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The conditions under which a Hartree-Fock wave function may be a good description of the intrinsic
state of a rotational nucleus are discussed from two points of view; first by studying the Quctuations of the
modi6ed Hamiltonian H —n J~ as a function of n, and second by studying the response of the wave function
to a small external perturbation —coJ . Following Thouless and Valatin, this response is given in terms of an
anti-Hermitian cranking operator S. We demonstrate that, when the Hartree-Pock wave function is ade-
quate, S is of the form (J,p7/ ewhere p is the single-particle density operator and e is twice the rotational
energy content of the intrinsic state. These considerations lead to simple tests of the adequacy of the Har-
tree-Fock wave function as a rotational intrinsic wave function. A comparative study of various formulas
for the moment of inertia, utilizing the aforementioned result for S, is presented.

1. INTRODUCTION

& ~URING recent years attempts have been made to
provide a microscopic description of the intrinsic

wave functions of deformed nuclei with Hartree-Fock
(HF) ' or Hartree-Foci'-Bogoliubov' (HFB) wave
functions. These e8orts have been rewarded with both
quantitative success and better qualitative under-
standing. Once a reliable intrinsic wave function is
obtained, the calculation of physical quantities, e.g.,
energies of the rotational levels, electromagnetic
moments, etc., is straightforward in principle; it
requires projection of good angular-momentum states
from the intrinsic wave function. In practice this can
be very laborious. Alternatives to projection calcula-
tions, even at the expense of some accuracy, are there-
fore desirable. A well-known example is the use of a
moment of inertia when the spectrum is rotational. But
it is necessary to know whether the spectrum is rota-
tional before calculating the moment of inertia. One of
the objects of this paper is to establish the conditions
under which one can obtain states exhibiting a rota-
tional spectrum from an intrinsic wave function. The
conditions are stated in terms of an operator S which
describes the response of the intrinsic wave function to
cranking. We also examine and compare the various
available formulas for the moment of inertia.

We conlne our discussions to the HF theory. The
extension of the basic ideas developed in this paper to the
HFB theory should be apparent. We frequently use
simple HF calculations in the 2s-id shell to illustrate
some of the points under discussion. Since there is no
particularly striking example of a rotational spectrum
in this shell, the choice is not very fortunate. HF

calculations in the rare-earth region would have been
preferable, but these are beyond the resources available
to the present authors.

Our HF calculations assume that 0" serves as an
inert core and that the extra core particles are confined
to the 2s-1d oscillator shell. The Hamiltonian, to be
referred to as H throughout the paper, contains a
single-particle term and a two-particle interaction terra.
The parameters of the single-particle term are fixed
from the appropriate level spacings in 0'~. The interac-
tion between the extra core particles, denoted as v, is
taken to be a purely central force with a Yukawa
radial dependence with a range of T.4 fm. The strengths
in the singlet-even, triplet-even, singlet-odd, and
triplet-odd states are —34.4, —46.9, 40.8, and 19.4 MeV,
respectively. Oscillator functions, with the length
parameter adjusted to give the root-mean-square
radius correctly, have been used for the radial wave
functions of the single-particle states. For simplicity,
most of the general discussions and remarks in the
paper pertain to axially symmetric HF wavefunctions.
We discuss the triaxial cases. explicitly only when
necessary.

In Sec. 2, we discuss the conditions for the validity of
the HF approximation for the intrinsic wave function.
In Sec. 3, we develop the conditions which the response
operator 5 must satisfy in order that the spectrum be
rotational. The significance of these conditions is
discussed in Sec. 4, and the various formulas for the
moment of inertia have been examined in Sec. 5. 5 is set
equal to one in the formulas throughout the paper.

2. VALIDITY OF HF APPROXIMATION

*Research supported in part by the U.S. Atomic Energy Com-
mission under Contract No. ORO-3765-7 and computations at
the University of Maryland Computer Science Center were
supported by NASA Research, Grant No. NsG-398.

)On leave of absence from the Instituto de Fiscia Teorica,
Sao Paulo, Brazil.

For a good review of the situation see G. Ripka, in Advueces
cn Pkysccs, edited by M. Baranger and E. Vogt (Pergammon
Press, Inc. , New York, 1968), Vol. 1.' M. Baranger, 1NZ Cargbse Lectures (W. A. Benjamin, Inc. ,
New York, 1963).

A. Fluctuation

The concept of an intrinsic wave function is a very
useful tool in the theory of rotational nuclei. For clarity
we will specialize the following discussion to axially
symmetric nuclei. The underlying conjecture is that the
states of a rotational band are well described by the
wave functions CAI E obtained by projecting good
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gCC, rrr (2.2)

where C and C~ ~ are normalized wave functions. Since
the CQ~ are supposed to be eigenfunctions of the
Hamiltonian

(2 3)H
I
CH~) =Fr

I
C'~rx)

the idea of an intrinsic wave function becomes useful if
there is a simple prescription for constructing it. HF and
HFB theories have been used extensively as approxima-
tions to the intrinsic wave function; here we confine our
attention to the HF theory. In general the intrinsic
wave function C, obtained by a HF variational calcula-
tion, will not be an eigenfunction of the Hamiltonian B
for two reasons. The intrinsic wave function, when it
exists at all, may contain correlations not present in a
HF determinantal wave function. Such a defect is

partly remedied in the HFB approach. The second
reason, which is more pertinent to the present discussion,
is that even when (2.3) is true the eigenvalues Fr are,
in general, nondegenerate. Therefore, a linear combina-
tion of the C~~~ will not be an eigenfunction of II. The
eigenvalues can be brought into degeneracy by sub-
stracting from the Hamiltonian a polynomial F(J') of
J', where the polynomial F(I(I+1)) gives the de-

pendence of Eg on I. Here we are interested in a
rotational spectrum, i.e., F(J') A J'. We may write

(H-~J) I ~~ )=~. l
~-"&, (24)

and now a linear combination of the C~ ~ will be an
eigenfunction of H —AJ'. It is not essential that the
intrinsic wave function be an eighefunction of a modified
Hamiltonian in order that its projections be eigen-
functions of II. However, if C is an eigenfunction of
H rl J' then, the CQ~ are—guaranteed to satisfy (2.3).
The real advantage of considering a modified Hamil-
tonian, of which the intrinsic wave function may be an
eigenfunction, is that it justi6es the use of a variational
procedure to find C. Skyrme' and Levinson4 used these
ideas to develop methods of determining the inertial
parameter A, introduced in (2.4), which is half the
reciprocal of the moment of inertia. We review these
methods brieQy.

Let C be the HF wave function of the Hamiltonian

' T.H. R. Skyrme, Proc. Phys. Soc. (London) AVO, 433 (1957).
4 C. A. Levinson, Phys. Rev. 132, 2184 (,1963).

angular-momentum states from the intrinsic wave
function C.

,jrrx dQ D~rr *(Q)R(Q) C, (2 1)
2I+1
Cise'

where E(Q) is the operator of rotation through the
Eulerian angles Q, D~rr (Q) is the usual representation
of the rotation operator, E is the band quantum
number of the axially symmetric wave function C, and
Cg is the normalization constant such that

H n—J'. Then,

(H--J)[c.)=~. I
c.)+ I x.), (2.5)

where
I x ) is a sum of two-particle-two-hole states only

and may be written as

I x.&
= 2 &&«i- I

&—2~J~ J~ I ~-r -) I i.i.; ~-~-), (2 6)

(2 &)

where all the quantities are evaluated at n=0.
The quantity (x I x ) is actually the Quctuation of

H —nJ' in C, i.e.,

&x. lx.)=&C. I(H- J) IC.)-&C. IH- J IC.&.

(2.8)

Naturally each of the two considerations which, in
general, prevent I

C ) from being an eigenfunction of
H —nJ' contributes to (x I x ). Minimization of

(x I x ) with respect to n eliminates to a large extent
the role of the nondengeneracy of the projected spec-
trum. The minimized value of (x I x ) is essentially a
measure of the extent to which the projected states are
eigenfunctions. A more direct way of studying this point
would be to calculate the quantities (C r

I
H

I
C )—

(C r
I
H

I
C r)'. It is much easier to calculate the

following weighted sum of these Quctuations:

plcr ['{&c IH'Ic )—(c' [HI c )'I

= &c'
I
H'

I
c &

—g I
cr. I'&c-'

I
H

I
c")' (2 9)

I

B.Numerical Examyles

We have calculated the minimized fluctuation for
Ne' Mg', Si' S",and Ar" using the Hamiltonian and
the restricted single-particle space described in Sec. 1.

where the Greek letters denote occupied and the Latin
letters denote unoccupied single-particle states, and the
state

I
i j;X p ) is a two-particle-two-hole. state built

on
I

C ). The subscript n serves to remind us that all

these quantities are for the HF solution of H —aJ'. If
the intrinsic wave function can be a determinant at all,
then there will exist a value of o., viz. , O. =A, such that

C ) is an eigenfunction of H nJ' and, —therefore,

x ) will vanish for that value of n. Levinson pointed
out that the value of n which minimizes (x I x ) may
be taken as the best estimate of the inertial parameter
and the corresponding Hartree-Pock wavefunction C

is the best determinantal approximation to the intrinsic
wave function. The resulting inertial parameter is
denoted by A&. Neglecting the dependence of C on 0.,
Skyrme obtained the following approximate formula for
the inertial parameter from the condition of minimiza-
tion of (x I x ):
~s = 2 &ii I

~
I »&&» I

J'
I
iJ)/2 I &'i I

J'
I »)I'
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TABLE &. Fluctuations and the Levinson inertial parameter. Column 2 contains the value of the fluctuation of the original Hamil-
tonian, and columns 3, 4, and 5 contain the values of a; such that the fluctuation of the modified Hamiltonian Il=II—Z;aJP is mini-
mized. Column 6 contains this minimum value of the Quctuation of Il, g in column 7 is the energy gap between the last-occupied and
first-unoccupied Hartree-Fock orbitals. The ratio presented in column 8, discussed in the text, is in some sense a measure of the goodness
of the Hartree-Fock wave function.

Nucleus
(H') —(H )'

(MeV')

Levt.nson parameters
(in MeV)

@la Cky CX

(H') —(H )'
(MeV') (MeV)

(H') —(H)'
4a~

Ne"

Mg'4

Si"
$32

Ar'6

10.8

17.0

19.5

9.0

0.177

0.134

0.115

0.097

0. 138

0.177

0.103

0.115

0.097

0.138

0.300

0.097

2.6

6.7
12.3

11.6

2.8

8.61

6.85

6.68

7.54

6.04

0.009

0.036

0.069

0.051

0.019

These nuclei exhibit several simplifying features so far as
the HF calculation is concerned. First of all, in these
cases HFB calculations converge to normal solutions. '
Second, the HF density in each of the these cases has
time-reversal symmetry and three orthogonal planes of
refiection symmetry. ' The nuclei Ne', Si" and Ar" are
axially symmetric, while the other two are triaxial.
Finally, the neutrons and the protons have similar
orbits. The minimized fluctuations and the I.evinson
parameters are presented in Table I.It is a little difficult
to pick. a parameter with which the minimized Quctua-
tion should be compared to decide if it is large or small.
If the spectrum of the states contained in the intrinsic
wave function is truly rotational, then the wave function
can be an eigenfunction of H AJ', where A is—the true
inertial parameter. If the value of n in H —nJ' at which
the fI.uctuation is minimized coincides with A, then the
lowest-order corrections to the HF wave function

~

4 ) are the two-particle —two-hole states
~
i j; ) p )

with coeflicients (i j ~
n —nJ'

~
X,p )/(e,+e; ez e&—)~-

The minimum value of the denominator in the co-
efficient is 2d, where 6 is the gap in the HF spectrum
between the last-coccupied and the first-unoccupied
states. Hence we may say that the HF wave function

~
C ) is a good approximation to the intrinsic wave

function when

(2.10)

This ratio is presented in column 8 of Table I. It is clear
that the HF theory works better for Ne'0, Mg'4, and
Ar" than for the other two nuclei. We also present, in
Figs. 1 and 2, plots of (x ~ x ) and the quantity (2.9)
as functions of o. for Ne" and Si".We see that the nature
of

~
C ) is not affected very strongly by varying n. In

the case of Ne" the minimum value of the quantity (2.9)
is 60% of its value at n =0. The corresponding number
for Si" is 90%.

'L. Satpathy, D. Goss, and. M. K. Banerjee, Phys. Rev. (to
be published) .

6 M. K. Banerjee, C. A. Levinson, and G. I. Stephenson, Jr.,
Phys. Rev. 1'78, 1709 (1969).

The foregoing remarks are relevant only to a com-

parison of the results of the HF approximation with

those of a shell-model calculation with the same
Hamiltonian and the same set of single-particle states.
A comparison of the HF results with experimental data
can be made only if we use the correct effective-interac-
tion matrix elements and allow for core polarization, ~

major shell mixing, etc. The parameters of the simple
Hamiltonian used in these illustrative calculations were

adjusted to fit the low-lying level spectra of 0" and
F". Noting that only the 2s-id shell states were con-

sidered, it may be argued that the matrix elements of
the Hamiltonian used in these calculations compare
well with the actual effective matrix elements in-

corporating the core-polarization corrections suggested

by Kuo and Brown. ~ Even if the claim is valid, these
matrix elements are useful only for a few particles
outside of 0".As the number of extra core particles
becomes comparable to the number of strongly polari-
zable core particles, the effect of the major shell mixing
in the single-particle states of the extra core particles
becomes important. The Hamiltonian which we used
suffers from the further limation that it contains no
noncentral forces. It is known that the two-body
spin-orbit force affects the strength of the effective
single-particle spin-orbit force as more and more
nucleons are added. These considerations prevent us
from comparing the results of the HF theory with

experimental data. While quantitative comparison is

not permissible, the Hamiltonian employed is not
unrealistic. In fact, for the case of Ne", the excitation
energies of the low-lying even-even states calculated
with states projected from the best HF wave function
compare well with the experimental data, as shown in
Table II. The difference of the binding energies of Ne"
and 0", after correcting for the Coulomb energies, is
39.7 MeV. The value for the same quantity obtained
from the HF calculation is 40.4 MeV. Hence the qualita-
tive conclusions based on these HF calculations are
acceptable.

7 T. T. S. Kuo and G. K. Brown, Nucl. Phys. 85, 40 (1966).



HARTRKE-FOCK THEORY 1407

3. CRANKING AND TEST FOR
ROTATIONAL SPECTRUM

In Sec. 2 we have seen that, by studying the Ructua-
tion of the Hamiltonian in the intrinsic wave function,
we not only can test the validity of the model for the
intrinsic wave function, but we can also obtain a value
for the inertial parameter when the model wave
function is acceptable. However, for heavier nuclei,
calculations of the Quctuation of the Harniltonian is an
extremely time consuming task on account of the very
large number of possible two-particle —two-hole states.
Therefore, it is useful to attempt to develop a simpler
and more practical test to see if the intrinsic wave
function describes a rotational band adequately.

The discussions in this section will be limited to HF
wave functions which have the symmetries

20

I8

X
16

X0
I-

P l4
O
D

10
0 0.04

l I

0.08 O.IR

a IN MeY

S;28

l

O.I6 0.2

2'
I
C')=& exp( —iw&, ) I

C')=& exp( —i1rJ.) I
C')=

I C'),

(3.i)
where T is the time reversal operator and P is the parity
operator. These symmetries guarantee' that the single-
particle density has a principal axis coordinate system

IO

Fxo. 2. Plots of the fluctuation of H —nJ' as a function of a
for Si". Curve I is the fluctuation in the intrinsic Hartree-Fock
state ( C ), and curve II is the weighted sum of the fluctuations
in the states of sharp angular momentum projected from ) C )
given by Eq. (2.9).

and that, in the expansion of the HF single-particle
states in terms of a complete set of real radial functions
with spin-angular functions in the Condon and Shortley
phase convention, the expansion coefhcients are all real.
Again, for simplicity, we consider the axially symmetric
nuclei; the changes necessary for triaxial cases will be
pointed out wherever appropriate.

A. Conditions for Rotational Syectrum

From the discussions in Sec. 2, we see that, if the HF
wave function

I
C ) of a Hamiltonian H is a satisfactory

model for the intrinsic wave function of a rotational
band, then the relation

al c)=(z,+aJ)le) (3.2)

Ko5

I-
O~ 4
4 (i) The one-particle-one-hole matrix ele-

ments (i; X
I
J'

I
C ) are negligiblysmallbecause

the corresponding matrix elements of H are
zero. The symbol Ii; X) stands for a one-
particle-one-hole state. (3.3a)

should be approximately true. Equation (3.2) has two
implications:

I

0.06
I

O. I 2
I

O. I8 0.24
a IN IIJIeV

I

0.30

FIG. 1. Plots of the Quctuation of B—nJ' as a function of u
for Ne". Curve)I is the fluctuation in the intrinsic Hartree-Fock
state

~
C ), and curve II is the weighted sum of the fluctuations

in the states of sharp angular momentum projected from
~

C )
given by Eq. (2.9) .

(ii) The two-particle-two-hole matrix ele-
ments of H should be proportional to those of
those of J', i.e.,

(ij» I Jf
I

c'&= (ij I t
I »&=~ (ij I

J' I»& (3 3b)

It is rather unlikely that the first of the two conditions
will ever be exactly satisfied except for the uninteresting
case where C is an eigenfunction of J'. But it is possible
that the norm of the one-particle —one-hole states may be
small compared to that of the other terms in J'

I C).
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TABLE II. Comparison of the excitation energies of the states
projected from the Hartree-Fock intrinsic wave function with
the experimental excitation energies in Ne".

Excitation energy
(in MeV)

Projected Expt

1.34

3.95

8.13

11.68

1.63

4.25

7.65

11.86

+ Z(ij'»I J'I 4')lij;») (34a)

Let

The wave function J'
I C) may be written as a sum of

three terms

J'
I ~)= (c'

I
J'

I
c')

I
c')+ Z (i )

I
J'

I 4')I i »

S= Z {$4~84 Sy —$4' Gg 84}. (3.6)

and see if it is small. However, the work involved is the
same as that in the calculations discussed in Sec. 2.
Fortunately, the validity of (33) can be tested by
another method which is considerably simpler and
entails far less work. The method involves examination
of the structure of the operator S, which describes the
response of the HF wave function to cranking. The
operator 5 is dined as follows. For small values of co

the HF wave function of H —~J may be written as

lc )=~sic) (3 3)

where S=Z~S; is an anti-Hermitian single-particle
operator. It is convenient to represent S in terms of the
HF single-particle states associated with

I
C ).The only

relevant matrix elements of S are those between the
occupied states

I X) and the unoccupied states I i). In
terms of the creation and annihilation operators for
these states

and

(3.4b) These matrix elements are determined with the
following equations given by Thouless

(3.4c) Z {8;,4„(e;—e~) + (ip I
s

I j» [~;„

be the norms of the two-particle —two-hole states and the
one-particle-one-hole states, respectively. A crude
estimate of the quantity G relative to l(C I

J'
I

4 )I' and
F may be obtained in the following manner. The matrix
element

(i )
I ~' I C') =(i [~' I »—2 Z (i I ~* I ~)( I J* I ».

For our purpose we may regard (i; X
I
J,' I

C ) to be of
the same order as (i I J,'

I
X). It then follows that

G Zq(X I J4[)I.)=N(j4), where (j4) stands for the
average value of ()I. I

J4
I X) in the occupied orbitals and

E is the number of particles. Similar arguments would
show that (C I

J'
I

C )~N( j'), where (j') is the average
value of (X I

J'
I
X). Since (j4)/( j')' is likely tobe of the

order of unity it follows that G/I (C [ J'
I
C')I'~1/N.

Writing out the matrix element of (ij;» I
J'

I I)
explicitly and carrying out the sum in (3.4b), it may be
seen that F= l(C I

J' C)ls+ terms of the order of N.
Hence G/F and G/l(C J'

I
4)l' are both of the order of

1/N and hence small for large nuclei. Even for light
nuclei G/Ii is fairly small. For Ne' it is ~0.17 and for
Si' it is ~0.(}7.

B.Response to Cranking

The most obvious way of testing (3.3) would appear
to be to determine the inertial parameter A by least-
squares 6tting which gives precisely the Skyrme
formula (2.7) for A, and then to use it to evaluate the
quantity

Z I &'j I
~—~J'

I »)I'

+ Z (ij [1 [»)s;„'=(z
I
J.[x),

Z {8;,bg„(e —eg)+ (ip I
v

I
Xj)*)s *

+ Z(ijl~l)I)*~'=( l~*li) (37)

We also introduce the matrices F and A, de6ned by

(i; )
I
r [j;u) =s;;b„&(.;—.~)+ (i~ I

&
I

& j&

and

(i ) IAIDO~)= —(si I
~ I») (3 9)

As a consequence of the symmetries (3.1),both I' and
A are real Hermitian matrices and the column vectors s

4 D. J. Thouless, Nucl. Phys. 21, 225 (1960).

This set of equations may be represented in matrix
form in the space of one-particle —one-hole states. We
associate with 5 the column vector

(~l
sp

where the top half contains the elements s;q and the
bottom half contains the elements sz; ———s;z*. Similarly,
the matrix elements of J, may be represented as the
column vector
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and g, are real. Equations (3.7) may now be written as

( ' l (I' ~& ( ' l
(3 1o)

E- i E~ I') E- i E-a.)
where K stands for the Hermitian matrix shown with
submatrices F and A..

We now examine the consequence of (3.3) on the
structure of s. For this purpose it is convenient to
exhibit the isospin of the states explicitly. Since the
one-hole-one-particle state

~
i; X) is created by the

operator J, the states
~
i ) and

~
X) must have the same

isospin. Conservation of isospin requires that
~ j) and

y) must also have the same isospin. The states
~
i ) and

j) (or
~

X) and
~ p) need not have the same isospin. If

(3.3) is true, it follows from (3.9) that

(~' »
I
~

Ij ' »'& = (~'»j &'
I

~—
I
»»'&

A&i.—,jr'[ J [~r, »'&

= —2~{(~~[&*[»)(j~' ( A [»')
—&- (~r I*Iud&(j~ I~-I ~~&

+similar terms for the y component). (3.11)

Since we have assumed axial symmetry, the s-component
terms do not appear.

The matrix A may be written as a sum of two matrices:
A~, made up of the direct matrix elements, and A~,
made up of the exchange matrix elements,

(3.12a)

( l&lj")=0
In terms of this matrix P, the estimate of the weight of
the above mixture is

[TraceP'X TraceE —(TraceP') ']/(TraceP) 4.

This quantity vanishes when either P is a multiple of
the unit matrix or P is a multiple of P. In general, it is
of order 1/Ã', where X is the number of nucleons
present. Therefore, g, and g„will be approximate
eigenfunctions of A, the error being of order 1/N'. We
may write

where
~Su = —

2&8u (3.15)

c=4A(C
( J '

~

C')=22(C [
J'

( C). (3.16)

On the other hand, since the Hamiltonian II is
scalar,

(3.17)(z, Z [ [a, Z.] ~

C ) =0.
In terms of the quantities I' and A, (3.17) reads

(~ & (»l (~.l
Eu.) E») E~*)

(3.18)

A rough estimate of this quantity may be obtained by
ignoring the cross terms involving matrix elements of
both J, and J„.Let us introduce the Hermitian matrix P
dered as follows:

(» I
&

I
»'& = Z (&~ I J*Ii r)(P I ~. I »»-

where

(3.20)I"g,~~~eg,and
and, therefore,

g' »
I ~~ Ij»'&=2~~-'g& l ~ I u&)(j~ I J.

I »&

+2AB„(ir [ J„Jpr)(j r [ J, f»). (3.12c)
(&. l ('&. )

se
( /

=e
/

/. (3.21)
E-a.)

In its turn (3.21) implies that

( & (~ r (~ ~
(3 22)

In terms of the operators S and J„(3.22) may be

The x and the y component parts of A~ commute since

Z(fr I ~. I »&(~~ I ~. I »& = (C'
I ~*~. I

C'& =o (3»)

Because of (3.13) and the factorable form of the matrix
elements it follows that

Xng, =—2A(C [
J'

( C)g.

xDg„= —2a(C [z2
) C)g

written as
3.14and S~e '[J„p], (3.23)

where

(I'+A) $,=0. (3.19)
2~ (~r

I
~~ I »&(Jr'

I ~* I
»'& Combining (3.19) with the approximate relation (3.15)

—2A(ir [ J'„j Xv)(jr' [ J„(»') (3.12b) we get

and that all the other eigenvalues of A~ are zero. The
column vectors g, and g„ in general will not be exact
eigenfunctions of A because Az may mix g, and g„
with other eigenfunctions of A~ with zero eigenvalues.
The upper limit on the weight of such admixture is
given by

L(e. I &" I a.) (e. I e*)-(a. i &. I a*)'j/4&'(u* I
e*)'.

(3.24)

and
SIC)= -'&-IC)

(C I
S= c '(C'I J~

(3.25)

is the single-particle density operator. Another equiva-
lent statement is
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TAnr E III. Overlaps of the relevant eigenvectors of the matrices I'+A. , I' —h, F, and h. with the vector
~ g, ) .

e is the eigenvalue of I' —A, ep and ~p the eigenvalues of j." and A, respectively.

Nucleus

Ne"

Mg'4

Si"
S32

Ar"

axial

triaxial

axial

triaxial

axial

0.9977 0.9943 0.9990 0.9772 4.83 0.505 0.528

0.9932 0.9674 0.9966 0.9636 4.51 0.510 0.566

0.9994 0.9931 0.9991 0.9823 4.89 0.506 0.524

0.9937 0.9707 0.9962 0.9476 3.75 0.518 0.571

0.9885 0.9070 0.9924 0.9703 4.22 0.540 0.585

0.9882 0.8968 0.9913 0.9699 3.92 0.541 0.592

0.9974 0.8100 0.9899 0.9969 3.98 0.523 0.588

0.9885 0.9667 0.9945 0.9355 3.63 0.529 0.620

0.9892 0.9419 0.9419 0.9633 3.84 0.530 0.581

and

5 (1/s, ) LJ„p),
~ -(1/")P., p7,

~.=(1/s.) t A, p3

(3.27)

C. Simple Test for Rotational Spectrum

The preceding discussion shows that, if (3.3) is valid,
(3.15) and (3.20) are correct up to terms of the order
of 1/Ãs. Therefore, (3.15) or (3.20) may be used to test
the adequacy of the model for the intrinsic wave
function for a rotational band. That is to say, either the
matrix F or the matrix A may be diagonalized and the
overlap of the appropriate eigenvector with rJ, may be
calculated. While the present discussion is specialized
to the HF theory, it can be extended to the HFB theory
without difhculty.

The test proposed here involves far less work than the
calculation of the fluctuation of the Hamiltonian. The
number of one-hole —one-particle states excited by J is
very much smaller than the possible number of two-
particle —two-hole states which must be considered in
the calculation of the fluctuation. Of course, one pays a
price for this reduction of labor. Equation (3.2) de-
mands that (ij ~

n ) Xp) be zero if (ij (
J'

( Xp) is zero.
But the matrix A involves only those matrix elements
(ij (

n
) Xp) for which (ij (

J'
( Xp) are nonzero. It is

possible that in a certain case (3.2) is satisfied reason-
ably well for the matrix elements for which (ij

~

J' j Xp)

The physical signi6cance of the quantity t. follows
directly from (3.16) which shows that -,'e =A (C

~

J'
~

C )
is the rotational energy content of

~

C ).
For triaxial nuclei, Eq. (3.1) should read

H
i

C ) = (Es+A,J,'+A J„'+A,J,') i
C'). (3.26)

One now has to crank about the three principal axes and,
for each direction, obtain equations analogous to (3.15)
and (3.20). Instead of (3.23) one gets

are nonzero, but not otherwise. Then the quantity

2 I(ij I
n —~J'

I I &~)I',
ijXp,

with A given by (2.7), may turn out to be large. This
quantity is equal to the fluctuation of II—crJ', minimized
with respect to n, if the dependence of

~
C ) on u can be

ignored. A large Quctuation implies that the choice of
the intrinsic wave function is inadequate, even though
the proposed test is satis6ed. One may hope that this is
not a serious practical problem.

We also see that it is not necessary to set up both the
F and A. matrices in order to evaluate the elements s;),.
It is sufhcient to construct either of the two matrices
and use (3.15) or (3.20), as the casemaybe, to determine
s. Finally one uses (3.22) to obtain the elements s;z.

D. Numerical Results

We have tested the two conditions for the validity of
(3.2) for some of the 1V=Z even-even nuclei in the
2s-id shell. The stablest HF wave functions for these
nuclei have the synmetries displayed in (3.1). The
first condition, viz. , that the norm of the one-hole —one-
particle states in J'

~
C) be small, has been tested for

Ne" and Si's. The quantity G/(C
~

J'
~

C )' was calculated
and found to be ~1/16 for Ne" and ~1/36 for Si".

The second condition may be expressed with anyone
of the Eqs. (3.15), (3.20), (3.21), and (3.22). To test
the condition in detail, all of these equations were
tested. The elements s;q were calculated with the
Thouless equations (3.10) and the overlap

~= (~ I 8*)/L(~ I ~) (8* I 8*)3"' (3.2g)

was calculated. The matrices F, A, and F—A. were
separately diagonalized and in each case the eigen-
function with the best overlap with g, was isolated. The
overlap and the eigenvalue are denoted with 0& and 6z'

for the matrix F, 0-~, and eq for the matrix A, and Op q
and e for the matrix I' —A.. As a check on the calcula-
tions, (3.19) was verified. If the second condition for
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TABLE IV. Deviations of the projected energies from a pure
uI(I+1) spectrum using intrinsic wave functions for Ne" and
Si"which minimize the Quctuations of II—nJ'.

stationary frame A. The equation of motion of pz(t) is

[&~(t), p~(t) 7=&[~p~(t)/~G (4 &)

10

12

Nel)
(MeV)

—0.33

—0.05

+0.09

+0.4

Si"
(MeV)

—0.00

+0.02

+0.06

+0.02

—0.21

—0.87

2 ~ 23

where h~(t) is the HF single-particle Hamiltonian due
to the density pz(t) . Let us assume that pz(t) actually
describes a rotating density, i.e., there exists a rotating
frame where the density would appear stationary. For
simplicity, we assume that in its body-6xed coordinate
system the density is axially symmetric. The symmetry
axis will be labeled as the s axis. The object is rotating
about the x axis with an angular velocity co. The x axis
of the body fixed coordinate system coincides with that
of A. If we transform our description from the frame A
to another frame 8 which is rotating with respect to A
about the x axis with angular velocity co, the trans-
formed density

(3.2) is satisfied, all the overlaps should be unity and the
ratios er/e and —es/e should equal sr. The values of these
quantities are presented in Table III. For the triaxial
nuclei (Mg'4 and S") three numbers are listed under
each column. These correspond to cranking along the
three principal axes.

As mentioned before, these calculations are presented
solely for the purpose of illustration. While the 2s-id
shell nuclei are deformed, their spectra are not markedly
rotational. Furthermore, the discussions in Sec. 2 show
that the HF wave function is useful for Ne20 only. An
examination of Table III shows that the tests are
satisfied better for Ne' than for the other nuclei. On the
other hand, the first condition for the validity of (3.2),
viz. , the smallness of the norm of one-hole —one-particle
terms in J'

~
C), is not satisfied so well for Ne".

Unfortunately, we are unable to present a quantitative
criterion for the degree to which the proposed tests
should be satisfied in a rotational situation. One should
investigate the possible relationship of the ratio of the
coefficient of J' to that of J' in the spectrum with the
quantities 1—aq, 1—O.i, etc.

The case of Si'8 is interesting. In Sec. 2 we have seen
that the HF wave function is rather inadequate for Si".
At the same time Table IV shows that the projected
spectrum is rotational to a high degree. (Of course, the
experimental spectrum is very far from being rota-
tional. ) This is reflected in the fact that, for Si", not
only is the norm of the one-hole —one-particle states in
J'

~
C) small, but the tests presented in Table III are

satisFied fairly well. This is an illustration of the
limitations, discussed earlier, of this proposed test.

4. Rotating Densities

In order to appreciate the physical significance of the
properties of the operator S, deduced in Sec. 3, it is
useful to review briefly the phenomenology of a rot-
tating density distribution. ' Let pz (t) be a time-
dependent HF single-particle density operator as-
sociated with a system of particles being observed in a

' D. J. Thouless and I. G. Valatin, Nucl. Phys. 31, 211 (1962).

[hii —ppJ„piij=0. (4.4)

p& describes the density distribution of the spinning
system in its body-Axed coordinate system. The density
distribution po of the same system, when it is not
spinning, is given by the stationary HF equation

[hp, ppj=0. (4.5)
For small angular velocities ~ the relationship between
p~ RIll po ls

p ~Sp ~
—coS (4.6)

where S is given by (3.6) and (3.7) . The definition (3.5)
is equivalent to (4.6).

In the time-dependent HF theory (TDHF), any
time dependence in the density is customarily ascribed
to the presence of vibrational states. Since p~ is claimed
to be stationary, the implication is that the

~
C„)

[see Eq. (3.5)j associated with pii does not contain any
vibrational mode. This requires that S

~
4) be orthog-

onal to all vibrational intrinsic states built on the
ground intrinsic state

~
C).

Since a pure determinant is being used for the ground
intrinsic state, it is not quite consistent to describe the
vibrational states with TDHF theory [which is equiva-
lent to the random-phase-approximation (RPA)
theory]. 'P However, if one ignores the resulting error,
the requirement on S appears to be satisfied. Let

~ fp)
be the correlated ground state and let us assume that
the differential response to cranking is still S j Pp). The
intrinsic vibrational states

~ f ) are written as

(4 7)

G. E. Brown, Uzi/ed Theory of nuclear Models and I"orceg
(North-Holland Publishing Co. , Amsterdam, 1967).

pii(t) = exp(koJ, t) p~(t) exp( ippJ, t) —(4.2)

satisfies the equation

[hii(t) —tpJ., pii(t) j=i (ct/Bt) ps(t) . (4.3)

If our supposition that pz(t) is a spinning density is
correct, pii(t) should be stationary, i.e.,
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c '= Q (&a &"&~+13m &),t&') (4.8)

5. MOMENT OF INERTIA

A. Formulas for Inertial Parameter

It is assumed that

c.
I y, )=o. (4.9)

The coefficients A;z and 8;z" are determined by the
eigenvalue problem

(~.) (~. )
E.~-) E,-2.)

(4.10)

where the column vectors are made up of the coeS.cients
A;), and 8;q . The solutions with E &0 correspond to
c t. To demonstrate the orthogonality of s

I fe) to
every

I P ) we have to show that

( ~ l
Q. I

s
I A&=Q, II c„,sll 6)=(z.—a-)I I=o.

t —s)
(4.11)

(s) (s)
(~--~-)I l=~-'(&. ~-)~l

E-)
(&. l=z.-i(~- a-)I I=o.

In the last step we have used the Thouless equation
(3.10) and the fact that all

I P )'s with E )0 are
orthogonal to J

I Po) which is a spurious solution of
(4.10) with zero eigenvalue. Since E Ao, (4.12) proves
(4.11). When

I $0) and
I f ) are exact intrinsic wave

functions for the ground and a vibrational band, i.e.,
there is no eigenstate of the Hamiltonian common to
both, (3.25) follows from (4.11) for a general Hamil-
tonian. If the descriptions are not exact, (3.25) does
not necessarily follow from (4.11).

The Tamm-Dancoff approximation for the vibrational
states is actually more consistent with the use of an
uncorrelated wave function for the ground intrinsic
state, even though both descriptions are less accurate
than the ones discussed above. In the Tampon-Dancog
theory, the vibrational phonon-creation operators C t
do not contain the backward-going terms 8;q a~tv;.
The coefhcients A;~ and the eigenvalues are obtained
by diagonalizing the matrix F. Normally the spurious
state J

I
C ) does not drop out as a separate solution of

the eigenvalue problem, as it does in the RPA theory.
However, if (3.3) is satisfied then we find from (3.20)
that the spurious state J',

I
C ) does drop out as a separate

and recognizable solution. The other eigenfunctions, to
be interpreted as vibrational states, are orthogonal to
sl ~&.

~=1/2a=(c ILz., sjl c). (5.6)

~& D. R. Inghs, Phys. Rev. 96, 1059 (1954);9'7, 701 (1955).

The moment of inertia is a very useful parameter
inasmuch as its use avoids laborious projection cal-
culations, however, it can only be used when the
rotational criteria discussed in Sec. 3 are satisfied. There
are several formulas to calculate this parameter or,
equivalently, the inertial parameter A = (2d) '. One of
these, due to Levinson' and based on the minimization
of the fluctuation of H aJ2, ha—s been discussed in
Sec. 2. This formula does not lead to any significant
reduction in labor. Another due to Skyrme, ' was
presented in Eq. (2.7). In this section, we present
additional formulas for this parameter and discuss their
relative merits.

A variety of formulas have been developed based on
the following idea. If the Hartree-Fock wave function is
a linear combination of the eigenfunctions of the
members of a rotational band then

(c'
I
&

I c'& =&o+~ (c'
I
J'

I
c'& (5 1)

If one can find another wave function C', which is also a
linear combination of the same eigenfunctions, then one
has the second equation

(c'
I
~

I
~'&=~.+~(~'

I J I
~'&.

From these two equations we obtain the following
formula for the inertial parameter

~=((c"I&I c"&—(c I&I c&)/((c" I J'IC")—(4'I J'IC')).

(5.3)

The well known Inglis" formula falls in this category.
He suggested the use of cranking to generate the
second wave function O'. Using (3.5) and (3.7) for C',
we find that (5.3) reduces to

(c ILs, Es, alll c) (c ILz., sql c &

(c ILs, l-s, J'ZI c
& (c ILs, I s, J jjl c

&

(5 4)

in the limit of vanishingly small co. This is, however, not
the Inglis formula which is obtained through two
approximatious. First, one equates the change of the
expectation value of J' to twice the square of the change
of the expectation value of J, i.e.,

(c ILs, Ls, J'jjl c &=2 I(c ILJ., sgl c &I'. (5.5)

This approximation is equivalent to using the classical
definition of the moment of inertia as the ratio of the
angular momentum along the x axis to the angular
velocity co about the same axis. The resulting formula is
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TABLE V. Values of the inertial parameters for Ne and Si"
calculated with the formulas discussed in the text.

0.15

Das Gupta- Thouless—
Nucleus Skyrme Van Ginnekea, SDS Valatin Inglis

0.12

Neo

Si'8

0.214

0.122

0.182

0.114

0.194 0.161 0.320

0.113 0.103 0.191

The second approximation of Inglis involves treating
—cd as a perturbation on the Hartree-Fock field of the
nonspinning system. The result is 0.09—

s;x = &i I J, I X)/(e; —e),), (5 7)

which leads to the well known Inglis formula

@r..t;.=(2&r.,t;.) '=2 Z I &s I ~. I )t&l'l(e' —ei) (5 g)

0.08 I

0.04
t

0.08
l

0.12

a IN MeV

0.16 0.2

Thouless' pointed out the lack of self-consistency in
this second approximation and showed that Eqs. (3.7)
are the correct equations for the determination of the
elements s;q. In fact, the second Inglis approximation
involves ignoring the two-particle interaction terms in
(3.7) .Thouless and Valatin' retained the first approxim-
ation leading to (5.6), and obtained

~»=1/2&4' IL~* Zl c& (5 9)

Das Gupta and Van Ginneken" have recently suggested
a formula for the inertial parameter based on the use of
J+ I C) for

I
C'). This formula is

&c'
I
&J'

I
c'&—&4'

I
&

I
c'&&4'

I
J'

I
4'&

&~ I J'I ~&-&~ I
J'

I
~&'

0.22

0.2I

0.20
a

R

0.19

a
I

X
0.18

0.17

OJ6
0 0.06 0.12 0.18

a IN MeV

0.24 0.3

"S.Das Gupta and A. Van Ginneken, Phys. Rev. 164, 1320
(1967).

Fio. 3. Inertial parameter calculated in the intrinsic state
~
C, )

using the four formulas indicated plotted against 0. for Ne".

FIG. 4. Inertial parameter calculated in the intrinsic state
~
4 )

using the four formulas indicated plotted against n for Si'8.

F=&c'
I
J'

I c&'f1+o(1/&)1. (5.17)

Using (3.4) and (3.25) we find that

&c' IL~, L5', J'771 c'&= (1/") (2~+6) (5»)
and

&4'
I
J'

I
c'&—&c'

I
J'

I
c &'=&+G (5»)

Using (3.25) we find that the numerator of (5.4) is

&C ILJ., S7I C
&

=e-'&C
[ Js

I
C». (5.13)

The numerators of (2.7) and (5.11) are the same and
one can also see that

&c'I &J'I +&—&c'I&I c'&&4'I J'IC&
= Z &» I

~
I si&&si I

J'
I
) ~& (5.14)

= —(8. I
~

I 8*)—(a. I
~

I a.) = se&~ I
J'

I
C'&.

In the last step (3.15) has been used. Combining these
results we And that

& .=l &c I
J'I c)/(&+G),

~BDS se&c'! J'
I @)/(~+sG), (5 15)

and
As=-,'e&C

I
J'

I C)/P.
In other words the three moments of inertia are in
arithmetic progression. In actual practice there will be
some deviation from the simple rule because Eq. (3.15)
is never satisfied exactly.

If condition (3.3a) is satis6ed exactly, then G=O. In
this ideal limit not only are the three formulas in (5.15)
equal to each other, but they are also numerically equal
to the Levinson moment, as pointed out in Sec. 2.

From (5.13) it follows that

~»=e/2&C
I
J'I C&. (5.16)

I'or heavy nuclei this formula becomes equal to those in
(5.15) since
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The values of the inertial parameter using the five
formulas are presented in Table V for Ne'0 and Si".All
the formulas, except the Levinson moment, were
evaluated with Z without any modifying nJ' term. We
find less spread in the values of the inertial parameter
for Si' than for Ne-" since (3.3a) is better satsifmd for
the former.

Kelson" proposed a criterion to determine the
validity of various formulas for the inertial parameter.
The criterion is that, if A(H) is a correct formula for
the inertial parameter, then the following relation
should hold

A (H) =A (H nJ')+—ct.

Thus to test a particular formula, say the one proposed
by Das Gupta and Van Ginneken, one would calculate
tf(H) with Eq. (5.10) and calculate A(EI—crJ') with
the same equation replacing H and H atJ' and—

~
4)

with (
4' ). The Inglis formula, which is positive def-

inite, clearly cannot satisfy this criterion. For the
remaining formulas, this criterion really tests the depen-

"I.Kelson, Phys. Rev. 160, 773 (1967).

dence of
~

4' ) on cr. If the rotational criterion that this
dependence should be weak is satisfied, all the formulas
give nearly the same values and satisfy Kelson's
criterion reasonably well. To illustrate this point, the
values of A(H —crJ')+n as a function of tr for the
various formulas are presented for Xe" in Fig. 3 and for
Si' in Fig. 4. If the Kelson criterion is satisfied, these
quantities should be constant. We see that this condition
is better satisfied for Si", where the relevant rotational
criterion is better satisfied.

Since all of these formulas are determined self-
consistently and with the use of the HF wave functions,
the inertial parameter will reQect a weighted average
of the excitation energies of the members of the ground
band and will give the best results when applied to the
spacing of levels with I~/(4'

~

J'
~

4)j't'. Inasmuch as
purely rotational spectra are rarely observed in nature
and a more adequate description of the spectrum is of
the form

Et=Eo+AI(I+1) +Bls (I+1)'
where A is positive and 8 is negative, these formulas
will generally underestimate the spacing E2—Eo of the
ground- and first-excited states.
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Fluctuations in Nuclear Elastic Scattering Cross Sections*
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A method of fluctuation analysis is developed for elastic scattering of spin-zero particles from spin-zero
nuclei. The principal di6erer)ce between this model and the one proposed by Ericson is that some unitarity
is included. It is shown that all features of conventional fluctuation analysis are modi6ed to a small extent.
Analysis of the phase shift may show entirely different behavior from that predicted by an Ericson mode
Because of the simplicity of the elastic-scattering reaction, it is possible to obtain not only the total width
but also the level spacing and partial width (as define'd within the context of the model) . These quantities
are obtained as a function of angular momentum. This method is only applicable if a phase-shift analysis
can be done on the data.

I. INTRODUCTION

f iHE representation of compound-nucleus reaction
cross sections by stochastic processes as erst pro-

posed by Ericson' and Brink and Stephen' has had a
great deal of success in the interpretation of excitation
functions.

The method commonly employed to obtain such a

*ork performed under the auspices of the U.S.Atomic Energy
Commission.

' T. Ericson, Ann. Phys. (N.Y.) 23, 390 (1963);Phys. Letters
4, 258 {1963).

s D. M. Brink and R. O. Stephen, Phys. Letters 3, 77 (1963).

representation is as follows. A general form is given
expressing the amplitude in terms of a large number of
resonance parameters. The resonance parameters are
then assumed to be random variables with appropriate
properties. In order to make the resulting process as
simple as possible it is desirable to have all of the
random variables independent. The choice of form has a
strong bearing on the allowability of the independence
assumption, as we shall see.

The success achieved by fluctuation theory has been
in spite of the fact that the form used, together with the
independence assumption, allows unitarity to be


