
PHYSICAL RE VIEW VOLUME 181, NUMBER 4 20 MAY 1969

Velocity-Dependent Potentials in the Heisenberg Picture*
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velocity-dependent potentials are investigated in both the Langrangian and Hamiltonian formalisms. A
canonical transformation is introduced so that a consistent formulation is achieved. It is found that the
proper Hamiltonian operator should be H=K+ ~,f '(r) tf'(r) )' rather than the customarily used form of
K=xsP f(r) 9+V(r)

quantities. Let us consider the following Lagrangian in
the Heisenberg picture:

Z(r, r) = ,'rf '(r)-r' V(r),— (1)
which satisfies various invariance requirements, and
where f '(r) and V(r) are functions of

~
r ) onlys The

canonical momentum for r would be defined as

I. INTRODUCTION

N the last few years there have been many studies

.' . and applications of velocity-dependent potentials in
nuclear physics. ~ The motivation for introducing such
potentials originally stems from the desirability of re-

placing the hard core in nucleon-nucleon interactions.
Velocity-dependent potentials can arise from the
Taylor expansion of a nonlocal potential or from non-

static effects. The two most commonly used forms are

y f(r)y and p'g(r)+g(r)p' The. functions f(r) and

g (r) are usually taken for convenience to be square-well,

exponential, or Gaussian. Since these two types of
velocity-dependent potential are essentially the same,
because of psg+gp'=2p gp —(2/r) g' —g", we will only
discuss the type y f(r)p.

Recently, Razavy' discussed a fundamental problem
concerning velocity-dependent potentials. Specifically,

by means of Hamilton's canonical equations he studied
the relation between the Hamiltonian and the energy
of the system. However, his argument involves some
misleading statements. In the present paper, we pursue
this subject further and point out that the Hamiltonian
obtained by means of the canonical method from a
Lagrangian for a velocity-dependent potential does not
satisfy the canonical equation of motion. In Sec. II,
we propose a consistent method to get the canonical
equation of motion.

In quantum mechanics, the velocity-dependent
potentials mentioned above present a new problem
which arises from noncommutativity of physical

y=~«~r = 'I rf '(r)-+f-'(r) fI, (2)
where Br can be regarded as a c number, so the dif-
ferentiation in (2) is done in the usual manner. The
fundamental commutation relation is

[p;, r,]= i5;;— (3)
From this equation we have

L~p', r3+LP', 3 t3=o.
Thus we can regard 8p; and 5r; as c numbers, provided
that p and r are independent variables. From (2) and
(3) the commutator

E", ;)=-f()3'; (4)
is obtained.

With the help of (4), f can be expressed in terms of
y andr:

'= l (pf(r)+f(r) pI (5)
and the Hamiltonian corresponding to the Lagrangian
(1) is given by

E(r, p) =-s, (ip+pr) —g
= lp f(r) y —lf-'(r) Ef'(r) j'+ V(r), (6)

where f' means the derivative off with respect to r.
On the other hand, when we derive the Euler-

Lagrange equation from the Lagrangian (1) or the
Hamilton canonical equation from the Hamiltonian (6),
by means of the variational principle, M is no longer a
c number. In the Lagrangian formalism, although 5r
is induced by a virtual displacement br for a Axed time,
8r is not necessarily a c number for the velocity-depen-
dent potential. Also, in the Hamiltonian formalism,

' The &orm oi f(r) is not specified, except that we require it
to approach a constant as r becomes greater than the force range
and to have derivatives up to third order.

4 In the de6nition (2) for the canonical momentum, br is not
the variation induced by br. Since the equation of motion is of
second order, we have two freedoms for the initial condition ro
and r'e. The proper interpretation is that br' in (2) corresponds to
the freedom for ~0 and is di6erent from Br' in the variational prin-
ciple in the derivation of equation of motion.
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VELOCITY-DEPENDENT POTENTIALS

the variation is taken with y and r as the independent
variables:

The new Lagrangian is

&(E R) = 'E' -—'~'[4 g"(E) (g'(R) ) '7
tg

bI= [', (br-p+i bp+bpr+pbr')
ty

—(BE/Br) br (BE—/Bp) bp]eh=0 .(7)
where

+ Vf '—(), (13)

E= '{&f-"(r)+f "(r)&} (14)

From (5), the variation br induced by br and bp is
obtained, and we can easily see by using (3) that br
is not conunutable with r and p except when f is a
constant. Therefore, in (7) we cannot put N= (d/dt) br
because Sr is a c number. Thus the usual canonical
equations of motion

r;=BE/Bp; and p; = BE/Br; — (8)

are inconsistent with the canonical commutation rela-
tionP Indeed, if we treat M as a c number and put
M= (d/dh) br, the resulting equation of motion in the
Hamiltonian formalism is in general different from
that obtained in the Lagrangian formalism. As will

be seen, both equations of motion are also different
from the equation derived by the consistent method
outlined in Sec. II.

II. CONSISTENT FORMULATEON

The main reason of the inconsistency mentioned in
Sec. I lies in the fact that the canonical momentum

p is not proportional to i and hence the commutator
[r', r] is not a c number. Therefore, to avoid this let
us introduce the canonical transformation below. Sy a
canonical transformation we mean one which preserves
the fundamental commutation relation (3) ~ For the
sake of simplicity, we will discuss the s-wave scattering,
so the vectors r and p are replaced by the scalars r
and p in all the previous expressions and V(r) by
e(r) =—V(r) +f'/r.

The canonical transformation (r, p)-+(E, s ) is given
by the generating function

The canonical momentum m for E has the desired form

m =M/BR=A (15)

and is consistent with (12) ~ The commutation relation
retains the form invariance

[~, E]=[R,.R]= i—
Thus we have the new Hamiltonian

(«)

H(R, w) = ,'(sE+B-'Ir) —2(R, &)

=-; '+.'(1 g'(E-) )"-'[(1g'(E) )'7'+ (E).
(17)

Although the Hamiltonian H(R, s) satis6es the condi-
tion for canonical transf ormation

,'(pr+rp) —E(—r,p) =-,'(s.R+Rs.) —a(R, s.)

+dw(E, p)/dh, (18)

H(R, s) is not numerically equal to E(r, p), despite
the fact that W(E, p) does not involve time explicitly.
This fact is due to the noncommutativity of 8 with
g'(E) =f t'(r) and p in the expression

dW(R, p)/«= —l {g(E)p+pg(E) }

;{Eg'(R) —+—g'(R)@p :p{Eg'(E—) +—g'(E)R}

Using (10)—(12) and (16), this becomes

dW(E, p) /Ch =——,
' (rp+pr) —,' (Bs+sE)+~f '(f ')'—

Therefore we have

W(E, P) = —l {g(R)P+Pg(E)}, (9) B'(E, w) =E(r, P)+ref—'(r)[f'(r)7' (19)

and

where

r = —BW/Bp = g(R),
'tr = BW/BE= ,' {g'(E) p+—pg'(E) },- (10)

-'12 s ds,

g'(R) =dr/dR=P'(r) (11)

and g'(R) is the derivative of g(R) with respect to E.
Equivalently we can write Ba(R, s) d BZ(E, rr)

BR dh BR
(2o)

or

Equation (19) is con6rmed by the direct calculation
of transforming E and s in (17) into r and p. From
(19) we know that there is no unitary transformation
corresonding to this canonical transf ormation.

According to the argument in Sec. I, we can regard
bR as a c number owing to the commutation relation
(16) and we can put bE= (d/Ch) bE. Hence the usual
equations of motion are derived for E. and m ..

'{pf '(r)+f"(r)p}- (12) and
E=BE(E,'tr)/Bs

'Ir= —BH(E, s)/BR. (21)

Equations (20) and. (21) give the same equation of
motion, which is di 6erent from the one derived from

~ Razavy assumed that these canonical equations are still valid.
However, with these equations, the Ha~iltonian X(r, p) becomes
the generator of time develo ment for the system: r~= err, J"j, —
p= iQ, Eg, an—d hence dt r, p, t)/Ct=aZ/at sTF, Xg. —
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(8). Transforming E, ~ back into r, P, Eq. (21)
becomes

i =aH(r, p)/Op=8K(r, p)/Bp, (22a)

p= BH—(r, p)/Br& BK(—r, p)/Br. (22b)

Equation (22a) is in accord with (2) and (5) .
P From (22), H(r, p) is the proper Hamiltonian; that
is,I it is the generator of time for the system:

dF(r, p, t)/dt= (BF/Bt) —i)F, Hj, (23)

where F(r, p, t) is an arbitrary function of r, p, and t.
But K(r, p) is not the proper Hamiltonian. Obviously,

H(r, p) is also constant in time:

dH/dt =0, (24)

but K(r, p) is not. Really, H is the first integral of the
equation of motion, with the integrating factor -',p:

dH/d1 = ', pp ,'f-r'f 'i—+—',if"—r+fv-'

+:(2ff'" -3f'f"+—lf 'f")j+H c (25)

where H.c. denotes the Hermitian conjugate. In view

of (23)-(25), it is clear that the operator H is the

proper Hamiltonian, the eigenvalue of which is the

energy of the system, and the system is conservative.

III. DISCUSSION

Contrary to the case in classical mechanics, the
system with the velocity-dependent potential ,'pf(r) p-
is dissipative in the quantum-mechanical case. The
operator K (r, p) does not represent the energy of the

system and is not a constant of motion. %hen we

employ such a velocity-dependent potential, the as-

sociated term —,',f '( f') ' should be added to the
Hamiltonian. The resulting Hamiltonian H(r, p) thus

obtained should be used in the Schrodinger equation
for a stationary state. Only in special cases, for example,
for

does the above extra term have no contribution.
It should be emphasized that the above discussion

does not invalidate the work cited in Ref. 1 or open it.
to question. This is because in most of these applica-
tions the potential parameters are determined pheno-
menologically, and therefore one may consider, at least
for the s wave, the omission of the associated terms
[like ~sf '(f')' in our example) as amounting to a
redesignation of the meaning of V(r).

When we interpret H(r, p) as (kinetic energy)+
(potential energy), the Lagrangian Z(r, r') is not of
the form (KE) —(PE), and 2rif V—shows up as the
effective kinetic energy. However, this fact is not
peculiar, because we have already a similar example
in relativistic mechanics.

Although the canonical transformation (9)—(12)
keeps the form of the canonical commutation relation
and the generating function does not contain time
explicitly, the Hamiltonian is changed and hence there
is no corresponding unitary transformation. This is
the new aspect for this velocity-dependent potential in
quantm meuchanics.

After completing this work. , we became aware of
the paper by Fujiwara' in which he got an extra term
similar to ours in the quantum-mechanical Hamiltonian,
using a modified Feynman path integral method. The
numerical coefficient of the extra term is different
from that of our extra term, but this fact is due to
the ambiguity in making his classical Lagrangian
IIermitian.
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