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Particle and Photon Decay of Nuclei Following Electroexcitation
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Angular-correlation formulas are derived for a coincidence experiment in which an electron scattered
inelastically by a nucleus is detected simultaneously with a heavy particle or photon emitted by the nucleus
subsequently to its electroexcitation. The excitation of the nucleus is treated in erst Born approximation;
i.e., single-photon exchange between electron and nucleus is assumed. The subsequent decay depends on the
properties of the emitted particle. Within the framework of the one-level resonance model (i.e., assuming
that the level matrix is diagonal), the formulas derived are valid for heavy-particle as well as photon decay.
Only slight modifications are necessary, however, to take into account properly the eGects of coupled chan-
nels for particle decay. The present results differ from those of a previous investigation in that (a) overlap-
ping excited levels are included, as found in most applications (we assume, however, that the level matrix is
diagonal), (b) photons as well as spin--, and spin-0 particles are considered as being emitted in the nuclear
decay, and (c) summations over all magnetic quantum numbers were carried out. Examples considered were
excitations of isolated Ei and 311 levels of a spinless nucleus, and of the overlapping E1 giant resonance
levels of ~2C, evaluated by R-matrix theory.

I. INTRODUCTION
"N Barber's 1962 review article on inelastic electron

. . scattering, ' it was demonstrated that electron-
nucleon coincidence experiments in nuclear electro-
excitation (see Fig. 1) were unfeasible at the acceler-
ators then available, the reasons being the low in-

tensities, high backgrounds, and small duty cycles
leading to an unacceptable number of accidental co-
incidences. In the meantime, the advent of new electron
linear accelerators has brought us within close reach of
feasibility of these coincidence experiments: Adapta-
tion of the 1-GeV Stanford electron linac to super-
conducting operation (100% duty cycle) and con-
struction of the 400-MeV linac at MIT are under way;
construction of the 600-MeV linac at Saclay is nearly
terminated; and the Los Alamos 24-MeV electron linac

(a prototype for the Los Alamos meson factory') is
operative at a 6% duty cycle and is suitable for the
coincidence experiments mentioned. With these possi-
bilities in mind, we have derived expressions for the
angular correlation between the inelastically scattered
electron and a particle emitted in the subsequent
nuclear decay which may be either a photon or a spin-~

or spin-0 nuclear particle. These expressions include the
possibility of overlapping excited nuclear levels, such
as are encountered in the important giant resonance
region. Our results represent a generalization of the
formulas for nucleon decay following electroexcitation
of an isolated nuclear level as given in an earlier paper
by Raphael and Uberall. ' Some errors in the transverse
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term given in that paper are eliminated, and the sum-
mation over magnetic quantum numbers is now
carried out completely.

A generalization of the angular-correlation formula
for spin-rs particles to overlapping levels (without
explicit exhibition of the intervening resonance denom-
inators) has been carried out by Molloy. 4 ' The special
case of photon decay of electroexcited levels was con-
sidered by Hubbard and Rose' and by Acker and Rose, '
although only to the ground state of the Gnal nucleus
(whereas our results are valid for any final state of the
nucleus after deexcitation), but with an important
extension, namely, the inclusion of terms representing
the electron bremsstrahlung without nuclear excitation
with which the nuclear photon decay is coherent, as
well as of the corresponding interference terms. ' Our
results contain only the nuclear photon emission terms,
and will thus be useful if in (e, e'y) coincidence experi-
ments the photon is observed sufficiently far away from
both initial and Gnal electron directions, since, as is
well known (and as demonstrated by Acker and
Roses), the bremsstrahlung of relativistic electrons is
concentrated in a narrow cone about the electron
direction (and so is the con.tribution of the inter-

4 H. R. Molloy, M.S. dissertation, University of Saskatchewan,
Saskatoon, Saskatchewan, 1967 (unpublished) .

~ Thanks are due to H. R. Molloy for pointing out the error in
Ref. 3.

6 D. F. Hubbard and M. E. Rose, Nucl. Phys. 84, 337 (1966).
r H. L. Acker and M. E. Rose, Ann. Phys. (N.Y.) 44, 336

(1967).
SIn the usual noncoincidence experiments where only the

outgoing electron is observed, one customarily adds to the electro-
excitation terms the bremsstrahlung radiative tails in an in-
coherent fashion, thereby overlooking the interference between
bremsstrahlung and the contribution of the (unobserved) nuclear
deexcitation photons, which are important for levels below the
particle threshold. lt has been shown in Ref. 7 that such a pro-
cedure is adequate since the interference term becomes small
when integrated over decay photon directions. This is not the case
before integration, i.e., in a coincidence experiment.

1383



D. DRECHSEL AND H. UBERALL

Fro. 1. Diagram for particle (or photon) decay following
electroexcitation.

ference term). The electron bremsstrahlung formulas
leading to an excited nuclear state are known from the
work of Maximon and Isabelle. '

Electron-proton coincidence experiments have indeed
been performed already'o at high excitation energies
and high momentum transfer. Such experiments have
been described in the framework of quasi-elastic
scattering, in which the passing electron interacts with
an individual proton bound by the imbedding nuclear
matter. This model explains very well the excitation
cross section at medium energies (between 30 and 60
MeV in "C), and also at higher excitation energies if
short-range correlations are taken into account. "
It provides information~ on,'-',-"„- binding energies and
momentum distributions of protons in nuclear shells,
and of short-range correlations in particular by ob-
serving multiple coincidences" such as (e, e'2p).

However, the model of quasi-elastic scattering does
not describe the resonance structure of the electro-
excitation cross section at the lower energies, in par-
ticular, in the giant resonance region which is dominated
by collective states and long-range correlations.
These excited states correspond to resonances of the
nucleus (residual nucleus and outgoing particle) with
definite multipolarity. Within each group of states
with a given total spin and parity, the number of
channels open for particle decay increases with excita-
tion energy. Since these channels are coupled by the
residual interaction in the nucleus, the numerical
problems increase rapidly with excitation energy, thus
restricting a solution of the coupled-channel problem"'4

~L. C. Maximon and D. B. Isabelle, Phys. Rev. 135, $674
(1964).

'0 U. Amaldi, G. Campos Venuti, G. Cortellessa, C. Fronterotta,
A. Reale, P. Salvadori, and P. Hillman, Phys. Rev, Letters 13,
341 (1964).

"For a recent review on this process, see T. de Forest, Ann.
Phys. (N.Y.) 45, 365 (1967).

» Y. N. Srivastava, Phys. Rev. 135, B612 (1964)."B.Buck and A. D. Hill, Nucl. Phys. A95, 271 (1967).
'4H. G. Wahsweiler, W. Greiner, and M. Danos, Phys. Rev.

170, 893 (1968).

to low excitation energies. Further, for photoexcitation
it is usually sufficient to consider electric dipole states
only, also magnetic transitions and such of higher
multipolarity have to be taken into account to describe
electroexcitation at higher momentum transfer. There-
fore, a proper description of the quasi-elastic peak in a
coupled-channel formulation will pose severe numerical
problems.

For low excitation energies, however, such calcula-
tions have been performed with considerable success in
spite of the truncation of Hilbert space to few low-
lying one-particle-one-hole states. "" The photo-
excitation cross section has been reproduced reasonably
well, both resonance structure and background, includ-
ing threshold eGects.

It should be kept in mind that in R-matrix language
the background is produced by contributions of faraway
levels" and therefore will not be properly described by
the one-level resonance model, i.e., if one assumes that
the level matrix" is diagonal. Though we shall derive
the formulas for electrodisintegration under this as-
sumption, it will be shown that it is straightforward to
modify the formulas to describe general R-matrix
theory and the eigenchannel formulation of the coupled-
channel problem as well.

In the case of coincidence experiments with n
particles, the above statements apply only if one as-
sumes that o. particles are prefabricated in nuclei as
clusters. A more thorough analysis would necessitate
the solution of the four-particle-continuum problem
first.

The electron-photon coincidence process is of second
order (first electroexcitation of the nucleus to an in-
termediate state and subsequent 7 decay; see Fig. 2).
Therefore, an exact solution involves the integration
over all intermediate states. Since above particle
emission threshold the photon-decay width is only a
smaO fraction of the particle-decay width, any such
experiment has to be performed in the vicinity of sharp

kp,

FIG. 2. Diagrams for electroexcitation of a nuclear resonance and
subsequent photon decay.

"A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257
(1958).
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resonances to give reasonable counting rates. In such a
region, however, the one-level approximation used in
this paper is certainly applicable.

Finally, the advantages of coincidence experiments
over an observation of the outgoing electrons alone are
the following. '

(a) The "radiative tail" providing a background of
electrons that were degraded to a specified Gnal electron
energy by emission of a bremsstrahlung photon, rather
than by excitation of the nucleus, is eliminated if an
emitted heavy particle is observed in coincidence.

(b) Due to the presence of interference terms, not
only between Coulomb and transverse excitations, but
also between electric and magnetic transitions if there
are overlapping levels, relative phases of matrix ele-
ments may be determined. Note that in the non-
coincidence Born cross section. , only squared matrix
elements enter (even when the levels overlap), and thus
phases remain undetermined.

(c) The coincidence cross section provides us with a
means for determining the spins and parities of
excited levels in a model-independent way if the
measurements are carried out at fixed momentum
transfer q. Note that in photonuclear angular distribu-
tions, which may similarly be used for model-inde-
pendent spin and parity determinations many levels
that show up in electron scattering cannot be signifi-

cantly excited, whereas spin and parity assignments
from noncoincident electron scattering experiments
usually are model-dependent if levels overlap.

II. COINCIDENCE CROSS SECTION:
GENERAL FORMALISM

Following Gourdin ' de Forest" has derived the
general form of the double-coincidence electron scatter-
ing cross section in Born approximation which is valid
for any type of particle emitted during the scattering
process and for any mechanism of emission. The ex-
pression, which depends on four form factors, is for
relativistic electrons given by

d O' A k2= —,—PE~t,Vo(8) Wo+Vr(8) Wr
dQdQ~dE2 b4 kg

+V (8, 4 )W+V (8 4 )W l (1)

FH:. 3. Geometry of the coincidence experiment.

"M. Gourdin, Nuovo Cimento 21, 1094 (1961).
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FIG. 4. Energy diagram of overlapping levels.

Here, the following designations are used: The incident
and scattered electron momenta and energies are
(ki, Ei) and (ks, Es), respectively, whereas the
momentum and total energy of the emitted particle are
(p, E~). The fine-structure constant is et=1/137; the
electron scattering angle is called 8=/(ki, ks), and
the corresponding element of solid angle is dQ. %e
introduce the Inomentum and energy transfer by

q =kg-k2, (2a)
E=Eg-E2. (2b)

The particle emission angles (8~, P~) are taken to refer
to the direction of q as the polar axis (see Fig. 3), and
the corresponding element of solid angle is dQ„. Further,
we have the squared four-momentum transfer 5'=
g' —Es. For relativistic electrons, the four kinematic
functions are

V.(8) =(~'/P) &, (3a)

Vr(8) = (~'/2g') (P+g'), (3b)

V (8, 4,) = (& +4)E(~'/2a') Vo(8) j'"co» (3c)

V.(8, ~,) = (~'/2~') (» cos'&.+~') (3d)
where

g=2kiks cos (y8). (3e)
The 6rst two functions, Vo (Coulomb) and Vz (trans-
verse), are familiar from the Born approximation
formula of inelastic electron scattering. '~ Finally, the
four form factors Wo, Wr, Wr, and Wa are as yet un-
determined model-dependent dynamic quantities, being
functions of q, E, P, and 8s„and depending on the
nature of the emitted particle, the reaction mechanism,
and the nuclear model used to describe the latter.
It is the aim of this paper to evaluate the functions Q'
on the basis of the resonance model of the nuclear
levels.

%e characterize the initial state of the nucleus by
spin, parity, and magnetic quantum number (J;~~; ~;).

"T.de Forest and J. D. Walecka, Advan. Phys. 15, 1 (1966).
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Its electroexcitation leads to the (overlapping) levels

(Jo ', Mo) or (Jo' ", M'o') of total widths I's," and
I'J,."', respectively, centered at an excitation energy
roJp or roJp. The decay (with emission of particle p)
proceeds to the level of the final nucleus given by
( Jps, Mr), with energy poi. The energy scheme is shown
in Fig. 4. In the following, the parity superscripts will

be suppressed.
The transition operator for nuclear electroexcitation

in Born approximation equals the electromagnetic in-
teraction operator H, given in Eq. (25) below. Further,
we introduce, following Goldfarb, " the "transition
operator" E for the decay process. For the purpose of
an angular-correlation calculation the reduced matrix
elements of this operator need not be specified further
and may be treated either as experimental parameters
or calculated from a nuclear model.

Though we will allow for many excited levels, it is
assumed in the following that the level matrix is
diagonal, which gives rise to a Breit-Wigner shape of an
individual level. " The diagrams of Fig. 2 then apply
for nucleon decay of the level as well. It will be shown
later that only slight modifications are necessary to
generalize our results to take into account the coupled-
channel effects, which may not be negligible if there
are many neighboring resonances and threshold
effects."

Approximating the nuclear spectrum by a set of
resonances with a diagonal level matrix, the cross
section is given by
dos' s&= (22r/ss) 8(E,—E2—E„—osr)

MsMo+ MpMs 2 dsy dopZ Z "",'."'... ', , (4)
Jes M;Ms~ zpMo E—tosp+sil'zp"p (22r) o '

where J;= (2J~+1)"2, tl is the velocity of the incoming
electrons, and m„ is the polarization index of the
emitted particle. Note that the sum over Jp also

implies summation over other, unspecified, quantum
numbers of the excited states.

For electron-photon coincidences Kq. (4) arises from
second-order perturbation theory, the transition oper-

(da &i~&o&o==, Xi-
~i MsMp kd~ MpMp

(Sb)

representing the total excitation probability regardless
of the subsequent decay mode (i.e., all decay channels
are summed over). For the decay density matrix
(differential in the direction dQ„of the emitted parti-
cle) we have, similarly,

!
( d~ JpJp'-+Jf

Ed~& MpMp~

MsMp@g, MsMp&E p (6a)

with an over-all decay probability of the individual
level Jp to the final state Jf with the emission of one
particle p:

1 dm J&~Jf

Jp MpMfmp de MpMp
(6b)

i.e., the partial decay width into the corresponding
channel. This gives for the cross section of Eq. (4)

ator X being replaced by H, the electromagnetic
interaction of the nucleons with the radiation field.
We have dropped the contribution shown in Fig. 2(b),
since its energy denominator shows a nonresonant be-
havior which will make this term negligible for prac-
tical purposes, "' especially in the vicinity of a
resonance.

In the case of heavy-particle decay, the squared
matrix element of E gives the probability that the
excited state (Jo, Mo) decays into the final state
(Jf Mf), again assuming that the level matrix is
diagonal.

It is convenient to interpret Eq. (4) as a product of
two density matrices describing the excitation and the
decay parts separately. The density matrix for electro-
excitation is given by

(
Js~JpJp'

= (4&2tl) t+ MoMirsIJ, MpiMcE k (Sa)
MpMp~

so that one has a differential cross section for the
electroexcitation of the individual level Jp.

d'o-J' Jf (do/dQ) M,M; '- ' "(dttl/dQ, )M,M; ' ""s

dQdQ„dE, 2 J, ,„. . . , , (E—eo, ——,'iI', "') (E—co, +-',il', "')Z Z Z
which has the form of the usual overlapping-level formula. ' lt possesses the correct normalization so that upon
integration over the outgoing particle directions dO„and summation over its polarizations as well as over the
angular momentum projections of the final nucleus, with the help of the formula

JpJp'~ Jf
d~p 4pJp'~MpMp' ~Jp Jy

Mymy ~y MpMpl'
(8)

» See, e.g. , S. Devons and L. J. B. Goldfarb, in Encyclopedia of Physics, edited by S. Fliigge (Springer-Verlag, Berlin, 195'I)
&

Vol.
XII, p. 362; L.J.B. Goldfarb, in ENcleur Reactions, edited by P. M. Endt and M. Demeur I'North-Holland Publishing Co., Amster-
dam, 1N9), Vol. 1, p. 159.

» See also L. J. Crone, Ph.D. thesis, The Catholic University of America, 191 8 (unpublished); L. J. Crone and C. Werntz, Nucl.
Phys. (to be published).

The nonresonant term also arises in nuclear photon scattering; cf. R. Silbar and H. Uberali, Nucl. phys. +1Q9 146 (196g)
an example where this term is carried through. %%@

oi See, e.g., E. G. Fuller and E. Hayward, in ENcfear Reactions, edited by P. M. Endt and M. Demeurj (North-Holland Publishing
Co., Amsterdam, 19/9), Vol. 2, p. 113,
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(to be proved later), we obtain

d2~ Js~Jf p 40t

2tr (E piz ) 2+ i (Pz tot)2 P tot i' (9a)

This is a result to be expected: The interference be-
tween the levels has disappeared; their contributions
must add with their individual widths. The latter are
represented by the Breit-Wigner shape mentioned
before, and the absolute cross section for each level Jp
(still differential in the electron direction) appears
multiplied by the branching ratio I'z, z,/I'zp"t for the
decay into the single-particle emission channel to the
given final nuclear state Jz. (The total width I"zt~p, of
course, includes all types of emitted particles —even
multiparticle emission —for decay of the level Jp,
going to all possible final states J'z.) The energy de-
pendence is mainly contained in the resonance denomin-
ator (the rest may be evaluated at the resonance
energy E=~ozt), and integration fdEs over the width
of the level Jp then gives

da *'

g I'JO zfdotot~
(g )

dQ J, I'J0 ' dQ

again the expected result.

III. DECAY DENSITY MATRIX

We shall introduce the notation

pztzt, sztzzt, zzMy g gz & zrzzzrztegz z,Mfszo (10a)

so that the decay density matrix (6a) becomes

t' dtc~zozp'-zr E pZ I I
= ", pztzt ispszt "~'. (10b)~ i &&~i szpszp~ 47r'

Following Goldfarb, " reduced decay matrix elements
will be introduced according to

&~ II ~ II Io& = V~(I~o) I
&

I IoMo»

keeping in mind the Wigner-Kckart theorem and the
scalar character of E. The symbol A. refers to the
channel spin of the emitted particle; for the types of
particles considered here, we have

photon: A=—(X, I) = (l, u); (12a)
nucleon: h.=—(X, K) = (j, l); (12b)
a particle: A.=—X =l. (12c)

For photons, l is the total angular momentum (or
multipolarity); n=O for electric transitions and 1 for
magnetic transitions. For nucleons, / is the orbital and
j is the total angular momentum, whereas for the n
particle, / is the orbital angular momentum and X is
absent (or zero). In Eq.'(1l),J and A are coupled to Jp
in the Anal state.

Since the explicit form of Eq. (10a) is

pz, zo sztszt zz~z= Q (IzMz, przt„ I
E

I
JpMp&*

X(jzMz, prig I
&

I
Io'Mo'&, (13)

X~(I&p'»' Ijz) Pz II ~ II Ip&*(Iz II
~'

ll Ip'&

XDzz,zz z() (14b)

Here R is the rotation which brings the s axis into the
direction of the emitted particle. The radiation param-
eters czsz, (hA. '), in whose definition a sum over the
spin states of the emitted particle is included, are given
by18

photon: czzz; (la) l'n') = (47r)
—'( —1)"—'ll'

X-,'I 1+ (—1)z+'+~+"+a'g(l1, l' —1
I IO) azz;p, (15a)

nucleon: cz~, (jl,j'l') =(4tr) '( 1)z+z 'l'gg—'

XsI 1+(—1)"""j(j2j'—-'
I Io)b~ o (15b)

ce particle: czztz; (l, l') = (4tr) '( —1)"
Xll'(l0, l'0

I
IO) 8ztz;p. (1Sc)

Only the case 3fz'=0 appears, because we do not
analyze the polarization of the emitted particle. Note
that the projection operators pL ~ j may be written
in the common form

—
I 1+( —1)zm'otro'j (15d)

because of parity conservation of the interaction
m~=xpmy or 71 ~ =7lp7lf, and using the fact that the
parity of the transition A is s.

&
=—(—1)'+ for photons

and (—1)' for nucleons and er particles. The same
factor, Eq. (15d), may be added to Eq. (15c) due to
the properties of (lO, l'0

I IO) . This factor LEq. (15d)j
depends only on I and on the parity of the intermediate
states, and not on A. lt shows that only even values of
I appear for the cross terms from two interfering levels
of the same parity, or for the square term of each one
intermediate level and only odd values of / for the
cross terms of two interfering levels of opposite parity.

We now may proceed to the proof of Eq. (8). Inte-
grating Eq. (14a) over dQ» we obtain from the orthog-
onality property of

Dsz p (~R) = (4 ) ~ I (Ii) (16)

"We use here the rotation matrices D rI and rotation R as
de6ned in Ref. 18; these definitions also agree with those of M. E.
Rose, Eleraertlary Theory of Artgtelar 3Iomertltttrt (Wiley-Inter-
science, Inc. , New York, 1957).

the standard rotations and recoupling techniques lead
toe, 18,22

g pzozo szsz z z= p (—1)
3ff zMg

X (JpMp, Jp' —Mp'
I
IMz) Fz,z; z(IMz), (14a)

where, with h.'—= (X', K'),

E, ; z(IMz) =J Jp' Q Q czM;(AIi. ') (—1) + z "
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(77=p—/P):
Panto(g) = ts'lg) f d"

PJpJg'Mph p' ~yJM
MJ

With

X [J'V XLj (qr)X (r) j+q'P j (qr)Xzzz(r) j,
(22b)

=4prbz~p bzzpzzp Q 7), icpp(AA')
hh~g=V)

II II )*& II 'll ') ( ) ~, ,(),, d,, { „(.(„)x („))
coo(AA') I), ), =(4pr)-i7pl 1+(—1))+)'js (17b)

and using Eq. (17a) and the definitions Eqs. (6b) and
(10b), Eq. (8) may be readily obtained. At the same
time, it is seen that the quantity inside the sum-
mation sign over Mp in Kq. (6b) is actually independent
of Mo, and we also obtain the explicit expression for the
decay width

Z —:L1+(-»""j
hh J'(X=V)

&&&Jr II A II Jo&*&Jr II
A'

ll Jo& (18)

The particle width may also be expressed by an average
of dw/dQ„over Mp, rather than by an integration over
dQ~ as in Kq. (6b), namely,

4 + + dw)«'~»
Jp zzp zzzsstgr iJQgrJ Mpztzp

This means that if just one of the two possible orienta-
tion averages fdQg or gi)zp is carried out, the result is
already orientation-independent. This is a well-known
result.

IV. EXPLICIT COINCIDENCE CROSS SECTION

The Coulomb and transverse matrix elements for the
excitation process in Born approximation'" shall be
defined here with a factor i~ included, which, due to the
invariance under time reversal of the electromagnetic
interaction Hamiltonian and of nuclear forces, makes
them real, " provided we choose the nuclear wave
functions so that they have the time-reversal property

OZz, (q) —= &Jp'
I I OR& (q) I I J;), (24)

with Jo' understood.
The interaction of the nucleus with the electro-

magnetic field (pp, A) of the electron is given by

H=e d'or ()Qpp
—j A —1p. V xA). (25)

For photon decay, one has E=H to first order, and the
decay matrix elements, Eq. (11),will likewise be given
by Eq. (21). Indeed, using the well-known multipole
expansion'4 of the vector potential A corresponding to
an emitted photon, we find

&Jz II J~ II Jo&=2~eJp '(8~/P)"'&z'"'(P), (26)

P being the decay photon momentum, n=0 (e) or 1

(m), and Gz, is now to be taken as

(27)

+jj z, (qr) Xz3z(r) J, (22c)

where ep, ej, and ep are the nuclear charge, current,
and magnetization density, and

Xz,zz(r) = g Fz~(r') e„(Lm, 1m'
I LM) (23)

fnml

are vector spherical harmonics. It should be noted that
the matrix elements, Eqs. (21), depend on J; and Jp
as well as on L, although this dependence is not ex-
plicitly indicated. In the following, we shall use the
notat. ion, e.g.,

2'I J, M)=( —1)z+~
I J, —M). (20a) i.e., with Jz replacing J;LEq. (21b)g, since we now deal

with the decay process.
In terms of these matrix elements, we have for the

excitation density matrix, as in Ref. 3,

Using the signer-Eckart theorem

&JQMQ I DRzz)z I
J'M') =trp (J M' LM

I JpMQ)'

X (Jo II ~z, II J;), (20b)

we obtain the reduced matrix elements

BRz,(q) =—&Jp II BRz, (q) I[ J;), (21a)
&~' '(q) —= &Jp II ~~'"'(q) II J') (»b)

of the Coulomb and the transverse electric and mag-
netic ope r

(
d&~ zg~«J o'

= (2edkp/kgb'JQJQ')
~W i)tzpMpt

X Q (J;M*, LM
I JoMo)

I.~I,Iu&

)& (J;M;, L'M'
I
Jp'Mp') Rzz,"™,(28)

rato s
with Rz, z,.~~' given by Eq. (17) of Ref. 3 (in which the

ss f (r)d ~gr) g (")d r (gt ) sign oi the longitudinal-transverse interference term
should be changed). If we insert Eqs. (28), (10b),

'R. H. Pratt, J. D. Walecka, and T. A. Griffy, Nucl. Phys. . &&, 24 see, e.g. , R. Raphael and H. Uberall, Nucl. Phys. 85, 327
677 (1965). (1966).
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and (14) into the cross section of Eq. (7), and in-
troduce a "decay parameter"

,IJI ~' ( 1)I+Jr Jp&--
Ad, l

Xcrp(AA') W(Jplp'M. '; IXI)

X&JI II A II Jo) (Jr II
A'

ll Jo'), (29a)

with the properties

,IJre —( ] ) Jp~—J So, IJI

I Jo Jr (Jo~nP/&)SJoJp

(29b)

(29c)

then we obtain after some algebra the explicit form for
the coincidence cross section

dopr

a'koan„P

"„-Re
dQriQ~dEs orsk A4J.s

(—1)LJpJp'LL'

JoJo'LL' (~ o&Jo soI Jo ) (~ o&Jo'+ssI Jo' )

X g +'(IIo'LJ'; JoL')Xr.r, ' SjpJo ) (30a)

with

where

xLz, ~=4pr Q Q (LL'/I) 9(Lo) L'0
I lto) (llrp, x'ltp'

I
IMI) FI»I,*(p) F&, (j)f&,

ml )!.V&l
(30b)

f, ,LL&I& Q ) I l, JLL'I ( I) (30c)

[u u' lt'I

The sum in Eq. (30c) has contributions from the Coulomb term (a =a'=0), the interference term (u =1, a'=0),
and the transverse term (a=u'= 1):

f&, „L'(00)= (A'/q') '(Et&s+ kzks cose+Irsp') ORIEL'8&, ply'0, (30d)

'(10) = —2 (A'/q') (zpr) '~'ji(K/q) (Ez+Eo) F&, „(K)GL&P&+I EkF&,.„.(fee) +EsktF& „.(kt) j3L&"&JBRL8& I, (30e)

f&
LL (11)= —(8pr/3) p(K'/q')'g&, „(K) K) OL 3L'i +o(K/q) ks Jj&, p'(K) Ics) GL 3L'

i(K/q) k—t g&, „(fit, K) 3L&"&3L.&p&+ktks'ti&, „.(kt, kp) 3L& &3L &"&j+-',6'L(zpr) 'JJ&,.„.(L q) SLY'&3L.&'&

+(8~/3)''(~L ' &L +~L' ~L ') I"&, (q)4'I+~&(~L' '3L ''+'JL ~L )&&:o&„'oj (30f)

We used the vector x= k2 x k» and the abbreviation

'tf&, „(a,5) = g (1v, 1—v'
I

X'rp') Ft„(a)Ft „(|&). (30g)
vol

F&;„. Q&l,P(LO, ——L'0
I XO)

The presence of the interference term allows relative
phases to be determined, unlike in the case of electron
scattering experiments without coincidences. Equations
(30) generalize (and correct') Eqs. (23)-(26) of Ref. 3;
likewise, Eq. (18) replaces Eq. (29) of Ref. 3. It should
be noted that the numerical example discussed in Sec.
III of Ref. 3 remains correct.

V. SUM OVER MAGNETIC QUANTUM NUMBERS

In Ref. 3, the remaining summations over magnetic
quantum numbers were not carried out, but this Inay
be done as follows. Without loss of generality, we
choose the z axis of our coordinate system parallel to the
direction of q and obtain

Y&,„(j) =&(4pr) 'ro8„o.

We now pick out the X-dependent terms in Eqs.
(30a)-(30c) and deine the quantity

This sum may be evaluated by standard angular
momentum algebra. Using Eqs. (6.4.3) and (6.2.8)
of Edmonds, "we obtain

~' &'v' k ~)/ q & gl—IJ,l+crz+0zl y l ~—2 ~ l—»n, cx cL

X (L'a', L'0
I

a'a') bsr,„ f (LI4' a', L'a'
I
II4')—

X (La' —p, ', LO
I

uu' —rp') (u'a', lt' —p,
'

I
au' —p, ')

+ (—1)"'u'(Lu'+I ', L' a'
I II ')—

X (La'+~', LO
I
au'+r ') (u'u', ll'r '

I
au'+r ') l (33)

The quantity Xz,z,
J'I of Eq. (30b) is given by

Xz,z, "= Q Q (—1)»'ll'I'(I —rp')!/(I+p')! J"
Algal aal

XPII"(cos9v) exP( —iP'P„)f&, „LL'(aa') Fq „, (34)
~' A. R. Edmonds, Angular Momentums irl Quantum j/Iechaeics

(Princeton University Press, Princeton, N.J., 1960).
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where Pz& are the associated Legendre functions. The limit the number of terms contributing to Eq. (34)
vector coupling coefficients appearing in Eqs. (33) quite substantially; naznely,

Coulomb term (u=ex'=0):

interference terzn (ex=1, a'=0):
transverse term (u=u'=1):

only X'=p'=0 allowed;

only X'=1, p'=&1 allowed;

only A, '=0, 1, 2, p'=0 and P'=2, p'=&2 allowed.

Expressing the functions 'g), „[Eq.(30g)] explicitly by the angles of the particles, Eqs. (30e) and (30f) may be
simpli6ed for the allowed values of n, u', X', and zs'. Since there now remain only a few terms in Eq. (34), the sum
may be written explicitly.

This leads to the result

Xz z,
z*z Pz (co——s8„) f (LO, I.'0

( IO) (6'/q') '(E)Es+ktks cos8+m, ') DRzliaz, —(L 1, L' 1( IO—) [(x'/q') +—'6']
X[&(1+( 1)z+L+LI) (g (e)0,(e)+0 (m)ed, (m)) + & (1 ( 1)z+z+z~) (0 (e)3,(m)+g (m)g, (e)) ]j
+2[I(I+1)] "'Pz'(cos8„) (L1, I.'0

~
I1) (xh'/q') (Et+Es) f cosset s [-,' (1+(—1) +~ ')3z(e)

—-' (1—(—1)'+~+~') Gz(m)]3Rz, —t' sing„[-', (1—( —1) +'+~') 3z(e)+-', (1+(—1)'+'+~') 3z(m)]ORz, j

+[(I—1)I(I+1)(I+2)] 'I'Pz'(cos8„) (L1, L'1
[ I2) (x'/q') f cos2&„[-',(1+(—1) +i+ ')

X (ei (e)el, (e) ed (m)eJ, (m)) r (1 ( 1 )z+I+L&) (0 (e)g, (m) el (m) el, (e))]
—i sin2$~ [.—',(1—(—1) + +~')(Gz, (')Gz, .(') —Gz( )Gz,.( )) ——,'(1+(—1) + + ')

X (0g(e)gyp(m) 0z(m)/gal(e)) ]j (35)

For photon decay, a similar result was obtained by
Hubbard and Rose.' These authors conjectured that
the terms containing i sinet„and i sin2&„should be
unimportant. We note that they have to vanish
exactly. Indeed, since the interactions involved are
parity-conserving, '6

sing„ex [(q x p) x q] (kt x k,) (36a)

changes sign under parity reQection, whereas

cosg ~ (qxp) ~ (k, xk, ) (36b)

does not. The detailed cancellation comes about as
follows: The parity of the electroexcitation transitions
is given by

( 1)L+P (37a)

where P =0 for Coulomb or (e) and P = 1 for (m) . The

factors st[1&(—1)z+z+z'] may then, because of parity
conservation (s.z =x,xs, s.z ——s.;s()), be written

the lower sign appearing with the sine terms in Eq.
(35) only. Not only are these projection operators
independent of the multipolarity and character of the
transition, but they also depend only on I and on the
parity of the intermediate states just as the projection
operator (15d) contained in the decay parameters S.
Indeed, taken together with the latter, Eq. (37b) may
be replaced by unity for the absolute and the cosine
terms in Eq. (35), and reduces to zero for the sine

terms, which proves their absence explicitly.
The foregoing permits us to write for the coincidence

cross section

( 1)iJsJ()'LL'—
z,z,i (E o)z, sI'z ~s) (E—o)J—+—s—i'z—t s)

X g —',[11(—1) xsms']W(IJs'LJ;; J()L') Xz,z ' Sz~;zzz, (38a)
I

Xzzr ' =Pz(cos8„) [(LO, L'0
[ IO) (A'/q') '(ErEs+ktks c so+8m, ' D)Rz9Rz,

—(L1, L' 1J IO) ((x'/q') +-—'6') g 0z~3z, &']+2[I(I+1)] '"Pz'(cos8 ) (L1, I-'0
f
I1)

PP'

X (x&'/q') (Er+Es) cosg„g Gz ORzl+[(I —1)I(I+1)(I+2)] ' ' )P(zsc o„s8()I.1, L'1
~
I2)

X (s'/q') cos2p„g (—1}&'Gzs3z, &'. (38b)
PPI

e The sine terms are not eliminated by the fact that in Eq, (30a) the real part of the expression has to be taken: By an exchange
of dummy variables J'e~ Je' and L~L' (at the same time symmetrizing the term with 2'z'l, all terms in Eq. (33} may be shown.
to be real. Nor are the sine terms eliminated by time-reversal-invariance arguments, which are not sufhcient to render the decay'
parameters S~sre zzr real (as shown by Watson's theorem) due to the final-state interactions between the nucleus and the emitted par-
ticle (except to first order if the latter is a photon). However, Mz, and sr(' ) are real from time-reversal invariance (see Ref. 23}.
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Finally, the coincidence cross section may be written in the form of Eq. (1):
d'o/dMQ~dE p (c——t'/6') (kp/kr) p&„IVo(8) Wo+ Vz (8) Wr+ Vz(8) p„)Wz+ Ve (8, $„)We [.

The kinematic functions
Vo = (LV/q') '(E,E,+kzk, cos8+n4'),

Vr = (~'/q') +-,'6',
Vz= (~LB/q') (Er+E,) cosy„,

V8=2(gP/q-') cosPP +rg'

(39)

(40a)

(40b)

(40c)

(40d)

reduce to the expressions given by de Forest" in the limit of n4—+0, Eqs. (3) . The generalized form factors in the
partial-wave decomposition are given by

( 1)iJJ—p'LL'

„„„„(E—„——;ir„)(E—„,+-,'ir„, )

&& g pr[ 1+ ( —1)zrrp7rp'jW(IJp'LJ;; JpL') Sz,z, zzfZzz, .z(n), (41)
I

where
Zzz, z(C) = (LO, L'0

[ IO) ~zORzrPz (cos8„),

Zz, z,'(T) = —(L1, L' 1[ IO) g G—ze3z, e'Pz(cos8, )
PP/

(42a)

(42d)

—
[ (I—1)I(I+1)(I+2))—'"(L1,L'1

[ I2) Q ( 1)e'3z~—'Jz, e'Pz'(cos8~), (42b)
PV/

Zzz, z(I) =[I(I+1)j '"[(Ll, L'0
[ I1) Q GzeBRz, '+ (L'1, LO

[ I1) g 5Kz, gz, e']Pz'(cos8„),
P p/

Zz, z. (S) = L(I—1)I(I+1)(I+2)j '"(L1,L'1
[ I2) Q (—1)e'3ze'Jz, ~'Pz'(cos8~) .

The znentioned syznmetrization" has been carried out in the interference term Zz, z, z. All the quantities Zz, z,.z(n)
are real if the nuclear wave functions have been chosen to obey Eq. (20a) .

We complete the general formalism by defining the decay parameters (29a) for the various emitted particles
Lthe projection factor (15d) is understood herej:

photon:

S "f=(—1) + f- o+ (4~)- g (—1) +'ll'(i1, l' —1[IO)
zaz/a/

)(W(JpJp ll; IJf) (Jf II ter II Jo)* &~f II
l'cr'

ll Jo') (43a)
[ to be used in conjunction with Eq. (26)];

elcleoe:

Szoz "'= ( —1)" "~(4~) ' 2»'(~p, ~' —p [ IO) W(J&p'9'; »f) (Jf liat II Jp)*(Jf I[i'l' ll Jo'); (43b)
jzj/z/

u particle:

Szpzp f = (—1)z+ f '(4n') g ( —1) +"ll'(lO, l'0
[
IO) W(JpJp'll'; IJf) (Jf [[ l [[ J'p)*(Jf [[

l'
[[ Jp'). (43c)

zz/

In the approximation of a diagonal level matrix used
in this paper, the reduced matrix elements for particle
decay are given by

(Jf ll Jl ll JP&= L&7r/V'(PEzp) 3~ft(~zo &z")" (43d)

where D, ~ is a phase factor (see Ref. 27 for definition)
and F&~J., ' the partial decay width of state Jo into the
state Jy of the residual nucleus and a particle with
quantum numbers j and l. In a general R-matrix
theory, taking coupling of the resonances into account,

'r H. Uberall, Nuovo Cimento 41, 25 (1966).

one has to replace in Eq. (38a) the energy denominator
and the reduced matrix element (43d) by

(E—cpz, ——,'ir„."')—'(Jf [[jl [[ Jeer&-+ g Ae zp

X(Jf [[j l [[ JpP&. (43e)

Here the excited states are described by (Jp, n) or
(Jp, P), where tr and P are additional quantum numbers
to describe the intermediate states. Further, A~ & is
the matrix element of the level matrix as defined in
Ref. 15 between two states cr and P (both having the



1392 D. 9 RKCHSKL AND H. UB ERALL

same spin Jp). Obviously, our old formulas are obtained
if one assumes that the level matrix is diagonal:

Ap ~'~8 s(Ep —4pgp —-'siFg, "')—'.
In the eigenchannel theory for continuum states, no
additional sununation as in Eq. (43e) is necessary if we
identify the excited states (Jp, u) with eigenstates of
Hamiltonian and S matrix (with regard to strong
interactions) . One simply has to replace

(E—,-—liF ') '(~~ II ji II ~~&

~E(22r) 2/Q(PE~) 7vjy ji~' expibzp (43f)

where VJ-, ,~~' is the amplitude of the physical channel

Jr, j, l (i.e., residual nucleus in state Jf, outgoing
nucleon with quantum numbers j, i) in the eigen-
channel n of spin Jo, and bg, is the eigenphase.

The appearance of angular factors Pr (cos8„),
Er'(cos8~) cosg„, and up to Ers(cos8„) cos2$„ in the
excitation terms goes back to the vector nature of the
exchanged virtual photon (spin 1); this may be con-
sidered a generalization of the familiar Treiman-
Yang test" to the case of exchange of a virtual particle
with spin. In both the excitation and decay terms,
Clebsch-Gordan coeKcients appear with appropriate
angular momentum projections for the spin of the
particles involved; e.g., 0 for the longitudinal,
for the transverse excitation terms.

Rose has noted" that the general coincidence
formulas have a certain similarity with the electron
scattering cross-section expressions for aligned nuclei. "
A coincidence experiment, therefore, is somewhat
equivalent to a noncoincidence experiment with
aligned. nuclei (except that here it is the 6nal nucleus

which gets aligned due to the observation of the
emitted particle) .

Finally, it is straightforward to show that the
correct noncoincidence cross section in Born ap-
proximation is obtained if one integrates the coin-
cidence cross section LEq. (39)7 over the directions of
the outgoing particle dQ„. The result is

d20

dQdE2

tot

22r (E—ops ) '+-'(Fg "')'

&& „.,', -, (V (8) Zl~ I'

VI. EXAMPLES

In our numerical calculations we will assume that the
spin of the nucleus in the ground state is J;=0, and
that the excited states have spin Jo ——Jo'=1. In that
case the formulas (39)-(42) simplify considerably, and
we obtain the coincidence cross section

+v~(8) g I I
~~" I'+I ~~'-' I'7} (44)

L=1

which is the familiar Born-approximation scattering
cross section multiplied by the branching ratio into the
given decay channel, and with the contributions of the
individual levels Jo, each spread out in energy accord-
ing to a Breit-Wigner shape, added together inco-
herently. It also agrees with our general formula
(9a).

This completes the general formalism. In the follow-

ing, some numerical examples shall be considered.

dQdQ~dE2, +~,+

3"2nskspE„2' g L(E—~.—-,'iF "2) (E ~ +-,'iI', '")7~2k,z4

&& (S'I OR,JRpVz+ 3~32V2 7—O'12S'I (OR~BR&Vr, ——2'3~3&V2) E2(cos8„)

+2—'~23 'JRpVrE2'(cos8„) +43.32(Vs —
V 2)P2'(cos8„)7} (45)

(dropping the second superscript Jr of Sg,qpr~~ as well as the subscripts), where the functions V„have been
defined in Eq. (40) and the indices a and b indicate di8erent dipole states. For magnetic dipole states (0+—+1+)
the longitudinal matrix elements 5R and BR' vanish and, specializing to the case of an isolated magnetic dipole
level, we obtain

dQWydE2 P+~I+

v3~2uspE
I ~,&-& Ipso

~2P g4 (E tp) 2+.2
(Ftot) 2

S2/SP 3S'/S' t'14'(2 . ,X Vp Vp 3 cos'tII~ —1 — sm.'8~ cos2 „. 46
22 f2

The decay parameter S' is related to the partial decay
width for the process under consideration Lsee Eq.
(29c)7 and is obtained from the cross section inte-
grated over the angles of the emitted particle. The

' S. B. Treiman and C. N. Yang, Phys. Rev. Letters 8, 140
(1962)."L.I. Weigert and M. E. Rose, Nucl. Phys. Sl, 529 (1964).

ratio S'/SP may be determined by varying either the
polar angle 8„or the azimuthal angle @„,since all the
other variables in Eq. (46) are well known. If the
emitted particle is a photon and the nucleus is de-
excited to its ground state (J~——0), the decay matrix
elements may be expressed by the transverse magnetic
transition operators I see Eqs. (43a) and (26) 7, and the
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ratio S'/S'=2 '/' is known. The coincidence cross
section is then simply

d'/r/dQdQ„dE2 tp+ l+„p+ ~ ( Vr(1+cos'8„)

+ (s/q) ' sin28„cos2$~], (47)

and any deviations from such an angular distribution
are due either to ordinary bremsstrahlurrg and higher-
order processes (more photon exchanges) or to an
admixture of states with other multipolarity and parity
in the energy region under consideration. Figure 5
shows angular distributions expected for excitation of
the 15.1-MeV magnetic dipole level in C" with 200-
MeV electrons. In Fig. 5(a), we have plotted the

coplanar cross section (i.e., the photon is emitted in
the scattering plane of the electron Ps'=0 as a function
of the polar photon angle 0~' about the beam axis
(direction of kl), for various polar angles 8 of the
scattered electron. Figure 5 (b) gives noncoplanar
cross sections at 6xed electron angle 8=90' for various
azimuthal angles p„' between the direction of the
emitted photon and the scattering plane of the elec-
tron. Note that the angles 8~' and @„' are measured
about the beam axis (direction of kl), whereas the
angles 8~ and P„ in the text refer to the direction of
momentum transfer q.

Similarly, we obtain for the excitation of an isolated
electric dipole level

d30'

dodQ~dE~

—333&'&DRl(S'/SP) (s42/qp) (El+E2) cos8„sln8„cosg„

S2/SP
+ (os")' Vs Ij „, (3 cos'3 —I))—I3/2's) (3'/Ss) (s/qi' sio'3 cos2$, . i4!!)

In the case of photon decay of the excited state to the ground state (J/=0), the ratio S'/S'=2 '/2 also for electric
dipole transitions. The coincidence cross section is then

d'o/dQdQ~dE2 ~p. l. p. ~ ISEl'Vz, sin'8„—Mal&'&ORl(sLV/q')

Thus the contribution of the longitudinal matrix
element vanishes if the photon is emitted in the
direction of momentum transfer (8s=0). Therefore,
with the exception of extreme forward and backward
angles, the coincidence cross section will show a strong
minimum for 8„=0. For particle emission the ratio
S'/S' has to be calculated from some nuclear model.
Using E-matrix theory, " Raphael and Uberall' have
calculated the decay parameters for the process

e+"C—+e'+ "C+22, (50)

proceeding via the giant resonance of "C, and obtain
the ratio

S2/Sp = —0.595. (51)
The particle-hole wave functions of Gillet and Vinh-
Mau" were used. The coincidence cross section for that
process (integrated over the resonance) has been
plotted in Fig. 6(a) as a function of the particle
emission angle 6„' for various electron scattering angles
8. At forward and backward angles (8=0e and 180e)
the transverse terms dominate, giving an angular
distribution symmetric about 0„'=90, where the
emission probability has a maximum (since S2/S'(0
for that process). For most other scattering angles,
the longitudinal terms are much larger than the
transverse ones. However, the interference term

» See, e.g. , E. Boeker, thesis, University of Amsterdam, 1963
(unpublished); a condensed version of this work appeared as E.
Soeker and C. C. Jonker, Phys. Letters 6, 80 (1963).

"V. Gillet and N. Vinh-Mau, Nucl. Phys. 54, 321 (1964).

(El+E2) Sln833 COS833 COS$31

+ (gli'l)'-'$V2 (1+cos'8 ) —(s/q)' sin'8 cos2p„j}. (49)

always contributes more than about 10% of the total
angular distribution and thus it should be possible to
determine the magnitude and relative phase of the
transverse and longitudinal terms. Figure 6(b) shows
the contribution of the various terms at 8=175,
where Coulomb and transverse term are of the same
importance.

In the examples given above it has been assumed
that only one isolated resonance is being excited. This
is clearly not the case in the giant resonance region
where states of diferent internal structure and various
spins and parities overlap. As a first step, we have
therefore calculated coincidence cross sections as
functions of the excitation energy E for the process

e+ 12C~e/+ 12C@~e1+11B+p

assuming electro excitation of the dipole states at
17.7, 21.9, and 24.2 MeV and subsequent decay to the
ground state of "8by proton emission. The longitudinal
and transverse electric matrix elements as functions
of momentum transfer q have been calculated" using
Gillet's wave functions. " Further, we have calculated
the decay parameters S' and S' along the lines of Ref.
30. (See also Ref. 27 for an outline of how to obtain
the decay parameters). Besides the usual restriction of
Hilbert space to few low-lying ip-ih configurations, it is
assumed in this reference that the level matrix is
diagonal. Since this assumption led' to excellent agree-

"Francis J.Kelly and H. Uherall, Phys. Rev. 175s 1235 (1968).
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section with the angles fi„' and @„' of the emitted
particle. Contributions of resonances with other
spins and parities would change the pattern given in
Figs. 7(a)-7(c) and described by Eq. (45). Since the
form of the angular distribution is determined by spin
and parity of the excited states in a model-independent
way (only the magnitude of the variation with the
angles 8„' and @~' is model-dependent and determined
by the decay parameters Sr), very accurate coincidence
experiments will eventually enable us to project out the
contributions of the various multipoles and spins ac-
cording to Eqs. (39)—(42).

VII. SUMMARY
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Electron scattering experiments in which an emitted
particle is detected in coincidence with the scattered
electron are very useful for investigating the nuclear
structure. By observing a heavy particle in coincidence
with the electron, one gets rid of the problems of
radiative corrections above the particle emission
threshold which have plagued ordinary electron scatter-
ing. This does not apply, however, if a photon is ob-
served. In that case there occurs an interference be-
tween radiation following deexcitation of the nucleus

FIG. 5. Coincidence cross section d'o. /dQdQ„' as function of
photon polar angle 8~' about the beam axis for excitation of the
15.1-MeV magnetic dipole level in "C and subsequent decay by
photon emission. Electron energy E& =200 MeV. (a) Coplanar
geometry (p~'=0) and various electron scattering angles e. (b)
Fixed electron scattering angle 8=90' for various noncoplanarities

I
4y ~

ment for the (y, p) angular distributions from "C, we
think that this model should also give a fair description
of (e, e'p) coincidence experiments in the giant reso-
nance region of "C, at least at low-to-moderate mo-
mentum transfer.

The coincidence cross section d'o/dQdQ~dE as a
function of the excitation energy E is obtained from
Eq. (45) and has been plotted in Figs. 7(a)-7(c) for
different geometries. Figure 7(a) shows the cross
section for coplanar geometry (P~'=0) and various
polar angles 0„' between the direction of the emitted
proton and the electron beam axis. The electron energy
is 200 MeV; the electron is scattered under 0=30 .
At this momentum transfer, the 21.9-MeV level
dominates. Figure 7 (b) shows that at higher mo-
mentum transfer (corresponding to fl =90') the
low-lying 17.7-MeV resonance becomes more im-
portant. Finally, in Fig. 7(c), the noncoplanar, cross
section is given for various azimuthal angles
In all cases the angular distribution of the 17.7-MeV
resonance is nearly isotropic (i.e., 5 is small at that
excitation energy) since the excited particle is es-
sentially in the 2s state. At higher excitation energy,
however, the parameters S' and S' have comparable
size, giving a strong variation of the coincidence cross
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and bremsstrahlung of the electron, the latter process
dominating in the directions of the incident and
scattered electron. '

While at large energy and momentum transfer
electroexcitation may be described reasonably well by
the model of quasi-elastic scattering, " i.e., neglecting
the residual interaction ot the ejected proton (or
neutron) with the other nucleons, we consider in this
paper the region of low-to-moderate energy and mo-
mentum transfer which is dominated by a resonance
structure: The electron excites a (collective) nuclear
motion (e.g., the giant resonance) which decays by
emission of a particle. Since the nuclear resonances are
classified according to their spin and parity, we have
performed a partial-wave decomposition of the gen-
eralized nuclear form factors. With increasing mo-
mentum transfer, nuclear states of higher and higher
multipolarity may be excited, which will eventually
make the multipole expansion impracticable. Besides,
at higher excitation energy the nuclear problem
becomes more and more involved because of the in-
creasing number of channels which have to be taken
into account, thus limiting the calculations from low-to-
moderate excitation energy.

Among our numerical examples, we have calculated
the coincidence cross section for electroexcitation of the
overlapping giant resonance states in C" followed by
proton emission. While the form of the angular dis-
tributions obtained is model-independent (i.e., depends
only on spins and parities involved), the magnitude of
the variations with emission angles depends strongly
on the particle-hole configurations pertaining to a
certain excitation energy. Eventually, coincidence
experiments will make it possible to project out the
contribution of resonances with a certain spin and
parity and thus to compare more directly with nuclear
structure calculations.
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