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N a recent Physical Review Letter by Zak,' the
existence of a Stark ladder in solids was analyzed.
This letter had a twofold purpose. First, to point out
that there is actually no correct theoretical prediction
for such a ladder (the existing predictions being in-
consistent). Secondly, to stimulate a discussion on the
subject of a Bloch electron in an electric field. One of
the reactions to this letter is a comment by Wannier
appearing in this issue.? The author of this comment
was the first to predict the Stark ladder,® and he also
was the first to be involved in an unsuccessful attempt
to measure this ladder.t In his comments, Wannier
concentrates on ‘‘two errors” in Zak’s paper! and on
their “rectification.” These so-called “errors” appear in
one paragraph of Ref. 1, where Wannier’s ‘“general
proof” of the Stark ladder is discussed and proven to
be wrong.

In this paper a discussion of Wannier’s reply? to the
Physical Review Letter! is given, and it is shown that
the claimed “errors” are not errors. The discussion is
based on material (in particular equations) that appears
in Refs. 1 and 2, to which the reader is referred for
details.

The claimed “errors” are as follows. The first “‘error”
is the statement that Wannier’s equation appearing as
Eq. (13) in Ref. 1 is an approximate one. The second
“error” is the statement that e in Eq. (17) of Ref. 1 is
arbitrary. We will not discuss the second “error,”
because it was created by the author of Ref. 2 by
leaving out a part of a sentence, which then became
unclear. The reader is referred to Ref. 1 for details.

As to the first “error,” it is not difficult to prove that
it is not an error. The exact equation for a Bloch
electron in an electric field was obtained on the basis of
the kq representation® and is Eq. (12) of Ref. 1. This
exact equation contains no band index and has the
energy of the problem on the right-hand side. Only if a
band index can be assigned to Eq. (12) of Ref. 1 will
Wannier’s equation [Eq. (13) of Ref. 17, with the
function W (see Ref. 1) replaced by the energy e, be
correct. For example, the model discussed in Ref. 1
shows that such an assignment of a band index is
possible in the extreme tightbinding approximation. It
is clear that no band index is meaningful in the other
extreme case of a free electron.! The approximate
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nature of Wannier’s equation [Eq. (13) of Ref. 1] is
therefore obvious.

One should point out that before the 2g representation
was developed, Wannier’s equation [Eq. (13) in Ref. 1]
wasn’t well understood. Its approximate nature became
clear only after the meaning of the variable in this
equation was explained by the kg representation. The
“rigorous proof” of this equation in Ref. 2 doesn’t add
anything to either its contents or its understanding. It
is not worthwhile to get into details of this proof
because we know that this equation cannot be exact
[the exact equation is Eq. (12) of Ref. 17]. We would,
however, like to make two remarks and shed some light
on this “proof.” The first remark is that the introduc-
tion of a band index in Eq. (4) of Ref. 2 is completely
unjustified (this is an important point because the
existence of a band index is crucial in the proof of a
Stark ladder!). This can be seen by pointing out that
the eigenvalues of the operator O(T') in Eq. (4) of Ref. 2
are known and are given by e¢/®<T where € are the
eigenvalues of the energy operator in (1) or (2) of
Ref. 2, and T is given by (3) of Ref. 2. Only if the
energy spectrum is discrete (this is exactly what one
has to prove in order to show that a Stark ladder
exists!) will Eq. (4) of Ref. 2 contain a band index. The
author of Ref. 2 assumes, therefore, what he wants
to prove.®

The other remark is with respect to the derivation
of Eq. (10) from Eq. (9) in Ref. 2. The correct equation
for the time development of a wave function is

¥(1)=0()¥(0) 1)

and not Eq. (9) of Ref. 2. Equation (1) differs from the
latter by a phase factor e®:(¢E¢/®) Tt can be easily seen
that Eq. (10) of Ref. 2 becomes the regular time-
dependent Schrodinger equation when the correct time-
development equation [Eq. (1)] is used. The meaning-
less Wi(k) function on the right-hand side of Eq. (10)
in Ref. 2 is a consequence of the arbitrary phase in
Eq. (9) of Ref. 2.

In conclusion, one should point out that Ref. 1 raises
the question of whether the Stark ladder in solids exists.
There is no general answer to this question today and
further investigation of the problem is needed. What is
clear from Ref. 1 is that no consistent prediction of the
ladder for conduction electrons in solids was given in
the past [it is worthwhile to mention that the Stark
ladder was usually connected with conduction electrons,
and attempts to measure it were performed on crystals
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with relatively high conductivity (for references see
Ref. 1)]. Although Wannier concurred in his Comment?
with the main result of Zak’s paper! and claims now that
“a truly discrete spectrum” for a Bloch electron in an
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electric field “is unlikely,” it is regrettable that he
completely overlooked the new development in the
dynamics of electrons in solids brought about by the
kg representation.
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Accurate zero-pressure de Haas—van Alphen frequencies associated with the [100] belly, [100] rosette,
and [1107] dogbone cross sections of the Fermi surface of Cu obtained using ¢z situ NMR field determina-

tions are presented.

N a recent paper on the effect of hydrostatic pressure
on the Cu Fermi surface,! we parenthetically in-
cluded the values we obtained for the zero-pressure de
Haas—van Alphen frequencies associated with cross-
sectional areas for fields along principal symmetry
directions. Two of the frequencies had been obtained
previously? with in situ NMR field determinations,
while the remaining three were obtained less carefully
using the current-field calibration of the solenoid. It has
come to our attention®* that there is considerable in-
terest, from the standpoint of precise theoretical fits
to the Cu Fermi surface, in very accurate absolute val-
ues of these other three frequencies. Furthermore, the
ratio of the [100] belly to [100] rosette frequencies
derivable from our quoted values differed outside of our
estimated uncertainty from the directly determined
ratio (from the resultant pattern of the two frequencies)
of Halse.*

We therefore have measured these frequencies using
in situ NMR field determinations in each case over a
minimum of 1000 oscillations using the same procedure
as in Ref. 2. Our values for the five cross sections are
listed in Table I. The ratio of B[100]/R[100] is now
2.436(=0.003), in excellent agreement with Halse.* (We
use the notation B for belly, R for rosette, and D for
dogbone with the appropriate field direction given in
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TasiE I. Experimental de Haas-van Alphen frequencies and
frequency ratios® for Cu. Frequencies are given in G.

Cross section Frequency
Belly [1117 (B[111]) (5.8140.006) X 108
Neck [1117 (¥[1117]) (2.17740.002) X 107
Dogbone [110] (D[1107) (2.5144-0.003) X 108
Belly [1007 (B[100]) (5.998-0.006) X 10®
Rosette [100] (R[100]) (2.462+0.003) X 108

a B[100]/B[111]=1.032-0.001, B[100]/R[100]=2.436-0.002, and
D[110]/R[100] =1.021+0.003.

square brackets.) Our underestimate of the uncertainty
in our quoted value! for B[100] may have stemmed
from slight changes in the current-field value for the
solenoid which can introduce sizable errors over the
short field ranges used in our pressure study. We have
also listed directly determined ratios of B[1117]/B[100]
and D[[110]/R[100] obtained by placing two crystals
in the holder as well as the directly determined ratio of
B[1007]/R[100]. While these ratios can be determined
experimentally to high precision, the relatively large
uncertainties quoted stem from the ~1° uncertainty
in positioning the samples in the field.® (Sample orien-
tations were determined relative to the sample holder
by back-reflection Laue patterns.) Considering orien-
tation uncertainties, our ratios are in satisfactory agree-
ment with those derivable from the data of Joseph et al.5

We are indebted to L. E. Brubaker and L. L.
O’Connor for technical assistance.
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