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' rN the 24 June issue of the Physical Review Letters
& ~ there is a contribution by J. Zak, having the above
title. ' The paper contains two errors which involve my
past work. I wish to rectify these errors and to re-
examine thereupon the question raised in the title.

Zak's work, as well as my own, is based on the one-
electron approximation for electrons in solids; in this
approximation, the crystalline medium appears as a
periodic potential. The words "approximate" and
"rigorous" are to be understood in terms of this theo-
retical framework. We shall follow Ref. 1 in taking the
crystal as one-dimensional.

The Grst error in Ref. 1 occurs in connection with Eq.
(13). The letter describes it as "approximate. " There
is a rigorous proof published for it' which will now be
ampliGed for later use. Let the Hamiltonian for the
problem be

X=P'/2nt+ V(x) —eEx,

V(x+a) = V(x).

(1a)

(1b)

The development of a wave function in time is then
controlled by the operator

8(t) =exp( —iXt/h). (2)

Among these operators, the one for which the time has
the value

T=27rh/eEa

is of special significance. The operator 8(T) is periodic
in x, because the nonperiodic term in (1a) is neutralized
by being placed in an exponent where it takes the form
2srix/a. This time T can also be obtained by semiclassi-
cal band dynamics as the recurrence period in the
motion of an electron in a tilted band. This time, the
reality of which has often been questioned, has thus a
rigorous mathematical significance.

Since 8(T) is a unitary operator which is periodic in
x, we can use its eigenfunctiona as basic Bloch functions
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ines@
T(na).

It

d—T(na) =
dt

Equation (7) tells us that the operators are simul-

taneously diagonal with their time derivative, that is,
they remain diagonal in time. The representation (6)
can therefore be used with a time-dependent k. We Gnd

then
k=kp+eEt/h. (8)

Thus if we start out with a Bloch function having k= 0
at t =0 we get a Bloch function having k =eEt/h at time
t. We make use of this feature to generate the band from
the states k=0 picked from (4). These bands are closed,
for the defining equation (4) is such that when k has
reached 27r/a then, by (3) and (8), the starting wave
function is restored. We therefore define Bt(x; k) for
k/0 by the formula

Bt(x; eEt/h) = exp(&It(eEt/h)]8(t)Bt(x; 0) . (9)
4'~ is for the moment an unknown phase. The functions

' G. H. Wannier, in Elements of Solid State Theory (Cambridge
University Press, New York, 1959), p. 142.
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Simultaneously, we are given eigenvalues in the form
of phase angles; thus

8(T)Bt(x; k) = exp( —ic t) Bt(x; k). (4)

The notation implies that the Bloch functions can be
grouped into bands sharing the same eigenvalue C~.
This is not yet proved. Therefore, at the moment we
accept (4) only for k=0. The index t is then simply a
label for the complete set Bt(x; 0).

The best way to get the grouping into bands is by a
study of the crystal translation operators' which de6ne
the wave vector k through their diagonal representation:

T(na) —= exp(inpa jh), (3)

where n is an in.teger and the diagonalized form of (5)
reads

Lexp (inpa/h) ja;,a =exp (inka) . (6)

In the Geld-free case, these are constants of the motion.
Now, on taking the commutator with (1), we get the
equation of motion
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so dined do share with the starting function the eigen-
value C~. This is seen as follows. '

8(T)Bi(x; eEt/h) =e'~'8(T)8(t)Bi(x; 0)
=e"i6(t) e(T)Bi(x; 0)
=e 4~~e'~'8(t)Bi(x 0)
=e '~&Bi(x; eEt/k).

The full implications of the notation used in (4) are
thus verihed. Furthermore, each band is closed in time,
that is, interband tunneling is transformed out,

The controversial relation (13) of Ref. 1 now follows
from (9) simply by differentiation with respect to time.
The result of such a differentiation is

d@i(k)
~
X ieE —~Bi(x; k) =eE Bi(x; k). (10)

ak) dk

The relation is therefore proved.
Examination of (10) shows that the energy band func-

tion Wi(k) is related to the phase %i of the wave func-
tions by the relation

W (ki) =eEde&(k)/dk. (11)

Ke now come to the second error in Zak's paper,
namely, the statement in connection with his Eq. (17)
that e is arbitrary. This is not correct. The arbitrariness
of the phase Ni in (9) is partially restricted, because the
same wave functions repeat as t increases and that, for
such repetitions, (9) must not be in contradiction with
(4). This yields

%i(k+2'/u) 0 i(k) =—Ci. (12)

The connection between ei and Wi(k) is given in Eq.
(16) of Ref. 1. The equation contains a misprint. There
should be a factor u/2~ in front of the integral. It then
becomes

2m/a

W, (k)dk.

This yields, with (11) and (12),

e, =eEa(C,/2~) .

The eigenvalue relation (4) thus determines ei pre-
cisely even though other apsects of the energy band
function are indeterminate.

The conclusions drawn by Zak will be unaffected by
the two errors if the eigenvalue equation (4) yields a

continuous spectrum devoid of structure. That this
case can arise was anticipated in Ref. 2. The theory is

applied there to the case of free electrons with an arti-
6cially imposed period a ("empty lattice" test). A
similar situation must prevail when the periodic poten-
tial is very weak. Even in strong periodic potentials,
the following result is now proved. 4 %bile it is possible
to solve Eq. (13) of Ref. 1 in powers of the electric field,
starting with a field-free band, the resultant power
series is divergent. Thus a truly discrete spectrum for
C ~ is unlikely. However, in all cases except that of free
particles, there is a periodic recurrence of structure
which has the Stark ladder spacing. This structure
might very well resemble a set of discrete levels in some
cases. In order to see this we can turn to the case of
atoms for comparison. In that case also, the energy
spectrum is continuous, and a correction of the atomic
wave functions in powers of the 6eld leads to a divergent
expansion. Nevertheless, the Stark levels in atoms come
out correctly from such a computation as metastable
states, which are diferent from the background con-
tinuum. In a similar way, the Stark levels computed in
a straightforward way from a single band are likely to
be present as metastable states, limited by interband
tunneling.

In estimating the likelihood that Stark levels occur
in an actual crystal, one might be tempted to follow up
the reasoning of the preceding paragraph and say that
Stark levels can only be prominent if the field con6gura-
tion and the relaxation times for the sample permit
return of the electrons to their starting configuration.
This takes a time T given by (3), which is of the order
10 " sec. Such an argument neglects, however, that
the energy spacing in question can be derived in a second
independent way. Suppose we take a molecular crystal
in which the probability of passage of an electron from
molecule to molecule is small, and suppose we apply
to the crystal a uniform electric field E. There is then
an energy difference eE a between two equivalent
energy states for an electron in neighboring cells. Thus
the presence of such a splitting transcends the band
picture on which the argument was based originally.

4 G. H. Wannier and J. P. Van Dyke, J. Math. Phys. 9, 899
(1968).


