of the widths to obtain the x' distribution with
the best-fit number of degrees of freedom v shows that'

p = 1.97~.4p~' (27)
The relationship of the relative variance to v is given by

n= 2/p. (28)
A value of v=2 corresponds to @=1.Using this and

Eq. (26) in Eqs. (24) and (25), we obtain

(Cog), =0.30, n =0.97. (29)
If we use the 10percentile values found in Eqs. (26) and
(27), we find

(Cog);;„=0.16, n =4 3, .

which yields an estimate of the minimum correlation
coefficient and the maximum number of states in the
group of smaller size. Since e& 1 and must be an integer,
we have shown that

in this model with a larger probability of the smaller
value being correct. Since, in our model, Co,~ Ineasures
the mean fraction of the transition strength that is due
to the group of larger size, one may conclude that
16—30% of the transition strength is due to the larger
size group while 70—84% of the intensity comes from a
group of 1—4 states.

In the case of PNU(n, y)'zPU, y rays from five reso-
nances to 18 6nal states have been analyzed. " No
statistically significant correlations were found. It was
shown that the best value for the number of degrees of
freedom is i =4. This corresponds to a value of (Cpj);=
0, m=2.

0. CONCLUSION

The two-group model of the compound nucleus we
have discussed has been shown to successfully account
for correlation and distribution eGects of resonance
neutron capture. Indeed, we have found that the
parameters of the model can be quantitatively evaluated
by use of presently available or obtainable experimental
data.

It should be emphasized that this work has been
primarily concerned with the statistical aspects of the
reaction process. The underlying nuclear structure
mechanism has been mentioned only brieQy. The
statistical and nuclear structure effects are obviously
strongly interrelated. The case of caputre in "'Tm can
help clarify this interdependence in the present model.

We have found that approximately 16—30% of the
transition intensity in Tm stems from the large size
group while 70—84% comes from a group of 1—4 states.
The states of the large size group are associated with the
reduced neutron widths. Since the reduced widths
essentially yield the single-particle strength of the
compound-nucleus wave function, it is the group of

~" D. L. Price, R. E. Chrien, O. A. Wasson, M. R. Shat, M.
3&pr, M„P,. I~ne, 'and R. Graves, Nucl. Phys. A121, 630 (1968).
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larger size which contains the single-particle component
of the neutron resonances. A relatively simple inter-
pretation (not necessarily unique) of the small sized
group can also be given. We consider this set to be
composed of 1—4 doorway or collective states, each of
which yields the same order-of-magnitude contribution
to the p-ray transition as the single-particle component.

Interpretation of the model as applied to capture in
"'U can also be given. About two doorway or collective
states supply the entire transition strength.

Integration by parts a second time gives us

2&)(a) ars (1 g2) ()ty-tet+2)/2

I /22, (N—m)/27=

242&) (a) g(rs—2) (1 g2) (i)/-set+4) /2

+
(N—m+ 2) (N—m+4) dr

ass i (
—1 g2) O(y~+4) /2

X
(N—m+2) (N—m+4)

ACKNOWLEDGMENTS ~ ~ ~ (A3)
(N —m+2) (N—m+4)

For the case in which w(a) WO we note that the ratio
of the second term to the erst term is

I(1 a')—/(N m+—4) a', (A4)

which is small under the stated conditions. The third
term, too, is small relative to the 6rst term. If, on the
other han. d, 2&)(a) =0, dw/dr ~,&0 then the main
contribution to the integral comes from the third term.
In general, if all derivatives of order (l are zero-valued
at r= a and d'7///dy'~„=, AO, then

ILy&, (N—m) /2) = Pd'2&) (a) /dr']
l

y Iatt i(1—g2) Ã»t+2(i+&)&/2/g $N —m+2( j+ 1))}

The writer is indebted to Dr. R. E. Chrien and other
members of the Brookhaven National Laboratory
Fast Chopper Group for useful discussions and the
information they supplied.

APPENDIX: WEIGHTING FUNCTION w(r)

The weighting function 2&)(r) determines the overlap
region of the two groups of coefficients fa;} and fb, }.
To clarify this, we consider two extreme situations.
First suppose w(r) = constant over the entire region
0(r(1. E uation (4) shows that P(ai, ~ b;) ~
(&(g a;2+ /)b//42 1).Thus—, this case corresponds to
allowing both groups to merge into a single group the
random vector of which is uniformly distributed on a
unit sphere. In the second case, we consider 2&)(r) g)g

8(r2—r 2). Then
(AS)

If it is assumed that l«(N —m)/2, then setting r,= a,
Eq. (12) immediately follows from Eq. (AS).

There is another weighting function type of interest,
i.e., where w(r) fulills conditions (a) and (b) but either
w(0) or one of its derivatives at r=O has a nonzero
value. We will show that under these conditions the
results are indistinguishable from those of the Krieger-
Porter model. 2 5 Let us consider the situation in which
w(0) 00. Then, by partial integration, we find that

n+1

Z~ (N—m)/23= (~"/g LN —m+2 j])

~(a '"b ) "b(Z a '—rp')b(Z bp' —(1—y'))
a je

The two groups are completely independent. In general,
2&)(r) corresponds to some intermediate degree of group
interdependence.

Let us now consider the conditions for the validity of
Eq. (12) . For this purpose, we examine the integral

I
2&)(r) r"(1—r') (~~)/2rdr. (A1)ILN, (N-m)/2)=

0

In the case 2&)(r) =8(r' —rp'), the integral is proportional
to rp" (1—rp2)(~ &/2 and Eq. (12) immediately results.
We will now show that Eq. (12) is correct for any
weighting function 2()(r) satisfying the following con-
ditions: (a) m, 22«(N —m)/2; m', y4'«(N —m')/2;
(b) w (r) is not proportional to (1—r') ~/2; (c)
2()(r&a) =dw(r&a)/dr= ~ ~ ~ =d'w(r&a)/dr'= ~ ~ ~ =0.

Integrating Eq. (A1) by parts yields

1

2&) (r) y~(1—r') (~~+'("+')&/'d(y') (A6)
0

where 0.=0 for n an odd, and 0.= 1 for e an even integer.
It is not dificult to show that under the stated condi-
tions the integral in Eq. (A6) has the same order of
magnitude value for 22—&I+2 as for y4. Therefore, we
are justified in stating that

Ifn+ 2, (N m) /2 j/Ifws (N ——m') /2$ 1/N, (A7)

a value much smaller than unity. Under these circum-
stances, Eqs. (19) and (20) reduce to

'vg= 2

2&) (a) art (1 g2) (2/~+2)/2
ir'n, (N—m)/2j=

N—m+2 N m+2—
t' ' dm

y(st—i) (1 y2) O)/~+2)/2d(y2)
k. dr and

C(I'' I' p) = C p (A9)
+»f wr&" »(1—r') &r +' d( ') ) . &a(A2r) as tound in the case with only one group with a very

large number of members.


