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The values of the inertial parameter using the five
formulas are presented in Table V for Ne'0 and Si".All
the formulas, except the Levinson moment, were
evaluated with Z without any modifying nJ' term. We
find less spread in the values of the inertial parameter
for Si' than for Ne-" since (3.3a) is better satsifmd for
the former.

Kelson" proposed a criterion to determine the
validity of various formulas for the inertial parameter.
The criterion is that, if A(H) is a correct formula for
the inertial parameter, then the following relation
should hold

A (H) =A (H nJ')+—ct.

Thus to test a particular formula, say the one proposed
by Das Gupta and Van Ginneken, one would calculate
tf(H) with Eq. (5.10) and calculate A(EI—crJ') with
the same equation replacing H and H atJ' and—

~
4)

with (
4' ). The Inglis formula, which is positive def-

inite, clearly cannot satisfy this criterion. For the
remaining formulas, this criterion really tests the depen-

"I.Kelson, Phys. Rev. 160, 773 (1967).

dence of
~

4' ) on cr. If the rotational criterion that this
dependence should be weak is satisfied, all the formulas
give nearly the same values and satisfy Kelson's
criterion reasonably well. To illustrate this point, the
values of A(H —crJ')+n as a function of tr for the
various formulas are presented for Xe" in Fig. 3 and for
Si' in Fig. 4. If the Kelson criterion is satisfied, these
quantities should be constant. We see that this condition
is better satisfied for Si", where the relevant rotational
criterion is better satisfied.

Since all of these formulas are determined self-
consistently and with the use of the HF wave functions,
the inertial parameter will reQect a weighted average
of the excitation energies of the members of the ground
band and will give the best results when applied to the
spacing of levels with I~/(4'

~

J'
~

4)j't'. Inasmuch as
purely rotational spectra are rarely observed in nature
and a more adequate description of the spectrum is of
the form

Et=Eo+AI(I+1) +Bls (I+1)'
where A is positive and 8 is negative, these formulas
will generally underestimate the spacing E2—Eo of the
ground- and first-excited states.
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A method of fluctuation analysis is developed for elastic scattering of spin-zero particles from spin-zero
nuclei. The principal di6erer)ce between this model and the one proposed by Ericson is that some unitarity
is included. It is shown that all features of conventional fluctuation analysis are modi6ed to a small extent.
Analysis of the phase shift may show entirely different behavior from that predicted by an Ericson mode
Because of the simplicity of the elastic-scattering reaction, it is possible to obtain not only the total width
but also the level spacing and partial width (as define'd within the context of the model) . These quantities
are obtained as a function of angular momentum. This method is only applicable if a phase-shift analysis
can be done on the data.

I. INTRODUCTION

f iHE representation of compound-nucleus reaction
cross sections by stochastic processes as erst pro-

posed by Ericson' and Brink and Stephen' has had a
great deal of success in the interpretation of excitation
functions.

The method commonly employed to obtain such a

*ork performed under the auspices of the U.S.Atomic Energy
Commission.

' T. Ericson, Ann. Phys. (N.Y.) 23, 390 (1963);Phys. Letters
4, 258 {1963).

s D. M. Brink and R. O. Stephen, Phys. Letters 3, 77 (1963).

representation is as follows. A general form is given
expressing the amplitude in terms of a large number of
resonance parameters. The resonance parameters are
then assumed to be random variables with appropriate
properties. In order to make the resulting process as
simple as possible it is desirable to have all of the
random variables independent. The choice of form has a
strong bearing on the allowability of the independence
assumption, as we shall see.

The success achieved by fluctuation theory has been
in spite of the fact that the form used, together with the
independence assumption, allows unitarity to be
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violated. However, Quctuation analysis has been
applied primarily to small, off-diagonal, elements of
the S matrix whose contribution to the unitarity sums
is very small. If the simple theory were applied to
elastic scattering one has every reason to believe that
this violation of unitarity would have observable e6ects
since these elements (at least for the most important
partial waves to Quctuation cross sections) are of order
one.

For the same reasons one would expect that a theory
which does not allow diagonal elements to violate
unitarity of themselves will take into account most of
the eGects of the unitarity condition. In fact the further
e8ects of unitarity should be of the same order as the
6rst-order e6ects in off-diagonal elements. The object
of this paper is to present a simple model for diagona1
5-matrix elements which do not violate unitarity of
themselves.

Section II reviews the Mittag-Le6ier method and the
E-matrix method of representing the amplitude as a
stochastic process. Section III presents the mathe-
matical form of the model and gives the reasons for its
selection. The average value of 5 is computed in Sec.
IV.

Section V deals with an approximate form valid in
the limit, partial width/total width &(1. The average
elastic Quctuation cross section is obtained for this
(slightly) restricted case. It is also shown that the
average partial width, the average total width, and the
average level spacing can be measured as a function of
angular momentum J.

In Sec. VI the properties of the phase shift are
examined and Sec. VII contains an investigation of the
properties of the residues predicted by this model.

Throughout it is assumed that we are dealing with
spinless particles and that the symbol 5 denotes a
diagonal S-matrix element in a single partial wave.
The Appendix contains results pertaining to differential
cross sections.

II. REVIEW OF BASIC METHODS

The 6rst method of representing the amplitude as a
stochastic process' ' is based on the Mittag-LefQer
theorem's which states that any function (F) which is
analytic everywhere except at isolated poles (Pt, I's,
~ ~ ., I'N) and bounded at infinity can be written

written as

(2)

Of course, 5 is not bounded at in6nity, nor is it mero-
morphic (because of the threshold branch cuts), but
the error made due to these two incor'rect assumptions
is likely to be small if we are interested only in the rapid
energy dependence of S.

Since the bz are known (from reaction theory) to be
related to overlap integrals of (compound nucleus) wave
functions, it is assumed that they are random variables
with average values zero.

Thus Eq. (2) is an expression with parameters corre-
sponding to each pole. The assumptions commonly
made about the parameters in Eq. (2) are

I'q~ is independent of );

the bz are statistically independent.

(3a)

(3b)

(3c)

with

The erst assumption is made because the total width
is the sum of a large number of (assumed) independent
partial widths and as such will have a p' type of dis-
tribution with a large number of degrees of freedom.
The second assumption has already been discussed.
The third cannot be true because unitarity imposes the
condition'

[
S /'&1,

which implies a relationship among the bq. As was
mentioned in the Introduction for off-diagonal elements,
this is not a serious defect, while for diagonal elements
this assumption may cause serious error. This is espe-
cially true if one asks for properties which assume
unitarity in advance, such as the behavior of the phase
shift.

The second method considered here is that of repre-
sentation in terms of the E matrix. ~ Only the briefest
mention will be made here, since the subject has been
treated in detail by Moldauer. '

For only one channel open there is only one element
of the 5 matrix, and the expressions are

f(z) =const++
i=1 ~

If S is assumed to be such a function of E it can be
Since I' and E are real, 5 is unitary regardless of the
choice of y„(the basic random variables in this case).

' W. R. Gibbs, Los Alamos Scienti6c Laboratory Report No.
LA 3266, 1965 (unpublished) .

4G. Mittag-Lefner, Acta Soc. Sci. Fennicae XI, 273 (1880);
Acta Math. IX, 1 (1884) .

5Konrad Knopp, Theory of Functions (Dover Publications,
Inc., New York, 1947), Part II.

' Of course, unitarity imposes many more conditions than this,
but this is sufhcient for our purposes.

r E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947)
&A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).s P. A. Moldauer, Phys. Rev. Letters 18, 249 (1967); 19, 1047

(1967);Phys. Rev. 157, 907 (1967); 171, 1164 (1968).
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A. Modi6ed Mittag-LeflerIn fact, S is always unitary even if more than one
channel is open. Moldauer has shown that

T= 1——
t
S ('= 1—exp( —2tri' /D),

If we consider Eq. (2) to contain a finite number of
(7) poles we may write

where F is the partial width.
This is to be compared with the relationship which

is commonly used and is valid for small T:

E—ag

i E E—x+ ', (i-rP)
' (12)

T= 2nI' /D. .

We see that Eq. (8) is just the first-order expression
of Eq. (7).

Let us digress for the moment to consider the original
physical derivation of Eq. (8). It was argued that if
the period of motion is r=27rfi/D and the probability
of getting out per period is T then the decay rate must
be

T/r =r./f = TD/2~f
or

r= 2~1./D.

This, of course, neglects depletion due to loss, which
requires that T be small so that depletion is small.
However, there is no need to make this approximation.

The probability of 6nding the nucleus still intact
from decay through the channel in question after the
nth period is

If we write
az ——Ex——',(iI"~ )+ii"g.

I'F=Px+ I'i,

where px will be called the inelastic width and I'i, the
elastic width, S can be written as

g E Ei—+zi(Pt, I'x—)
i, E—Ei,+-,'i(Pg+I'x)

' (16)

The condition (4) can be satiated without requiring
any correlation between parameters by demanding

E—ag

E—Ei,+s (ii'F)

be satis6ed for each factor individually. Since we wish
to take each set of pole parameters to be independent
of all other sets of pole parameters, uq must be the same
as it would be if the level were isolated. Thus,

Q-= (1—&)Q--i= (1—&)",

since Qtt=1.
Writing Q as a function of time

Q(t) (1 2') tlt' —(I 2') tD(23K

=exp( —(tD/2nA) ln(1 —T)—')
—=exp( —I' t/5)

from which we identify

(9) This is the basic form that will be used. It is to be
noted that an undetermined, slowly varying phase should
multiply this form to give the physical S.

B.R Matrix

(10) To obtain this form from the E matrix we observe
that, aside from the hard sphere phase shift, which
becomes the slowly varying phase for this case, we can
write (from the Mittag-Lefner theorem for (d S/dE)/S j

I' = (D/2') ln(1 —2') —',

which is equivalent to Eq. (7).
Of course, much more general cases can be treated

by the R matrix than just presented but in order to get
useful results it is necessary to go to numerical cal-
culations. Moldauer has shown numerically that the
relationship (7) holds generally in the absence of direct
reactions. Similar approaches' may yield useful results
of an analytic nature.

III. PRODUCT FORM

The product representation may be obtained by
imposing unitarity on the Mittag-Lerner form, as an
approximation to the R matrix, as the result of a
semiclassical argument, or directly by means of ana-
lyticity arguments, We will consider all of these possi-
bilities to obtain a better understanding of the model
to be adopted.

' Nazakat Ullah, Phys. Rev. 154, 891 (1967);164, 1316 (1967l;
P. A. Moldauer, ibid. 135, B642 (1964).

5= E-E.-"+-,'(p.-~.)
E—Ex+zi(p)+»)

(17)

if the penetrabilities are taken to be independent of energy
In order to satisfy the condition (4) for all energies and
still have all parameters independent it is necessary
to take

eg =—0. (18)

This is an approximation made to obtain this model
and it may be necessary for some applications to relax
this condition, but for the present we shall assume that
Eq. (18) holds exactly.

C. Semiclassical Argument

Since 1—
) S ~' is the probability that a particle

incident upon a nucleus is removed from the incident
beam (which is the same as being captured if we neglect
direct coupling to other channels) then

~
S P is the

probability that it not be captured. If we now assume
that there exist a number of independently acting
"physical" states, the probability that the particle is



181 FLUCTUATIONS IN ELASTIC SCATTERING

not captured is the product of the probabilities that it is
not captured into each state individually. If these
probabilities, I Sz I', are assumed to be unmodified by
the presence of other states then

IsI= II E—E~+si(P~—1'i) '
E Ei+—si (Pi,+I'),)

This is the same as Eq. (16) except for a phase.

D. Analyticity Arguments

To obtain the desired form directly from analyticity
arguments, consider potential scattering. We need
three following facts:" (1) S is analytic in the k plane
with the exception of isolated poles and an essential
singularity at infinity. (2) All poles occur below the real
axis or on the imaginary axis. (3) S(k) S(—k) =1.

Let kq denote poles in the right half-plane, k),
' denote

zeros in the left half-plane, qz denote zeros in the right
half-plane, qz' denote poles in the left half-plane, p„
denote poles on the imaginary axis.

Noting that (d/dk) lnS has residue —1 at every
pole and residue +1 at every zero, we see that

Note that all poles in the product involving k are
distant from the region of interest, as is the case with
the first product involving E. Thus we come again to
the form expressed in Kq. (17). As before we neglect
the ~q to make the form more manageable.

For the more general case (not just potential scat-
tering) everything would be the same except that the
branch cuts due to thresholds spoil the analyticity.
However, it is to be expected that any energy depend-
ence which comes from these branch cuts would have a
single-particle character.

For the plausibility arguments given above Eq. (16)
will be adopted as a model for S.

with

II x~+i(1—y~)

xi+i(1+yg)
(24)

IV. AVERAGE VALUE OF S

In this section we shall compute the average value of
S under the approximation that all pz are equal and
large compared to the average level spacing. This will
be done at a 6xed energy, so we may write

—1 1 —1—»S=cyg x), 2(E Ei,) /—p—, —
yg ——ri/p.

—lnS=c —2 Q, , +Q qx

~ks 2

(21)

Using the third condition in the form k~'= —kg) qg'=
—q))

Since all yq are to be considered to be independent,
the ensemble average of S is given by

8=IIci,

xi+i(1—y)
,(1 )

f(y) y

~ 1—zing
—

p
f(y) dy,

1—sxi,

ln5= ck—2 dk
0

where f(y) is the probability density function of y.
This could well be taken to be of a Porter-Thomas form)
but its specification is (almost) irrelevant for this cal-

+g ~ p q"
(22) culation. Then we may write

k2 p
2 k2 ks ks q~s

ln(8) =g 1n(cq), (27)
If we integrate this as it stands we arrive at the usual
product representation. " Let us add and subtract k
from the numerator of each term and integrate. By
properly grouping the terms we see that

which we will take over to an integral (assuming a
constant pole spacing, D)

k+kg 's=' lI (k+p.)II
n x k+qx

where

ln(S) =d fln[c(s) jd-s', (28)

„2

p' —E i, E—ki,siX
'" I. (23)

Since

d =2D/p.

c(s) —= f(y)dy
o 1 ss y

"See, e.g., R. E. Peierls, Proc. Roy. Soc. (London) A253, 16 (29)
(1959).

"Ning Hu, Phys. Rev. 74, 131 (1948); N. G. van Kampen,i' 91, 1267 (1953).. has no singularities in the upper half-plane, let us com-
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piete the contour there. ' Thus we fj.nd

ln(8) = —d ' lim iR e"de lnLc(Re@) j (30)
+~co 0

Now we may observe that (to first order in 1/R)

so to first order in yz

p= —2Z b~/(1+»') j,

q= —2Z LxV'~/(1+»') 1

(37a)

so

c(Re")~1 2—ie *'g/R

2xy xF
d D

(32)

f2ie "g-
in(8) =—d ' lim iR e@de ln 1—

~

@~co
O

Let us investigate the statistical properties of p and q.
The first thing we may note is that there are many
significant terms in each sum (since P/D))1) so that
p and q are normally distributed. This means that we
need only the first and second moment to describe
their distributions.

p= —2gg ( 1/(1+xmas) I,

or —2y ~ dx

d 1+x' '
(33)8=exp (—~1'/D) .

p = —2rrg/d = rrgP/D=— rrr/D—

xdS =0
—co 1+x

Thus we find again Eq. (7).
Note that this expression is general under the assump- ~h~~e d= 2D/0 «

tion of the form (16), the assumptions of equally
spaced poles and P/D))1, so that the transition from
Eq. (27) to Eq. (28) is correct. Eq. (7) will be derived
again in Sec. V under a slightly different" set of assump-
tions.

(38)

(39)

By the same simple arguments it may be shown that

(p')-=8+2~~'/d (40a)

(q'), = 2n-o„'/d, (40b)

V. STATISTICAL PROPERTIES OF AN
APPROXIMATE FORM OF S

o„s—=Var(y); (41)
thus,

If the excitation energy is very high, then many
channels are open and the width in the entrance channel where
will be very small compared to the total width from
other channels or

y«&. (34)

Since f(y) is of an exponentially decreasing form
Lexp( —g/y) j, the probability that y exceeds g by a
large factor is very small. Thus we may study the
statistical properties at high energies by expanding in
powers of yz. A word of caution before going further:
There are certainly regions in every nuclear-scattering
problem where this approximation does not hold and
certainly regions where it does, and one must be very
careful to be high enough in energy before using this
approximation.

In order to carry out the program outlined above we
first expand each factor in Eq. (21) to first order in yq

x).+i(1—y),) 2y)

xi+i(1+yx) 1 ixx

Now define

For such a statistical system it is easy to show"

S=e". (46)
Thus once again we arrive at Eq. (7).

We have the equipment now to derive all moments
of the amplitude

o.o'=—Var (p) = 2iro.„'/d, (42a)
os'= Var(q) =2 o—„i'r/d. (42b)

It may also be shown that p and q are independent.
To summarize, the complex random variable S may be
expressed in terms of the independent random variables
p and q as follows:

S=exp(p+iq), (43)
where p and q are normally distributed

p= 7rI'/D, q=0-,
o'= o.~'= o,'= 2rro.v'/d.

p+iq—= lnS

=g ln I 1—$2y,/(1 —ix,)]}, (36)

"Although it is true that C(s) has no singularities in the upper
half-plane, it can have a zero there. The position of the zero
depends on the distribution function chosen. For a Porter-Thomas
function the zero remains in the lower half-plane provided P&
2,6P, For two degrees of freedom the condition is I'&1.65p.

=A+e"~(8—S) .

"If s=e*+i& with x and y independent with zero means and
equal variances (normally distributed) then Z~(s) = E(e*~)E(e') =
e
—~2/2eo'2/2 —]
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The slowly varying phase factor e"& has been inserted
explicitly. Let us investigate the statistical properties
of A

A. = (8—S)o"~

range three quantities may be computed with reason-
able accuracy. These are p, E(0), and the correlation
length of p(E). The latter numbers are obtained from
the expression

=e P(7i+24')[1—e P(p —7i+iq)3 (47)

(3), =0,

art=
~

A )=exp(2p) [1+exp[2(p—p)g
—exp(p —p+iq) —exp(p —p—iq) J, (48)

o fi exp(2p) [exp(2o') —1],

(p(E)p(E+~) ), S-- E(0)
(I+"i~')

Since P is the correlation length one may calculate

D= ',~Z(0) P
and in turn

I'= —7iD/~.

(57)

so that

(orP), —+exp(4p) 8o4,

op)~exp(2p) 2a',

(( ')-— ')/ (51)
as expected.

For a Porter-Thomas distribution

arp=exp(4p) (I+exp[4(p —p))+exp[2(p —p)+2iqj

+exp[2(p —
7 ) —»qt+2exPL2(p —7)~

—2exp[p —p+ iq) —2exp[p —7i—iq$

—2expL3(p —u) +iqj —2exp[3(p —&) —iqj

+2exP[2(p —7~) j), (49)
(afP)sv

= exp (4p) [exp (8o2) —4exp (4o') +4exp (2a') —1j. (50)

As 0' goes to zero

These equations are subject to uncertainties from
two causes (aside from the basic assumptions of the
model). The first of these is the possibility of direct
reactions removing a large amount of Aux from the
beam. Note that pure elastic potential scattering has
no effect since this involves only the real part of the
phase shift. Such a direct coupling to other channels
is expected to affect Eq. (56) not at all, Eq. (57) in
second order, and Kq. (58) in first order.

The second uncertainty comes from the assumption
of a Porter-Thomas distribution for the partial widths.
For a function with two degrees of freedom the right-
hand side of Eq. (5'7) will be divided by 2.

VI. BEHAVIOR OF PHASE SHIFT

Let us return to the full form of S given by Eq. (16),
that is to say without the condition expressed in (34) .
If we write

so that
Op 2g

a'= 2s I"/PD

= —[ln(1—T )j'/g ln(1 —T,).

(52)
then

(53)

(54)

and

1+yz
tan ' —tan '

2(E—E),) 2(E—E~)

(59)

(60)

The last equality follows from Kq. (7) and the
assumption that P is the sum of all other partial widths.

We may note that the magnitude of 0-' depends on
two factors, I'/P and I'/D. The first of these has been
assumed to be small, but the second has been allowed
to have an arbitrarily large value. Thus it cannot be
said, without some calculation, that o' is small compared
to one. However, one may always compute the partial
wave cross section by

o f $
—( 1—T ) [exp (2o') —1$, (55)

where o' is given by Eq. (54). The reader may verify
that Eq. (55) reduces to the usual Hauser Feshbach
expression when all transmission coefficients are small
compared to one.

The equations obtained in this section allow the
determination of I', D, and P as a function of J. If a
partial-wave analysis is performed on the data (elastic
scattering of two spin-zero particles) and p (E)
(—=Re[lnS(E) jf is thus obtained over some energy

4(E—E~)'+ (1—y),)' "'
~= II 4(E—E~)'+ (I+y~)'

Consider a single term in the sum for B.

(61)

1+yx
tan ' —tan ' (62)

2 2 (E—Eg) 2 (E—Ey)

As E passes through Zq one of two things occurs.
If y& is less than one then 8& increases from zero up to
some maximum less than 4z then decreases to zero as
E=Eq. It then continues to decrease to a minimum
which is greater than —~m and then increases again to
zero.

If yz is greater than one bz simply increases by x as E
passes through E~. These two behaviors are shown in
Flg. 1.

Figure 2 shows some curves of 6 calculated using
Eq. (67) with equally spaced levels and yz generated
as random numbers with a y' distribution of two degrees
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FIG. 1.Shown are two calculations to demonstrate the behavior of
the phase shift as a function of the ratio p&, /p&, —=yq.

of freedom. The random numbers are the same in each
curve but the average value of y has been changed to
demonstrate the sharpness of the effect.

Since 6 is the sum of the 8q and since the average
contribution of all levels with yz(1 is zero, we may
say that the number of times the phase shift increases
by m is equal to the number of levels with yz) 1.

For a distribution of y as used above we have

0.5
-y=0

s o.o+
-0.5

0.5
-y=p.

0.0

-0.5
0.5

-y=0.2

0.0

I.07

E= T exp (—P/I') /D, (63) 8
t

IO I 2 I4 I 6 I8 20
E

t}t

where X is the number of times the phase shift passes
through m in an energy range T. Since the exponential
factor is very important we may say that the most
probable time to observe the effect is when the ratio
P/I' is minimized. This can be expected for high J
values in the elastic scattering of a particles since the
a-particle widths are weighted to higher J values than
the total width (due largely to mass 1 particles). This
eGect has been observed by Singh et al.' One may
easily develop the more realistic expressions and attempt
to get quantitative agreement with the experiment but
the great sensitivity of the results to optical-model
parameters and the great uncertainty in the value of D
make this comparison rather meaningless. Calculations
of this type by the author have upheld the general
features discussed above, for example, the proper
partial waves are predicted to have larger effects."

Note also that since the value of yq is unlikely to be
much above one the corresponding value of g should
show a dip at the same energy that the phase shift
increases by &. This is also observed in Singh s experi-
ment.

An interesting feature of this picture is the approxi-
mate prediction of the width of these structures. Since
I'q)P for the eRect to occur and since the distribution.
function of I'& is decreasing rapidly we have the result
that the total width is expected to be 2P. This feature
is also in reasonable agreement with the experiment.

One may note that eRects such as these couM never
be reproduced by a sum representation (with statistical

I4 P. P. Singh, B. A. Watson, J. J. K.roepfl, and T. P. Marvin,
Phys. Rev. Letters 18, 31 (1966).

» For these calculations P was also treated as a random variable
with few ( 10) degrees of freedom (Ref. 7). This can be an
important effect.

FIG. 2. A set of computer-generated excitation functions to
demonstrate the sharpness of the phase-shift effect. The curves
were generated by using random numbers from a Porter-Thomas
distribution for the yp and equally spaced levels (strongly over-
lapping) .The basic random numbers are the same for each curve,
only the average value being changed as marked.

assumptions) and that the unitarity restriction ap-
parently plays an important role in interpreting these
data.

Perhaps some comments are in order concerning the
fact that these states are simple states in the elastic
channel. This is certainly true since they have large
widths in that channel. However, this does not mean
that their partial width is much larger than the others
since we have seen that a few percent change in the
partial width produces a complete change in the be-
havior of 6 as a function of energy. In fact if these
widths were much larger than the other widths, q
would not show a dip. Thus the fact that the phase
shift has a resonant behavior does rot mean that the
state has a very special character.

VII. RESIDUES

The form, Eq. (16), specifies the way in which the
residues of the Mittag-Lefner expansion for S PEq. (2)j
are correlated in order that unitarity not be violated.
The explicit relationship between the residues and the
resonance parameters is easily seen to be

b~= zd~)



FLUCTUATIONS IN ELASTIC SCATTERING

There are a number of algebraic identities relating
sums of residues to sums of resonances parameters.
Consider 5 to have a hnite number of poles and zeros,
i.e., the product in Eq. (16) is finite. Denote them as
follows:

Combining this result with Eq. (29) we have

ga„p„"= ic„—„,
which is the desired relationship.

For m=0 the equation

(73)

p),—E),—2z(Pa+ Fr),

s) =Ex 2i—(P) 1'—) )

S=II (E—s~)/(E —p~).

(65)

(66)

E"SdE= 2v ig (residues) =2v gd„pp. (67)
~

~

Now consider the integral of EmS, (m=0, 1, 2, ~ ~ ~ )
around. a contour C, where C is a circle (of radius R)
with center at the origin enclosing all poles and zeros
of S. Then,

(74)

where
d„=1'„exp (ip„),

v.= —2Z Ll'~/(E. —E~)j.
(75)

(76)

is obtained.
It is interesting to note that, even for the case of

purely elastic scattering with well-isolated levels, Kq.
(63) displays a correlation between levels. To exhibit
this feature, we note that in this limit Eq. (63) can be
written

On the circle we may express S as

1—(s~/E)
1—(p~/E)

where

gn= exp —Z
„=1 nE"

sD ( p~&= exp g ln 1——
~

—g ln~ 1——
~EJ ~ E Ei (68)

Consider the case in which there exists some finite
number of levels clustered about an energy E0, with
all other levels very distant. For E„ to the far left of
Eo, q„must be positive. As E„ increases, q„decreases
until on the far right of the collection of levds it is
negative. Thus we see that for any isolated collectiori of
elastic levels a correlation of the phases of their residges
@sist ex~st. For this reason a correlation of residues for
an isolated group of levels does not provide any further
evidence of intermediate structure.
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(69)

(70)

where

C1 g1)

C2= -. (g2—gP)

C~——1/18(6g3 —9gg2+gp), etc.

(71)

Note that the sum in Eq. (70) is convergent with the
conditions stated on the contour C. Thus we may write

%e may now expand the exponential and collect
terms with the same power of E.

The author wishes to gratefully acknowledge helpful
discussions with A. K.Kerman, H. Feshbach, K.McVoy,
and P. P. Singh.

APPENDIX

Here are the formulas for diGerential cross sections
which follow from the results given in main body of the
paper. These expressions may be simplified by use of
the quantity

sj= exp I
—

2Lln (1—Tz) ]'/ g ln (1—2,) I . (A1)
cp'-elastic

The average differential fluctuation cross section is
given by

o (tt) =x&2+ (2@+1)2(1—2'J) (g~—1)pq2(e)
J

immHSe(E i8) eei8de (A2)

0

0 is given by

X=1+[a (tt) j—'g (xg+3) (xs 1)os'I'g'(e) (A3)—" C„exp/i(m —++1)$expL'i(~+1)~~ Z &„de Because of the form of Eq. (A3), we see that the
effects described here on E. are most important when= —i2wC~1 (72) only a small number of partial waves contribute.


