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Inelastic Processes in Particle Transfer Reactions
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It must certainly be true for some levels in all nuclei, and all levels in some nuclei, that the usual treat-
ment of particle-transfer reactions, vrhich neglects inelastic effects„ is invalid. Here a practical method
for taking these effects into account is described. The method is discussed in terms of the (d, P) reaction,
but it has a much broader application.

I. INTRODUCTION

t 1HE usual distorted-wave Born approximation.. (DWBA) for transfer reactions makes three basic
assumptions. First, it assumes that the transfer takes
place directly from the elastic entrance channel to the
residual channel. Only the transferred particles are
treated explicitly, while all the others, which we shall
refer to collectively as the core, are regarded as passive.
The reaction is assumed to proceed only to the extent
that the core state is unchanged. Second, it assumes
that the elastic optical potential provides wave func-
tions for the relative motion which are good inside the
nucleus, or at least in the surface region, since this is
where the transfer process is concentrated. Third, it
assumes that the transfer process itself is weak so that
it can be treated in Grst order. With these assumptions
the transition amplitude can be computed for (d, p)
reactions, from

However, if there are strongly enhanced inelastic
transitions, the usual DWBA will fail in any case
because of the second assumption. This can be under-
stood as follows. The (one-channel) optical potential is
chosen so as to reproduce the elastic cross section. This
assures that the wave function for the relative motion
is correct in the extereu/ region. However, for the
purpose of calculating the reaction, it is needed in the
interior region, or at least in the neighborhood of the
nuclear surface. It is here that the one-channel optical
model will break down due to deexcitation of other
channels back to the elastic channel, if their coupling is
suKciently strong.

One solution to the problem of including excitation
of the core in transfer reactions was suggested by
Penny and Satchler. ~ They propose evaluating the
amplitude for (d, P) reactions from

(1.1)
where fe and fo are distorted waves describing only the
elastic scattering in the channels &f and p, and C„and
Cq describe the nuclear states between which the
reaction takes place. '

There are certainly situations where one or both of
the Qrst two assumptions are false, although the third
assumption is probably always valid for particle trans-
fer reactions. As concerns the 6rst assumption, the
theory will fail to the extent that the reaction of
interest does take place between states, one of which
is not the parent of the other. This situation is il-
lustrated, in idealized form, for the (d, p) reaction in
Fig. I. In this example the lower states of the residual
nucleus (A+1) do have the target A as parent, so that
the direct transition can occur. However, the third
state has as its parent an excited state of the target, so
that it can be reached only through excitation of the
core to the parent state either before or after the trans-
fer takes place. The usual DWBA may provide good
answers for the former transitions but it cannot treat
the latter. As long as one knows which states have the
ground state as their parent and restricts attention to
them, the usual treatment may provide valid results.

' See, e.g., ¹ K. Glende~»rig, Ann. Rev. Nucl. Sci. 13, 191
(1963), and references therein.

Xye, e.&+&dr„dr„, (1.2)

where l4, e &+& is a generalized distorted wave in the
channel d' found by solving the coupled equations for
deuteron inelastic scattering by A with an incident
wave in the channel d, and f„,o.& & is similarly de6ned
for the proton-(A+1) system. However, a numerical
solution to the full problem has never been obtained.
Iano and Austern' considered the problem from a
similar point of view, but solved it only to Grst order as
concerns the inelastic transitions. (That is to say, their
generalized distorted waves correspond to the BWANA

approximation for the inelastic processes. ) Therefore,
they do not remedy the second cause of failure of the
usual method. Kozlowsky and de-Shalit4 and Levin'
also have worked on this problem. They too treat in-
elastic effects only in erst order, and only in the exit
channel. The evaluation of (1.2) evidently is an ex-
tremely troublesome numerical problem.

In this paper we present a different way of solving
the same problem which apparently is more amenable
to numerical calculation. We are able to treat inelastic
eGects to all orders in both entrance and exit channels,
and to treat spin-dependent interactions in the optical

' S. K. Penny and G. R. Satchler, Nucl. Phys. 53, 145 (1964) .
3 P. J. Iano and ¹ Austern, Phys. Rev. 151, 853 I'1966) .' B. Koslowsky and A. de-Shalit, Nucl. Phys. 77, 215 (1966).' F. S. Levin, Phys. Rev. 147, 715 (1966).
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Fio. 1.The (d, p) reaction between idealized nuclei is illustrated.
The lowest two levels of (2+1) have the same core con6guration
4 e(A) as the target and so can be produced directly by the strip-
ping process as indicated by the arrows. The third level, as indi-
cated by its wave function, has an excited core, and so can be
reached only through an inelastic collision with the deuteron
before or with the proton after the transfer reaction. Only the
lowest-order routes are illustrated.

potentials and in the direct interactions. The 5-
matrix is obtained directly from the application of the
physical boundary conditions to the solution of an
inhomogeneous system of equations describing the
scattering in the residual system. The inhomogeneity is
a source term which describes the production of the
residual particle by the transfer process. The method
is very general for scattering problems because the
specification of the type of reaction enters only in the
structure of the source term. The equations otherwise
describe inelastic scattering.

In this paper, we describe our method in terms of the
(d, p) reaction, though it is applicable to all particle
transfer reactions. In Sec. 2 the rationale for the
equations that we use to describe the reaction is
given, followed by a detailed formulation of their
structure in Sec. 3. There also it is shown that the
solution reduces to the usual DWBA in case the core-
excitation eGects are neglected. The source term due to
the transfer reaction is explicitly calculated in the zero-
range approximation. In Sec. 4 the numerical problem
posed by the systems of equations used to describe the
reaction is discussed.

2. SCHEMATIC PRESENTATION OF SOLUTION

In this section the reasoning is given by which we
arrive at the equations we use to describe the transfer
reaction where inelastic effects are included. For
definiteness we consider the (d, p) reaction

a+A —+p+ (A+1) . (2.1)
For the moment, assume that the system can exist

in only a finite, indeed only a few, different states or
channels containing the fragments 8+A or P+ (A+1),
such as depicted in Fig. 2. This restriction will be re-
laxed only in the usual way~' by assuming that the

effect of the omitted, channels on those of interest can be
carried in an optical potential. We shall assume also
that the particle transfer process is weak so that
channels of the configuration 4+A are coupled only
weakly to those of p+(A+1), and we shall treat this
coupling only in first order.

First, focus attention on a typical deuteron channe1
d' in Fig. 2. We use d' to label all the quantum numbers
needed to define the channel, such as the state of the
nucleus A, and the angular momentum of the deuteron.
The equation describing the motion in this channel is

(Tdl+ Vd'd' Ed') red'= Q Vpdirldii (2.2)
g//pEgl

in which the various terms on the right represent the
feeding of the channel d' by inelastic processes from
other channels d", illustrated in the figure by the
wiggly arrows. Equation (2.2) together with those
describing the other included channels constitute the
usual system of coupled equations for inelastic scatter-
ing.

Now focus attention on a typical proton channel
p'. Again this channel is fed by inelastic processes
leading from other proton channels (wiggly arrows)
but, as well, it is fed by the transfer reaction from the
various deuteron channels. Therefore, there will be two
types of source terms in the equations for the proton
motion. Accordingly, we write

(T„.+V„. . E.)w„.= ——g V„,"w„"—g p ~ '.
yl /+y/ gI

(2 3)

Here p„"' represents the source of protons in channel
p' as a result of the stripping reaction in channel d',
illustrated by the straight arrow in the 6gure. Of
course p will depend upon the solutions of the deuteron
equations (2.2). We write down its detailed structure
in Sec. 3.

Since the reaction is initiated by a beam of deuterons
incident on the ground state of nucleus A, the deuteron
system (2.2) is to be solved subject to the boundary
conditions that only a ground channel has an incoming
wave while all channels may have outgoing waves.
The proton system is subject to the condition that there
are owly outgoing waves.

The amplitudes of the outgoing proton waves are of
course the S-matrix elements for the (d, p) reactions,
in which the inelastic scattering is calculated to all
orders among the retained channels in both the deuteron

Forthcoming application to the (p, t) reactions. The rationale
for our treatment was also described in ¹ K. Glendenning,
Lawrence Radiation Laboratory Report No. UCRL-18225, j.968
t invited paper A.P.S. meeting, Washington, 1968 (unpublished) j.' N. K. Glendenning, in I'roceedirrgs of the INternetioeal School
of Physics "Emrsco Fermi, " edited by M. Jean (Academic Press
Inc. , New York, to be published), Course 40; Lawrence Radiation
Laboratory Report No. UCRL-17503, 2967 (unpublished) .'

¹ K. Glendenning, Nucl. Phys. A117, 49 (196g).

FIG. 2. For a typical deu-
teron channel d' and proton
channel p', this figure illus-
trates by the arrows leading
to these levels what processes
have to be described by the
equations of motion in these
channels. See Sec. 2 for a full
dlscllsslon.

d+A p+ (a+t)
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and proton systems, while the transfer reaction itself
is treated as the weak process it is, only in firsl order.
That is, we have not included the reaction back on the
deuteron channels of pickup reactions. Therefore, the
solution to the problem can be obtained in two steps.
First, the coupled system (2.2) for the deuterons is
solved so that the source terms p can be constructed.
Second, the inhomogeneous system (2.3) describing
the protons is solved.

Of course, one could think of extending the system
of equations to include additional particle channels
like triton and n channels in. which each of these
systems is described by equations like (2.3) .

where we use d to denote the whole collection of
quantum numbers in a deuteron target channel

(3.6)

an.d by d' some other state of intrinsic motion 0.~'J~'

and/or relative motion ld'. (In this paper R=R/R. )
In the usual way from (3.4) and (3.5) we get for each
total angular momentum and parity I, m a system of
coupled equations for the radial functions N(r). They
have the form, for each channel d',

$Td.+ Vd.d.~'(R) Ed—fud. ""(R)
Vd~d~~ (R) Ndl~ (R) (3 7)

3. DETAILED FORMULATION FOR
(zf, P) REACTION

In order to illustrate our method without unneces-
sary detail we consider the (d, p) reaction in the ab-
sence of spin-dependent interactions. This means that
we can treat the deuteron and proton as spinless
particles. The general case is treated in the Appendix.

t A sum over a primed subscript will always include the
ground (unprimed) channel unless otherwise indi-
cated. ) In the above equation,

V„„, (R) =(yd~z~(R, A)
~ V(d, A)

~
yd..z (R, A))

(3.8)

A. Inelastic Deuteron Scattering
P ( d' ld(4+1) i
2' & dR' R' j ' (3 9)

Let the target nucleus (A) be governed by the
Hamiltonian H&, whose eigenfunctions are denoted by
C z(A), where A denotes all the nuclear coordinates,
and n denotes all nuclear quantum numbers additional
to J, M such as the parity m. .

(Hg E,z,) 4',z„(A) =—0. (3:1)

t We use the subscript d on all quantum numbers re-
ferring either to the deuteron itself or the nucleus A,
and p for quantum numbers describing the proton and
the nucleus (A+1) .) For the total system we have

H=H~+T+V(d, A), (3.2)

where T is the energy of relative motion and V is the
deuteron-nucleus interaction. It should be under-
stood that the problem will be solved in a highly
truncated space containing only the few interesting
channels, and, correspondingly, that V is an effective
interaction in the sense discussed elsewhere, which
carries the affect of all the channels we neglect on those
we do treat explicitly. ~

With the eigenfunction of total angular momentum
I=l„+Jd and parity ~= (—)'dn- „,

(3.10)

These are to be solved subject to the boundary
conditions that there are incoming waves (I) only in
the channels containing the nucleus in its ground state,
while all channels may have outgoing waves (0)
Nd. d~z(R) —&8d.dI~, (kdR) —(z)d/z)d ) 'I'Sd. ,d z04 (kd R) .

(3.11)
Here

I~*(kr) =O~(kr) =G~(kr)+iFg(kr)

~expIit kr q ln(2—kr) —lm/2+op I) (3.12)

where G and Ii are the irregular and regular Coulomb
functions, g= ZZ'e'/5 no~ is the Couloznb phase shift,
and v is the particle velocity.

The total wave function has all angular momentum
and both parities, corresponding to the fact that a
beam of particles is incident on the target.

A d))z +d))z (3.13)
lglM

If we choose

)td z~(R, A) = V4(R) C,z, (A)

We expand a solution% of

(H —E)4=0

(3.3)

(3.4)

Ad z~= —(»kd) '&O~.zz'd d'B~(24+1) g'"i" exp(i&d),

(3.14)
then, in the absence of the Coulomb force,

4'~C)d„"(A) exp(ikdZ) +scattered wave,

corresponding to incident particles in the channel d as

=R 'Q Nd. d~z(R) yd..zM(—R) A), (3.5)

which is the desired solution.
The detailed structure of the coupled equations

(3.7) based on microscopic nuclear descriptions has
been discussed elsewhere. ~'
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B. Proton Production and Inelastic Scattering

The nucleus (2+1) we suppose is described by

( ~+&— „I,) .,&,((A+1)) =0 (3.15)

and with notation and de6nitions analogous to the
above, the proton motion in any channel p would be
described, for each total angular momentum and
parity Im, by
t'T„+V,„'(r„) E,gw—,"(r„)

= —g U „.I(r„)w„.I(r ) (3.16)

were it not for the fact that there is a source of protons
in the vicinity of the nucleus due to the stripping of the
neutron from the deuteron. We must instead solve the
inhomogeneous system

LT„+V„„(r„)—E„fw„" (r„)

«I(r )w d«I(r ) p A'I('r ) (3 17)

where p denotes the proton source. We calculate this
from

p„e I(r~) =r~ g (p„«z~(r„, (A+1)) ) V„„(r)
~
@o(r)gq z~(R, A)gee«z(R)/R)

gf
(3 18)

and will justify this form later in Sec. 3 D. Here r=
r„—r~ and 2R=r„+r„, and go is the deuteron wave
function. In this matrix element, all coordinates
(including r„) are integrated except r„The. various
terms in this sum represent the transitions indicated
by arrows in Fig. 2 leading from the various channels
d' in the deuteron system to the channel p in the proton
system.

We have placed d as a superscript on m to correspond
to the fact that the reaction is initiated by a hearn of
deuterons in the ground channel d, which information is
carried in the source terms through their dependence
on solutions of (3.7) with boundary conditions (3.11).

The equations (3.17) are to be solved with the

physical boundary conditions that proton channels of
this reaction have only outgoing waves

w„o«z—+—(od/o„) 't'S„g O«I( (k,r,) . (3.19)
The amplitude of

(oq/v~) '~'CI„«exp( iLk~r„—g ln(2k~r) ])

w Azg zjr is
—S~& i '«exp(io„) pC II M" "&4"«(r,)

On the other hand, the sources (3.18) were constructed
with unit amplitude for N~" ~ whereas its actual ampli-
tude in the incident wave is given by (3.14) . Hence the
total amplitude for the process is

f(J~M~J M ) = (2ik~) 'g— L4or(2lq+1) g't'i'o-'«expLi(od+o„) g
lg lyme J.M

lgzdlc Lpz«IS «IV m«(lr ) (3 20)

(We have replaced r„with k~, since they become
coincident asymptotically. ) The flux through the
surface r~'dQ in the direction ir„ is therefore vq

~ f ~'dQ,

while the incident deuteron Aux is v~. Hence

da/dQ= (2Jd/1) ' g ~
f(J/M~JyMy) ~'. (3.21)

My'
We should perhaps note that S~,~ is a short-hand

notation for

S„,g I= ((lj„)IM ( S
~

(lgJg) I—M) (3.22)

(which is independent of M) . It is then clear that

lgzglc l«J«IS «I
I3f

= (4~., ~.M. I
S

I l.O, I,M, ). (3.23)

C. Check with DWBA

We can check the construction of the source term in
all its details by considering the limit of our equations
when the inelastic effects in both proton and deuteron
channels are neglected. Since, in any case, the transfer
process is calculated in erst order, this limit should lead

exactly to the DWSA cross section. Our equations be-
come

(T +V„«I E )N 0 I(g') «0 (3.24)

(T„+V„„' E)w ' '(r„)=0, —(3.26)

which is regular at the origin and has the asymptotic
behavior

w„o I~ 2i exp(i—B~) sin(k„r„—i~or/2+8„), (3.27)

where 8„ is the phase shift introduced by V». Then the
asymptotic solution of (3.25) can be written down
immediately in terms of uP and w„(see, for ex-
ample, Ref. 7). It is

~ Az~ (o /o )1/oS «IO (k r ) (3.28)

where Og, is an outgoing wave, and S is given by the

(T +V' «I P )w A'I(r ) —
p d«I(r ) (3 25)

where d refers to elastic deuteron channels and p to
aey proton channel. Introduce the solution of the
homogeneous equation corresponding to the second of
these,



1400 R. J. ASCUITTO AND N. K. GLENDENNING

explicit formula

i fm~md)&'~'
wl

(

+
[

~ owrp AIjrP' (3.29)

and k„= (2m~E~/A') 'l~ is the wave number. The
superscript 0 on the solutions to (3.24) and (3.26)
indicate that they describe elastic scattering only.
Introducing (3.18) for p into this expression for 8 gives

~n,o"=
y i

"
I

" '
4n" *(rn, (A+1))~.n(r)40(r)4d-r"(R, A) — «.«ydA. (3.30)P k„kg j r„

Inserting this into (3.20) we have

f= (25'k ) '(mymg/kykg)'" P $4lr(2lg+1) j"i'~'~ exp@(oygod) )I'&,"»(ky)

X —
" '

F&, ~*(r,) (C',&,~~(A+I)
I

& n(r) I 4'o(r) C „&P'&(A) ) F&,o(R)dr„dr„. (3.31)
~ o~r(r ) u~o r(R)

ru R

Now let us write

mo' 1(E)
P„&+&= —Q L4s (24+ 1) j'~'Ii '& exp(i') . Y4o(R),

ld 2ikdE
(3.32)

which is the partial-wave expansion of the deuteron wave, distorted by Vdd. In the absence of distortion it goes to

Also,
Po&+&-+exp(iM) .

p~& &*=——4&r g i '~ exp(io„) t n& o~r(r~)/2ik~r„)F& m~~(r„) F&,"~(k~'),

(3.33)

(3.34)

which, in the absence of distortion, goes to

Equation (3.31) can be written now as
+exp—( ik, —r„). (3.35)

where
f= (2~5') 'P(k„/ke) mome j'I'T o (3.36)

T„,d=— „&
—)* k~, r~ C,~,~~ A 1 V„„0r C,~,~" A d&+~, R dr„dr (3.37)

is precisely the usual DWBA expression for the T
matrix. The cross section according to (3.21) is

dg nz~md k„', ,—
—"(2Jo+1) ' 2 ) Tn, e I'i (338)

dQ (2~8)' kd

which is the usual DWBA result for the (d, p) re-
action with spinless nucleons.

Thus we have con6rmed, to the last factor, that our
construction of the source term is the one which, in the
ebsemce of inelastic eBects leads to the DWBA cross
section for the transfer reaction. Consequently, al-
though our equations are approximate, they embody no
approximations additional to those of the usual DWBA,
whereas they do take account of inelastic eGects, to
all orders among the retained channels.

where Do can be related to the binding energy of the
deuteron.

To carry out the integration of the coordinates A
we make a parentage expansion

C',,~ (A+I)= Z P&.(Jo J.)

3Ey

X C-.;(A) I'&.(r-) &&,.(r-), (340)

where x~„ is a single-particle radial function for the
neutron in the nucleus (2+1). Inserting these into the
source (3.18) gives

p&e '(r&) = Do P (4» r~(r„, A, r~)
~

&t&a r~(r„, A) )D. Source Term
The source term can be explicitly evaluated under

the usual zero-range approximation
I'..( )~o() =D.~( ),

d1

Xge"(r,), (3.41)

(3.39) where

(p~,l~(r„, A, r„)
~

&t &,~~(r„, A) )= g P&„(J~,J„)x&„(r,)
"M M

Ã~, i C~„A Fg„r~ F~, r C~, A . 3.42
Jp I I
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The integrations are over A and r„. We write the bracket in this expression symbolically as

(l„, (Jg, l„)J„;IM i lgJg, IM), (3.43)

where the arguments of l„l„and l~ are r„while those of J~ are A. To carry out the A integrations we rccouple on the
left

t„ l„ E
I 4) (Jd~ l )Jr~ IM&= 2 (JA)"'(—)'"+'"+'

I (i&i.)&~ J~~ IM)~
Jd I J„

(3.44)

where X=2E+1. For the following bracket we have

((l~l„)E;Jd, IM
i lgJd, IM)

~My

X (l„l„;Erlq
~

i~ma). (3.45)

The r„ integration of the last bracket yields

l l )gz2(l„ l ld)
(l„l;Kmd

~
lyme)= ( —)'"

( &x4.
(0 0 0)

(3.46)

Thus we find for the source term in the channel p

p."'(r) =Do Z P .(J'J.) (—)'""'"+' J„l,l la l"'
&I~n 4s )

l„ l,. (l, l„ i,.)
l xi.(r) u'""(r) (3 47)IJ, F000)

Here we see explicitly the radial form of the source
which contains the product of the neutron bound state

and the deuteron scattering state, as expected. That
they have the same coordinate r follows, of course,
from the zero-range approximation. For simplicity we
have omitted the usual c.m. correction.

Of course, the strength with which the various levels
d' contribute to the source in the proton channel p
depends on the extent to which each of them is a parent
of the level p. In the idealized example of Fig. 1, the
erst two levels have only the target ground state as
parent, while the third state also has a pure parentage,
but based on the excited target state. In general the
parentage will be spread over several or even many
states, though it may still reside dominantly in several
states. At any rate, this information is inserted in the
source term through the parentage coe%cients
P~.(J~ J )

E. Inverse Reaction

The reaction inverse to the one of primary interest
can be calculated at little extra trouble, as we shall see
in Sec. 4. The source for deuterons corresponding to the

(p, d) reaction in the channel labeled d is

pp z(R) =R g (pq z~(R, A) &0(r) ~
V„~(r) I Q„z~(r~, (A+ 1))w„& z (r„)/r„) (3.48)

in which m„& are solutions of the proton inelastic
scattering problem defined by (3.16) with boundary
conditions

w„'(r, )—+8„,Ig„(k,r„) (e„/v;) '—~'S„,„zOg„.(k„.r,)

(3.49)

The equations describing the deuteron motion follow-

ing the pickup reaction are, for each channel d,

pTg+ Vgg (R) Egjud& z(R)—
= —Q Vgg. z(R) ug. & z(R) pg' z(R), (3.50)—

g/gg

which are to be solved with the boundary condition

u & (R)~—(s /vg) 'z'Sg Og, (kdR) . (3.51)

The source term can be evaluated explicitly as be-
fore, under the zero-range approximation, and is

i„.i„.i„~.&~/2

p ""(R)= Do Z P .(JdJ. ) ( )'"+'"'"—
4m )

l, (i„. l„ i,)
X i ~x(„(R)ro ~ '(R) . (3.52)

A I J„,(0 0 0)

The cross section can be computed from (3.20) and
(3.21) if everywhere the subscript d is replaced by p
and vice versa.

4. NUMERICAL PROBLEM AND ITS SOLUTION

In brief, the problem of calculating the (d, p) re-
action, including inelastic eGects, amounts to solving
the coupled equations (3.7) describing deuteron elastic
and inelastic scattering, constructing the proton
source terms (3.47) from this solution, and then solving
the inhomogeneous coupled equations (3.17) for the
proton scattering by the residual nucleus. Each of
these two systems of coupled equations is de6ned by
two boundary conditions: one at the origin, where all
solutions must vanish, and one at some suitably large
radius (say, R) outside the range of the nuclea, r inter-
actions. Let us denote the solution to the deuteron
equations (3.7) by the oolurnu vector

V(r) =Lu, (r) "u~(r)], (4.1)

where N~ denotes the entrance channel function, and
there are altogether X channels. Clearly, it is not
known o', priori what slope to assign to the components
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Of this vector at the origin, so that in the asymptotic
region it will have the required form

It is clear that one can calculate the proton elastic
and inelastic scattering by the residual nucleus (A+1)
by simply solving a set of linear algebraic equations.

r=o, (4.3)

where the 1 occurs in the qth position of the colgnze
vector. Solving the system E times corresponding to
q= 1, ~ ~ ., E generates the desired set of independent
solutions. The particular form and normalization is
chosen in accordance with the nature of the solution
near the origin, and it ensures that the solution does not
grow out of bounds with increasing r. In practice, the
integration is started at some value of r (say, R;,)
chosen to be as small as possible but such that Us(R;„)
is not smaller than some assigned small number, say,
of the order 10 '0.

With thi's set of solutions U, (r), I7=1, ~ ~, E, we
seek the linear combination such that

Q (s,U, (R) = U (R) .

This, together with the derivative, constitutes 2S
linear algebraic equations in the aq and Sq, of which
there are S each. From these S-matrix elements the
elastic and inelastic deuteron cross sections may be
calculated, while with the aq the desired solution can
be constructed for use in the proton source term.

The solution of the inhomogeneous problem is ob-
tained in a similar fashion, since a general solution can
be obtained from a particular solution say W(r) of the
inhomogeneous system (3.17) plus a general solution of
the corresponding homogeneous system (3.16). One

may start the particular solution with zero value and
slope at the origin. The solutions W, to the homo-
geneous problem are obtained by the same means as
above, and the solution with the desired asymptotic
boundary condition is found by solving the linear
algebraic equations

Sg Og R

Q t),W, (R)+W(R) =-
q=1

(45)

for the unknowns b and S. From these last S-matrix
elements the cross sections of the various proton
channels in the (d, p) reaction can be calculated.

—Sst Os(r)

—s~, o„(r))
(4.2)

Consequently, a linearly independent set of vector
solutions U, (r) must be generated from which the
desired one can be constructed. This is conveniently
done by using the initial values

Q c,W, (R) =W„(R),
q=1

(4.6)

where W (R) is defmed similarly to (4.2).
Finally, the inverse (p, d) reaction can be calculated

at only the cost of 6nding a particular solution of
(3.50) with the source term (3.48) constructed from
the physical solution of (3.16) already found in con-
nection with the scattering boundary conditions
(4.6) and then solving a set of algebraic equations
analogous to (4.5) .

5. SUMMARY

We have shown how to go beyond the usual DWBA
treatment of transfer reactions to include the effects
of inelastic scattering in both entrance and exit chan-
nels. As discussed in more detail in the Introduction,
this may be necessary in some cases for one or both of
two reasons. (a) The coupling of inelastic channels
to the ground is in some nuclei very strong, especially
in deformed regions. (b) Most certainly in every
nucleus some states produced in particle transfer re-
actions will have a parentage based more on an excited
rather than the ground state of the target. This will
be especially true of higher-lying states.

Our basic equations cannot be rigorously derived from
the Schrodinger equation for the system. However, we
can say that they embody no approximations beyond
those made in the usual distorted-wave method,
whereas they do carry the effects of inelastic processes
on the transfer reaction. These effects are carried to all
orders among the retained channels so that both causes
of failure of the usual DWBA are covered. However,
like the DWBA, the transfer reaction is treated as a
weak process, only in first order.

We have illustrated our method by a detailed ex-
ample, the (d, p) stripping and inverse pickup reaction,
in which, for didactic purposes, we have omitted refer-
ence to the nucleon and deuteron spins. The S-matrix
elements for the deuteron aed proton elastic and
inelastic scattering as well as the stripping and pickup
reactions are obtained by applying the appropriate
boundary conditions to the solutions of a homogeneous
and inhomogeneous system of coupled differential
equations for both the deuteron and proton channels.
One particular solution only is required for each of the
two inhomogeneous systems while general solutions of
the two homogeneous problems are required.

The method can be applied to other problems besides

9 There may be some transfer reactions that are stronger than
can be treated in Grst order. See A. P. Stamp, Nucl. Phys. 83,
232 (1966);also, G. H. Rawitscher, Phys. Rev. 163, 1223 (1968)
who considers the effect of stripping channels on deuteron elastic
scattering. As a rule, however, we believe these reactions are
weak, although we will investigate this point further in an effort
to make a more precise statement.
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the one considered here. Our first application is to the

(p, i) reaction using a microscopic nuclear description
and a spin-dependent direct interaction as well as
spin-orbit coupling in the optical potentials. '

APPENDIX: GENERAL CASE WITH SPINS
where

M h(gdpI = G(4r) jd@adde
I

(A2)

Having considered the (d, p) reaction in detail in the
absence of spin-dependent interactions, we now give
the changes necessary to include such interactions as
spin-orbit terms in the optical potentials and spin-
dependent direct interactions.

The channel functions Pd and (tp used in Sec. 3 are
now constructed with the use of spin-orbit functions as

'@pl 9(~pil2) jp@apdp (A1)

(A3)

Here q is the spin function for a nucleon. The channel
quantum numbers d and p now include the additional
speci6cation of jd and j„,respectively. The source term
for the (d, p) reaction becomes

p dai(r) D Q P . (J, J' ) ( ) (d +Jp+Ip+Ii (J„gd t„t l'j'

dil.;. ""
k 4s i (0

id ) j„
0) Jd

1
ju

jn jd'

(A5)

where

u b c

d e f =(cfgh)"'~ d e f t

g h z Ig h ij

is a recoupling coeflicient, with I I a 9-j symbol.

Corresponding to the incident wave,

Op ——CI,Md(A) Ij(d„)g(d„) exp(ikdZ), (A7)
1

(A6) the amplitude of Nd
d I in the incident wave is

PlM (2Q )
—lc ldljdC jdddi

X)4lr(2td+1) $'I'i" exp(iod) (AS)

Hence the amplitude for the transition is

f(Jd jjldjld —'pJp3I„jd„) = (2ikd) ' g [4s.(2ld+1)]'I'i" 'p exp/i(od+o„)]

Xcopdpd CpdMd, Md+ay P Ctapppm CmMpMd+pd , ~pd1 (p ,(lrp) q (A9)

so that the cross section is

do/dQ=t"3(2Jd+1)$ ' Q ~ f ~2. (A10)

The source term for the inverse reaction can be

written down immediately from (AS) by analogy to the
relationship between (3.47) and (3.52). The corres-
sponding amplitude can be obtained from (A9) by
everyvrhere interchanging the subscripts d and P,
and interchanging 1 and 2l in the two Clebsch-Gordan
coeKcients.


